Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams
Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed fra...
Saved in:
Published in | ACM transactions on Internet technology Vol. 16; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets. |
---|---|
AbstractList | Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets. |
Author | Aickelin, Uwe Ma, Jiangang Wang, Hua Zhang, Yanchun Sun, Le |
Author_xml | – sequence: 1 givenname: Jiangang surname: Ma fullname: Ma, Jiangang organization: Victoria University, VIC, Australia – sequence: 2 givenname: Le surname: Sun fullname: Sun, Le organization: Victoria University, VIC, Australia – sequence: 3 givenname: Hua surname: Wang fullname: Wang, Hua organization: Victoria University, VIC, Australia – sequence: 4 givenname: Yanchun surname: Zhang fullname: Zhang, Yanchun organization: Victoria University, VIC, Australia – sequence: 5 givenname: Uwe surname: Aickelin fullname: Aickelin, Uwe organization: University of Nottingham, UK |
BookMark | eNpl0E1LAzEQBuAgFWyr-Bf2ppfVzOZj02Np6wcUFGrPS8xOILK7qUlW6L93l_akl5mX4WFgZkYmne-QkFugDwBcPBaKSrWgF2QKQpS5pAImY2YsF2yxuCKzGL8oBSGBTclm1x8w_LiIdbbsfKubY7bGhCY532Wuy_adwZD0kN4j9rUftPO1M9laJ53tUkDdxmtyaXUT8ebc52T_tPlYveTbt-fX1XKbGybKlHOrBOiSWUWHgSw042BxKAo4hZqCkdRyUTBZG4WfhZU1oLYcqJaaG8nm5P609xD8d48xVa2LBptGd-j7WIGiigpOVTnQuxM1wccY0FaH4FodjhXQanxUdX7UIPM_0rikx_tT0K75538BhOBqBw |
CitedBy_id | crossref_primary_10_1007_s10845_020_01583_0 crossref_primary_10_1007_s13755_023_00221_2 crossref_primary_10_1109_ACCESS_2023_3333247 crossref_primary_10_1007_s10847_025_01277_1 crossref_primary_10_1007_s12652_020_01850_1 crossref_primary_10_1007_s12206_020_0501_0 crossref_primary_10_1007_s13755_019_0084_2 crossref_primary_10_1016_j_future_2017_01_029 crossref_primary_10_1177_1550147720920478 crossref_primary_10_1007_s13755_020_00126_4 crossref_primary_10_1007_s41060_019_00186_0 crossref_primary_10_3390_info12050215 crossref_primary_10_3390_app142311040 crossref_primary_10_1155_2022_3105291 crossref_primary_10_1007_s10115_019_01365_y crossref_primary_10_3390_agriculture13020480 crossref_primary_10_3390_fi16110403 crossref_primary_10_4108_eetsis_v10i3_3033 crossref_primary_10_1007_s13042_018_0806_9 crossref_primary_10_1016_j_artmed_2022_102236 crossref_primary_10_1016_j_asoc_2022_109486 crossref_primary_10_1145_3423556 crossref_primary_10_2166_ws_2021_337 crossref_primary_10_1155_2021_9954951 crossref_primary_10_1109_TKDE_2020_3014806 crossref_primary_10_1109_TII_2019_2952917 crossref_primary_10_3390_w10121765 crossref_primary_10_1007_s00778_021_00657_6 crossref_primary_10_1007_s13755_019_0083_3 crossref_primary_10_1007_s13755_019_0085_1 crossref_primary_10_1007_s10489_017_1017_x crossref_primary_10_1007_s13755_019_0088_y crossref_primary_10_1016_j_neucom_2024_127791 crossref_primary_10_1186_s40537_024_00940_7 crossref_primary_10_1007_s10618_020_00725_5 crossref_primary_10_1109_JSEN_2021_3069452 crossref_primary_10_1007_s13755_020_00125_5 crossref_primary_10_1007_s13755_020_00129_1 crossref_primary_10_3390_app8030381 crossref_primary_10_1108_SASBE_10_2018_0051 crossref_primary_10_3390_app13148082 crossref_primary_10_1016_j_procs_2016_08_115 crossref_primary_10_3390_en13102622 crossref_primary_10_1155_2021_6024352 crossref_primary_10_9746_sicetr_59_342 crossref_primary_10_1109_ACCESS_2019_2918361 crossref_primary_10_1007_s41060_020_00239_9 crossref_primary_10_1016_j_ijcce_2022_10_001 crossref_primary_10_1109_TIE_2019_2907441 crossref_primary_10_1109_TCE_2023_3320183 crossref_primary_10_1007_s10489_023_04814_y crossref_primary_10_4108_eetsis_7635 crossref_primary_10_1007_s11280_017_0456_y crossref_primary_10_1155_2020_6343705 crossref_primary_10_1109_TPDS_2020_3001593 crossref_primary_10_1109_ACCESS_2021_3138978 crossref_primary_10_1016_j_asoc_2022_109147 |
Cites_doi | 10.1016/j.patcog.2008.09.025 10.1007/s11633-008-0032-0 10.1097/GIM.0b013e3181f8baad 10.1137/1.9781611972771.59 10.1109/TSMCC.2010.2048428 10.1109/ICDE.2009.188 10.1071/AN10255 10.14778/2350229.2350278 10.1007/s11280-013-0203-y 10.1109/ICDE.2008.4497423 10.1161/01.CIR.101.23.e215 10.1016/j.neucom.2011.08.036 10.5555/1287369.1287401 10.1109/ICDM.2005.79 10.1007/s00778-011-0261-7 10.1145/956750.956815 10.1109/ICDE.2009.157 10.1198/TECH.2010.06134 10.1109/TKDE.2007.190737 10.5334/jors.bi 10.2307/2346830 10.1007/s11280-013-0256-y 10.1007/s10707-006-0002-z 10.1145/1247480.1247511 10.1016/j.adhoc.2005.01.004 10.3138/FM57-6770-U75U-7727 10.5555/1251086.1251118 10.1145/2020408.2020557 10.1016/S0031-3203(02)00076-6 10.1016/0377-0427(87)90125-7 10.1007/978-3-642-02279-1_31 10.5194/npg-11-561-2004 10.1145/2379776.2379788 10.1145/342009.335432 10.1145/1247480.1247546 10.1145/1835804.1835854 10.1145/2247596.2247620 10.1145/177424.178097 10.1109/CIC.1999.826026 10.1109/18.382009 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/2806890 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-6051 |
EndPage | 20 |
ExternalDocumentID | 10_1145_2806890 |
GroupedDBID | -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX AAYXX ABPPZ ACGFO ACM ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AENEX AENSD AFWIH AFWXC AIAGR AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CITATION CS3 D0L EBS EDO EJD FEDTE GUFHI HGAVV H~9 I07 LHSKQ P1C P2P PQQKQ RNS ROL TUS U5U UPT ZCA 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-4f851a73f80c3562a341fe34181401d01c60f45236dc8eb2f6d1eaf410a6a4c63 |
ISSN | 1533-5399 |
IngestDate | Fri Jul 11 04:56:30 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Thu Jul 03 08:44:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-4f851a73f80c3562a341fe34181401d01c60f45236dc8eb2f6d1eaf410a6a4c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11343/241215 |
PQID | 1808054087 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1808054087 crossref_primary_10_1145_2806890 crossref_citationtrail_10_1145_2806890 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | ACM transactions on Internet technology |
PublicationYear | 2016 |
References | Folarin Victor A. (e_1_2_1_14_1) 2001; 72 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 Liu X. (e_1_2_1_32_1) 2010 e_1_2_1_40_1 e_1_2_1_23_1 Reynolds Douglas (e_1_2_1_37_1) e_1_2_1_46_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_21_1 Levy Matthew N. (e_1_2_1_30_1) 2007 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_25_1 e_1_2_1_47_1 Arthur David (e_1_2_1_6_1) 2007 e_1_2_1_29_1 Zheng Yu (e_1_2_1_48_1) 2010; 33 Keogh Eamonn J. (e_1_2_1_26_1) Ng Andrew Y. (e_1_2_1_34_1) e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_1_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – ident: e_1_2_1_31_1 doi: 10.1016/j.patcog.2008.09.025 – ident: e_1_2_1_46_1 doi: 10.1007/s11633-008-0032-0 – ident: e_1_2_1_33_1 doi: 10.1097/GIM.0b013e3181f8baad – volume: 33 start-page: 32 year: 2010 ident: e_1_2_1_48_1 article-title: GeoLife: A collaborative social networking service among user, location and trajectory publication-title: IEEE Data Engineering Bulletin – ident: e_1_2_1_28_1 doi: 10.1137/1.9781611972771.59 – ident: e_1_2_1_44_1 doi: 10.1109/TSMCC.2010.2048428 – ident: e_1_2_1_2_1 doi: 10.1109/ICDE.2009.188 – ident: e_1_2_1_9_1 doi: 10.1071/AN10255 – volume-title: Advances in Neural Information Processing Systems ident: e_1_2_1_34_1 – ident: e_1_2_1_10_1 doi: 10.14778/2350229.2350278 – ident: e_1_2_1_23_1 doi: 10.1007/s11280-013-0203-y – ident: e_1_2_1_3_1 doi: 10.1109/ICDE.2008.4497423 – volume-title: Pappano year: 2007 ident: e_1_2_1_30_1 – volume: 72 start-page: 836 year: 2001 ident: e_1_2_1_14_1 article-title: Holter monitor findings in asymptomatic male military aviators without structural heart disease publication-title: Aviation, Space, and Environmental Medicine – ident: e_1_2_1_15_1 doi: 10.1161/01.CIR.101.23.e215 – ident: e_1_2_1_21_1 doi: 10.1016/j.neucom.2011.08.036 – ident: e_1_2_1_49_1 doi: 10.5555/1287369.1287401 – ident: e_1_2_1_25_1 doi: 10.1109/ICDM.2005.79 – ident: e_1_2_1_45_1 doi: 10.1007/s00778-011-0261-7 – ident: e_1_2_1_19_1 doi: 10.1145/956750.956815 – ident: e_1_2_1_29_1 doi: 10.1109/ICDE.2009.157 – ident: e_1_2_1_41_1 doi: 10.1198/TECH.2010.06134 – ident: e_1_2_1_35_1 doi: 10.1109/TKDE.2007.190737 – ident: e_1_2_1_42_1 doi: 10.5334/jors.bi – ident: e_1_2_1_20_1 doi: 10.2307/2346830 – ident: e_1_2_1_36_1 doi: 10.1007/s11280-013-0256-y – ident: e_1_2_1_18_1 doi: 10.1007/s10707-006-0002-z – ident: e_1_2_1_43_1 doi: 10.1145/1247480.1247511 – ident: e_1_2_1_4_1 doi: 10.1016/j.adhoc.2005.01.004 – ident: e_1_2_1_12_1 doi: 10.3138/FM57-6770-U75U-7727 – ident: e_1_2_1_17_1 doi: 10.5555/1251086.1251118 – volume-title: Data Mining in Time Series Databases ident: e_1_2_1_26_1 – volume-title: Encyclopedia of Biometrics, S. Z. Li and A ident: e_1_2_1_37_1 – ident: e_1_2_1_24_1 doi: 10.1145/2020408.2020557 – ident: e_1_2_1_38_1 doi: 10.1016/S0031-3203(02)00076-6 – ident: e_1_2_1_39_1 doi: 10.1016/0377-0427(87)90125-7 – ident: e_1_2_1_7_1 doi: 10.1007/978-3-642-02279-1_31 – ident: e_1_2_1_16_1 doi: 10.5194/npg-11-561-2004 – volume-title: Proceedings of the IEEE 26th International Conference on Data Engineering (VLDB’04) year: 2010 ident: e_1_2_1_32_1 – ident: e_1_2_1_13_1 doi: 10.1145/2379776.2379788 – volume-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07) year: 2007 ident: e_1_2_1_6_1 – ident: e_1_2_1_8_1 doi: 10.1145/342009.335432 – ident: e_1_2_1_27_1 doi: 10.1145/1247480.1247546 – ident: e_1_2_1_40_1 doi: 10.1145/1835804.1835854 – ident: e_1_2_1_47_1 doi: 10.1145/2247596.2247620 – ident: e_1_2_1_22_1 doi: 10.1145/177424.178097 – ident: e_1_2_1_1_1 doi: 10.1109/CIC.1999.826026 – ident: e_1_2_1_11_1 doi: 10.1109/18.382009 |
SSID | ssj0015613 |
Score | 2.3850746 |
Snippet | Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Anomalies Applications programs Classification Computational efficiency Data transmission Feature extraction Internet Pattern recognition |
Title | Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams |
URI | https://www.proquest.com/docview/1808054087 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA8-LnoQnzhfRBAvEl1faXoUHwxxXnQwTyVNEx3MTrQ96F_vlybtVjfwcQkjNIXl-_V75vsFoSPmpQnovYAwzl3iQ4BBOFMuEW47FDLwAql0vqN7Rzs9_6Yf9McHMsvukjw5FZ8z-0r-I1WYA7nqLtk_SLZ-KUzAb5AvjCBhGH8l4_viVX_q7-A0Qhj_wocfoD9yKaoDjD2QaFnxBz0ni3SkWY1H6UCArHNeFqS5JSuveGgvuvrSiOoG8bKUYHKGMj_Jp7LwXXPQFhD2xK0FLOtLpp1hXPWxOelOUduAOk_9CKh7LrLJ5IMzmXyo9KVHNLmtMSd2LggJRElOQ8nSKTAZjelMmN6yLW6GUvc1_4UuATNztWiTNvubOasPGZqW6yC2C-fRoguhBOjCxfPL7u19XWvSIZRh1TV_xbRW66VndmnTZ2ma7NIPeVhFKzaAwOcGDWtoTmbraHmCVnIDXY1xgS0ucI0LPMhwjQvcxAXWuMAWF5uod331cNEh9roMIrwgzImvwHvmoadYGyaoy8FBURIGTWrmpG1H0LbyA9ejqWAycRVNHckVfJ-ccl9QbwstZKNMbiNMRRSFUcJC7ilf6Eoqd1MJnqyKWJpETgsdVxsSC8slr680GcbfNr2FcP3gq6FPmX7ksNrRGFSbrlfxTI6K99jRnKcQUbBw5-fX7KKlMUD30EL-Vsh98Bfz5MAK_AvtmmrF |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Anomaly+Detection+in+Uncertain+Pseudoperiodic+Data+Streams&rft.jtitle=ACM+transactions+on+Internet+technology&rft.au=Ma%2C+Jiangang&rft.au=Sun%2C+Le&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2016-01-01&rft.issn=1533-5399&rft.eissn=1557-6051&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1145%2F2806890&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2806890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-5399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-5399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-5399&client=summon |