Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams

Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed fra...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on Internet technology Vol. 16; no. 1; pp. 1 - 20
Main Authors Ma, Jiangang, Sun, Le, Wang, Hua, Zhang, Yanchun, Aickelin, Uwe
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets.
AbstractList Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets.
Author Aickelin, Uwe
Ma, Jiangang
Wang, Hua
Zhang, Yanchun
Sun, Le
Author_xml – sequence: 1
  givenname: Jiangang
  surname: Ma
  fullname: Ma, Jiangang
  organization: Victoria University, VIC, Australia
– sequence: 2
  givenname: Le
  surname: Sun
  fullname: Sun, Le
  organization: Victoria University, VIC, Australia
– sequence: 3
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Victoria University, VIC, Australia
– sequence: 4
  givenname: Yanchun
  surname: Zhang
  fullname: Zhang, Yanchun
  organization: Victoria University, VIC, Australia
– sequence: 5
  givenname: Uwe
  surname: Aickelin
  fullname: Aickelin, Uwe
  organization: University of Nottingham, UK
BookMark eNpl0E1LAzEQBuAgFWyr-Bf2ppfVzOZj02Np6wcUFGrPS8xOILK7qUlW6L93l_akl5mX4WFgZkYmne-QkFugDwBcPBaKSrWgF2QKQpS5pAImY2YsF2yxuCKzGL8oBSGBTclm1x8w_LiIdbbsfKubY7bGhCY532Wuy_adwZD0kN4j9rUftPO1M9laJ53tUkDdxmtyaXUT8ebc52T_tPlYveTbt-fX1XKbGybKlHOrBOiSWUWHgSw042BxKAo4hZqCkdRyUTBZG4WfhZU1oLYcqJaaG8nm5P609xD8d48xVa2LBptGd-j7WIGiigpOVTnQuxM1wccY0FaH4FodjhXQanxUdX7UIPM_0rikx_tT0K75538BhOBqBw
CitedBy_id crossref_primary_10_1007_s10845_020_01583_0
crossref_primary_10_1007_s13755_023_00221_2
crossref_primary_10_1109_ACCESS_2023_3333247
crossref_primary_10_1007_s10847_025_01277_1
crossref_primary_10_1007_s12652_020_01850_1
crossref_primary_10_1007_s12206_020_0501_0
crossref_primary_10_1007_s13755_019_0084_2
crossref_primary_10_1016_j_future_2017_01_029
crossref_primary_10_1177_1550147720920478
crossref_primary_10_1007_s13755_020_00126_4
crossref_primary_10_1007_s41060_019_00186_0
crossref_primary_10_3390_info12050215
crossref_primary_10_3390_app142311040
crossref_primary_10_1155_2022_3105291
crossref_primary_10_1007_s10115_019_01365_y
crossref_primary_10_3390_agriculture13020480
crossref_primary_10_3390_fi16110403
crossref_primary_10_4108_eetsis_v10i3_3033
crossref_primary_10_1007_s13042_018_0806_9
crossref_primary_10_1016_j_artmed_2022_102236
crossref_primary_10_1016_j_asoc_2022_109486
crossref_primary_10_1145_3423556
crossref_primary_10_2166_ws_2021_337
crossref_primary_10_1155_2021_9954951
crossref_primary_10_1109_TKDE_2020_3014806
crossref_primary_10_1109_TII_2019_2952917
crossref_primary_10_3390_w10121765
crossref_primary_10_1007_s00778_021_00657_6
crossref_primary_10_1007_s13755_019_0083_3
crossref_primary_10_1007_s13755_019_0085_1
crossref_primary_10_1007_s10489_017_1017_x
crossref_primary_10_1007_s13755_019_0088_y
crossref_primary_10_1016_j_neucom_2024_127791
crossref_primary_10_1186_s40537_024_00940_7
crossref_primary_10_1007_s10618_020_00725_5
crossref_primary_10_1109_JSEN_2021_3069452
crossref_primary_10_1007_s13755_020_00125_5
crossref_primary_10_1007_s13755_020_00129_1
crossref_primary_10_3390_app8030381
crossref_primary_10_1108_SASBE_10_2018_0051
crossref_primary_10_3390_app13148082
crossref_primary_10_1016_j_procs_2016_08_115
crossref_primary_10_3390_en13102622
crossref_primary_10_1155_2021_6024352
crossref_primary_10_9746_sicetr_59_342
crossref_primary_10_1109_ACCESS_2019_2918361
crossref_primary_10_1007_s41060_020_00239_9
crossref_primary_10_1016_j_ijcce_2022_10_001
crossref_primary_10_1109_TIE_2019_2907441
crossref_primary_10_1109_TCE_2023_3320183
crossref_primary_10_1007_s10489_023_04814_y
crossref_primary_10_4108_eetsis_7635
crossref_primary_10_1007_s11280_017_0456_y
crossref_primary_10_1155_2020_6343705
crossref_primary_10_1109_TPDS_2020_3001593
crossref_primary_10_1109_ACCESS_2021_3138978
crossref_primary_10_1016_j_asoc_2022_109147
Cites_doi 10.1016/j.patcog.2008.09.025
10.1007/s11633-008-0032-0
10.1097/GIM.0b013e3181f8baad
10.1137/1.9781611972771.59
10.1109/TSMCC.2010.2048428
10.1109/ICDE.2009.188
10.1071/AN10255
10.14778/2350229.2350278
10.1007/s11280-013-0203-y
10.1109/ICDE.2008.4497423
10.1161/01.CIR.101.23.e215
10.1016/j.neucom.2011.08.036
10.5555/1287369.1287401
10.1109/ICDM.2005.79
10.1007/s00778-011-0261-7
10.1145/956750.956815
10.1109/ICDE.2009.157
10.1198/TECH.2010.06134
10.1109/TKDE.2007.190737
10.5334/jors.bi
10.2307/2346830
10.1007/s11280-013-0256-y
10.1007/s10707-006-0002-z
10.1145/1247480.1247511
10.1016/j.adhoc.2005.01.004
10.3138/FM57-6770-U75U-7727
10.5555/1251086.1251118
10.1145/2020408.2020557
10.1016/S0031-3203(02)00076-6
10.1016/0377-0427(87)90125-7
10.1007/978-3-642-02279-1_31
10.5194/npg-11-561-2004
10.1145/2379776.2379788
10.1145/342009.335432
10.1145/1247480.1247546
10.1145/1835804.1835854
10.1145/2247596.2247620
10.1145/177424.178097
10.1109/CIC.1999.826026
10.1109/18.382009
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/2806890
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-6051
EndPage 20
ExternalDocumentID 10_1145_2806890
GroupedDBID -DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
EJD
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TUS
U5U
UPT
ZCA
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-4f851a73f80c3562a341fe34181401d01c60f45236dc8eb2f6d1eaf410a6a4c63
ISSN 1533-5399
IngestDate Fri Jul 11 04:56:30 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Thu Jul 03 08:44:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-4f851a73f80c3562a341fe34181401d01c60f45236dc8eb2f6d1eaf410a6a4c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/11343/241215
PQID 1808054087
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1808054087
crossref_primary_10_1145_2806890
crossref_citationtrail_10_1145_2806890
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle ACM transactions on Internet technology
PublicationYear 2016
References Folarin Victor A. (e_1_2_1_14_1) 2001; 72
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
Liu X. (e_1_2_1_32_1) 2010
e_1_2_1_40_1
e_1_2_1_23_1
Reynolds Douglas (e_1_2_1_37_1)
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_21_1
Levy Matthew N. (e_1_2_1_30_1) 2007
e_1_2_1_44_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_25_1
e_1_2_1_47_1
Arthur David (e_1_2_1_6_1) 2007
e_1_2_1_29_1
Zheng Yu (e_1_2_1_48_1) 2010; 33
Keogh Eamonn J. (e_1_2_1_26_1)
Ng Andrew Y. (e_1_2_1_34_1)
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_1_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_31_1
  doi: 10.1016/j.patcog.2008.09.025
– ident: e_1_2_1_46_1
  doi: 10.1007/s11633-008-0032-0
– ident: e_1_2_1_33_1
  doi: 10.1097/GIM.0b013e3181f8baad
– volume: 33
  start-page: 32
  year: 2010
  ident: e_1_2_1_48_1
  article-title: GeoLife: A collaborative social networking service among user, location and trajectory
  publication-title: IEEE Data Engineering Bulletin
– ident: e_1_2_1_28_1
  doi: 10.1137/1.9781611972771.59
– ident: e_1_2_1_44_1
  doi: 10.1109/TSMCC.2010.2048428
– ident: e_1_2_1_2_1
  doi: 10.1109/ICDE.2009.188
– ident: e_1_2_1_9_1
  doi: 10.1071/AN10255
– volume-title: Advances in Neural Information Processing Systems
  ident: e_1_2_1_34_1
– ident: e_1_2_1_10_1
  doi: 10.14778/2350229.2350278
– ident: e_1_2_1_23_1
  doi: 10.1007/s11280-013-0203-y
– ident: e_1_2_1_3_1
  doi: 10.1109/ICDE.2008.4497423
– volume-title: Pappano
  year: 2007
  ident: e_1_2_1_30_1
– volume: 72
  start-page: 836
  year: 2001
  ident: e_1_2_1_14_1
  article-title: Holter monitor findings in asymptomatic male military aviators without structural heart disease
  publication-title: Aviation, Space, and Environmental Medicine
– ident: e_1_2_1_15_1
  doi: 10.1161/01.CIR.101.23.e215
– ident: e_1_2_1_21_1
  doi: 10.1016/j.neucom.2011.08.036
– ident: e_1_2_1_49_1
  doi: 10.5555/1287369.1287401
– ident: e_1_2_1_25_1
  doi: 10.1109/ICDM.2005.79
– ident: e_1_2_1_45_1
  doi: 10.1007/s00778-011-0261-7
– ident: e_1_2_1_19_1
  doi: 10.1145/956750.956815
– ident: e_1_2_1_29_1
  doi: 10.1109/ICDE.2009.157
– ident: e_1_2_1_41_1
  doi: 10.1198/TECH.2010.06134
– ident: e_1_2_1_35_1
  doi: 10.1109/TKDE.2007.190737
– ident: e_1_2_1_42_1
  doi: 10.5334/jors.bi
– ident: e_1_2_1_20_1
  doi: 10.2307/2346830
– ident: e_1_2_1_36_1
  doi: 10.1007/s11280-013-0256-y
– ident: e_1_2_1_18_1
  doi: 10.1007/s10707-006-0002-z
– ident: e_1_2_1_43_1
  doi: 10.1145/1247480.1247511
– ident: e_1_2_1_4_1
  doi: 10.1016/j.adhoc.2005.01.004
– ident: e_1_2_1_12_1
  doi: 10.3138/FM57-6770-U75U-7727
– ident: e_1_2_1_17_1
  doi: 10.5555/1251086.1251118
– volume-title: Data Mining in Time Series Databases
  ident: e_1_2_1_26_1
– volume-title: Encyclopedia of Biometrics, S. Z. Li and A
  ident: e_1_2_1_37_1
– ident: e_1_2_1_24_1
  doi: 10.1145/2020408.2020557
– ident: e_1_2_1_38_1
  doi: 10.1016/S0031-3203(02)00076-6
– ident: e_1_2_1_39_1
  doi: 10.1016/0377-0427(87)90125-7
– ident: e_1_2_1_7_1
  doi: 10.1007/978-3-642-02279-1_31
– ident: e_1_2_1_16_1
  doi: 10.5194/npg-11-561-2004
– volume-title: Proceedings of the IEEE 26th International Conference on Data Engineering (VLDB’04)
  year: 2010
  ident: e_1_2_1_32_1
– ident: e_1_2_1_13_1
  doi: 10.1145/2379776.2379788
– volume-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07)
  year: 2007
  ident: e_1_2_1_6_1
– ident: e_1_2_1_8_1
  doi: 10.1145/342009.335432
– ident: e_1_2_1_27_1
  doi: 10.1145/1247480.1247546
– ident: e_1_2_1_40_1
  doi: 10.1145/1835804.1835854
– ident: e_1_2_1_47_1
  doi: 10.1145/2247596.2247620
– ident: e_1_2_1_22_1
  doi: 10.1145/177424.178097
– ident: e_1_2_1_1_1
  doi: 10.1109/CIC.1999.826026
– ident: e_1_2_1_11_1
  doi: 10.1109/18.382009
SSID ssj0015613
Score 2.3850746
Snippet Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Anomalies
Applications programs
Classification
Computational efficiency
Data transmission
Feature extraction
Internet
Pattern recognition
Title Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams
URI https://www.proquest.com/docview/1808054087
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA8-LnoQnzhfRBAvEl1faXoUHwxxXnQwTyVNEx3MTrQ96F_vlybtVjfwcQkjNIXl-_V75vsFoSPmpQnovYAwzl3iQ4BBOFMuEW47FDLwAql0vqN7Rzs9_6Yf9McHMsvukjw5FZ8z-0r-I1WYA7nqLtk_SLZ-KUzAb5AvjCBhGH8l4_viVX_q7-A0Qhj_wocfoD9yKaoDjD2QaFnxBz0ni3SkWY1H6UCArHNeFqS5JSuveGgvuvrSiOoG8bKUYHKGMj_Jp7LwXXPQFhD2xK0FLOtLpp1hXPWxOelOUduAOk_9CKh7LrLJ5IMzmXyo9KVHNLmtMSd2LggJRElOQ8nSKTAZjelMmN6yLW6GUvc1_4UuATNztWiTNvubOasPGZqW6yC2C-fRoguhBOjCxfPL7u19XWvSIZRh1TV_xbRW66VndmnTZ2ma7NIPeVhFKzaAwOcGDWtoTmbraHmCVnIDXY1xgS0ucI0LPMhwjQvcxAXWuMAWF5uod331cNEh9roMIrwgzImvwHvmoadYGyaoy8FBURIGTWrmpG1H0LbyA9ejqWAycRVNHckVfJ-ccl9QbwstZKNMbiNMRRSFUcJC7ilf6Eoqd1MJnqyKWJpETgsdVxsSC8slr680GcbfNr2FcP3gq6FPmX7ksNrRGFSbrlfxTI6K99jRnKcQUbBw5-fX7KKlMUD30EL-Vsh98Bfz5MAK_AvtmmrF
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Anomaly+Detection+in+Uncertain+Pseudoperiodic+Data+Streams&rft.jtitle=ACM+transactions+on+Internet+technology&rft.au=Ma%2C+Jiangang&rft.au=Sun%2C+Le&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2016-01-01&rft.issn=1533-5399&rft.eissn=1557-6051&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1145%2F2806890&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2806890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-5399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-5399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-5399&client=summon