Scanning Rate Enhancement of Leaky-Wave Antennas Using Slow-Wave Substrate Integrated Waveguide Structure

In this communication, we propose a high scanning rate leaky-wave antenna (LWA) based on a slow-wave substrate integrated waveguide (SIW) structure. The slow-wave effect is introduced by etching periodical slots on the top surface of SIW. The LWA radiation is subsequently realized by introducing sin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 66; no. 7; pp. 3747 - 3751
Main Authors Guan, Dong-Fang, Zhang, Qingfeng, You, Peng, Yang, Zhang-Biao, Zhou, Yang, Yong, Shao-Wei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this communication, we propose a high scanning rate leaky-wave antenna (LWA) based on a slow-wave substrate integrated waveguide (SIW) structure. The slow-wave effect is introduced by etching periodical slots on the top surface of SIW. The LWA radiation is subsequently realized by introducing sinusoidal modulation to the slots profile. Such a structure significantly improves the scanning rate of LWA due to the small group velocity at the slow-wave region. Simulation and measured results indicate that the proposed LWA scans a wide angle in a narrow bandwidth near the cutoff frequency of surface plasmon polariton. Within the frequency band 13.5-13.9 GHz (3% relative bandwidth), the measured scanning angle is from 2° to 37° with the measured gain all above 9.2 dBi.
AbstractList In this communication, we propose a high scanning rate leaky-wave antenna (LWA) based on a slow-wave substrate integrated waveguide (SIW) structure. The slow-wave effect is introduced by etching periodical slots on the top surface of SIW. The LWA radiation is subsequently realized by introducing sinusoidal modulation to the slots profile. Such a structure significantly improves the scanning rate of LWA due to the small group velocity at the slow-wave region. Simulation and measured results indicate that the proposed LWA scans a wide angle in a narrow bandwidth near the cutoff frequency of surface plasmon polariton. Within the frequency band 13.5-13.9 GHz (3% relative bandwidth), the measured scanning angle is from 2° to 37° with the measured gain all above 9.2 dBi.
Author Guan, Dong-Fang
Yang, Zhang-Biao
You, Peng
Zhou, Yang
Yong, Shao-Wei
Zhang, Qingfeng
Author_xml – sequence: 1
  givenname: Dong-Fang
  orcidid: 0000-0003-3170-6404
  surname: Guan
  fullname: Guan, Dong-Fang
  email: gdfguandongfang@163.com
  organization: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Qingfeng
  orcidid: 0000-0002-0038-0694
  surname: Zhang
  fullname: Zhang, Qingfeng
  email: zhang.qf@sustc.edu.cn
  organization: Department of Electronics and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-8306-8868
  surname: You
  fullname: You, Peng
  organization: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Zhang-Biao
  surname: Yang
  fullname: Yang, Zhang-Biao
  organization: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Shao-Wei
  surname: Yong
  fullname: Yong, Shao-Wei
  organization: College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
BookMark eNp9kEFLwzAYhoNMcJveBS8Fz53Jl6TNjmNMHQwUt6G3krbJ7NzSmaTK_r0pHR48eEo-3ufJR94B6pnaKISuCR4Rgsd3q8nzCDARIxCUAE_PUJ9wLmIAID3UxyGKx5C8XaCBc9swMsFYH1XLQhpTmU30Ir2KZuZdmkLtlfFRraOFkh_H-FV-qWhivDJGumjtWnq5q7-7YNnkzttWngdk097KqE02TVWG2Num8I1Vl-hcy51TV6dziNb3s9X0MV48Pcynk0VcUJ76mGnAOQdeUsgTxnXKZKpBAOGU0lLrJMxMjzFVCYAiGEMpeE4Yk4UQoIEO0W337sHWn41yPtvWjTVhZQY4oZgLJmigko4qbO2cVTorKi99VZvwl2qXEZy1tWah1qytNTvVGkT8RzzYai_t8T_lplMqpdQvLiiHhHL6A9P8hEA
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_TAP_2023_3291502
crossref_primary_10_1109_TAP_2024_3426320
crossref_primary_10_1109_LAWP_2024_3360104
crossref_primary_10_1109_TAP_2023_3262346
crossref_primary_10_1109_TAP_2019_2940469
crossref_primary_10_1109_LAWP_2024_3476134
crossref_primary_10_1109_TAP_2021_3111182
crossref_primary_10_1088_1361_6463_ab35cd
crossref_primary_10_1109_LAWP_2023_3254433
crossref_primary_10_1109_OJAP_2023_3296636
crossref_primary_10_1109_TAP_2019_2952456
crossref_primary_10_1109_LAWP_2019_2917561
crossref_primary_10_1109_TAP_2019_2951524
crossref_primary_10_1364_AO_423779
crossref_primary_10_1364_OE_525260
crossref_primary_10_1016_j_aeue_2023_154705
crossref_primary_10_1109_JMW_2022_3220632
crossref_primary_10_1109_TAP_2022_3177535
crossref_primary_10_1002_mmce_22177
crossref_primary_10_1109_TAP_2019_2896704
crossref_primary_10_1109_TAP_2023_3328558
crossref_primary_10_1109_TAP_2022_3209286
crossref_primary_10_1103_PhysRevApplied_23_034061
crossref_primary_10_1109_TAP_2022_3209181
crossref_primary_10_1109_TAP_2021_3111210
crossref_primary_10_1109_LAWP_2024_3401122
crossref_primary_10_1109_TAP_2021_3069572
crossref_primary_10_1109_TCSI_2021_3052259
crossref_primary_10_1109_ACCESS_2019_2957763
crossref_primary_10_1109_TCSII_2023_3237573
crossref_primary_10_1109_JSSC_2021_3115407
crossref_primary_10_1109_TAP_2019_2922762
crossref_primary_10_1109_LAWP_2022_3185774
crossref_primary_10_1002_mmce_22583
crossref_primary_10_1109_TAP_2020_3037830
crossref_primary_10_1109_TAP_2020_2984923
crossref_primary_10_1109_LAWP_2022_3199934
crossref_primary_10_1109_LAWP_2022_3195215
crossref_primary_10_1109_ACCESS_2019_2953779
crossref_primary_10_1109_LAWP_2019_2896354
crossref_primary_10_1109_ACCESS_2024_3425834
crossref_primary_10_1109_TAP_2023_3310200
crossref_primary_10_1049_iet_com_2019_0923
crossref_primary_10_1109_TAP_2024_3438369
crossref_primary_10_1088_1402_4896_ad56da
crossref_primary_10_1109_LAWP_2024_3457519
crossref_primary_10_1016_j_matdes_2024_113216
crossref_primary_10_1002_mmce_22034
crossref_primary_10_1088_1361_6463_acbf63
crossref_primary_10_1109_LAWP_2021_3096084
crossref_primary_10_1109_TAP_2022_3146855
crossref_primary_10_1109_LAWP_2022_3196399
crossref_primary_10_7567_APEX_11_114101
crossref_primary_10_1109_LAWP_2020_3036694
crossref_primary_10_1109_TAP_2020_2970028
crossref_primary_10_1109_LAWP_2021_3138151
crossref_primary_10_1109_ACCESS_2020_2991180
crossref_primary_10_1109_LAWP_2018_2886578
crossref_primary_10_1109_LAWP_2024_3430840
crossref_primary_10_1002_mmce_22647
crossref_primary_10_1002_mmce_21558
crossref_primary_10_3390_s22176353
crossref_primary_10_1109_TAP_2022_3184542
crossref_primary_10_1088_1361_6463_ac485c
crossref_primary_10_1364_AO_524162
crossref_primary_10_1109_TAP_2020_3029721
crossref_primary_10_1109_TAP_2020_3044673
crossref_primary_10_1109_TTHZ_2020_2995111
crossref_primary_10_1109_ACCESS_2020_3035505
crossref_primary_10_3390_electronics7120348
crossref_primary_10_1109_TAP_2021_3078525
crossref_primary_10_1088_1674_1056_ac5881
crossref_primary_10_1109_TAP_2020_2983784
crossref_primary_10_1002_mmce_22413
crossref_primary_10_1109_TAP_2020_3048597
crossref_primary_10_1016_j_aeue_2023_154991
crossref_primary_10_1109_TAP_2020_2977826
crossref_primary_10_1016_j_aeue_2021_154078
crossref_primary_10_1109_LAWP_2024_3373464
crossref_primary_10_1007_s11468_024_02326_0
crossref_primary_10_1109_OJAP_2021_3098929
crossref_primary_10_1002_mop_33463
crossref_primary_10_1109_LAWP_2021_3091979
crossref_primary_10_1002_mop_32975
crossref_primary_10_1109_JIOT_2023_3313309
crossref_primary_10_1364_AO_434411
crossref_primary_10_1109_LAWP_2018_2855702
crossref_primary_10_1109_TMTT_2021_3065713
crossref_primary_10_1109_TAP_2023_3310005
crossref_primary_10_1109_TCSII_2020_2971235
crossref_primary_10_1109_TAP_2022_3177514
crossref_primary_10_1109_LAWP_2024_3441089
crossref_primary_10_1109_TAP_2024_3421321
crossref_primary_10_1109_LAWP_2021_3077263
crossref_primary_10_1109_TAP_2019_2952244
crossref_primary_10_1049_el_2020_0792
crossref_primary_10_1109_TVT_2023_3289199
crossref_primary_10_1017_S175907872100132X
crossref_primary_10_1109_LAWP_2024_3428694
crossref_primary_10_1109_TAP_2022_3209234
crossref_primary_10_1063_5_0104595
crossref_primary_10_1109_TAP_2024_3472277
crossref_primary_10_1515_freq_2020_0055
crossref_primary_10_1109_TAP_2023_3284001
Cites_doi 10.1109/JPROC.2015.2399419
10.1049/el.2012.0780
10.1038/s41598-017-12118-8
10.1109/TAP.2011.2167910
10.1109/TAP.2012.2201085
10.1109/TAP.2017.2681322
10.1109/TAP.2014.2336659
10.1103/PhysRevApplied.8.054048
10.1109/TMTT.2017.2727486
10.1109/TAP.2016.2521904
10.1109/TAP.2017.2700015
10.1109/LAWP.2012.2202365
10.1109/TAP.2015.2513089
10.1109/JPROC.2012.2187410
10.1109/APMC.2005.1606262
10.1109/TAP.2014.2386339
10.1109/TMTT.2016.2559479
10.1109/TAP.2014.2333058
10.1109/LAWP.2017.2731877
10.1109/TMTT.2014.2328974
10.1109/TAP.2014.2353673
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2018.2831257
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 3751
ExternalDocumentID 10_1109_TAP_2018_2831257
8352635
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Development and Reform Commission Funds
  grantid: [2015] 944
– fundername: Talent Support Project of Guangdong
  grantid: 2016TQ03X839
– fundername: National Natural Science Foundation of China
  grantid: 61601487
  funderid: 10.13039/501100001809
– fundername: Shenzhen Science and Technology Innovation Committee Funds
  grantid: KQJSCX20160226193445; KQCX2015033110182368; JC YJ20160301113918121; JSGG20160427105120572
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: 2015A030306032
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2017JJ3364
  funderid: 10.13039/501100004735
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-4f20b525d32b645f74a7f28215333dff64a74f903e622e1002d85b144ac882f23
IEDL.DBID RIE
ISSN 0018-926X
IngestDate Mon Jun 30 10:11:45 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Tue Jul 01 03:22:36 EDT 2025
Wed Aug 27 02:49:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-4f20b525d32b645f74a7f28215333dff64a74f903e622e1002d85b144ac882f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8306-8868
0000-0002-0038-0694
0000-0003-3170-6404
PQID 2063058483
PQPubID 85476
PageCount 5
ParticipantIDs proquest_journals_2063058483
crossref_citationtrail_10_1109_TAP_2018_2831257
crossref_primary_10_1109_TAP_2018_2831257
ieee_primary_8352635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
tang (ref22) 2017; 7
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
jackson (ref1) 2008
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/JPROC.2015.2399419
– ident: ref12
  doi: 10.1049/el.2012.0780
– volume: 7
  year: 2017
  ident: ref22
  article-title: Continuous beam steering through broadside using asymmetrically modulated goubau line leaky-wave antennas
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12118-8
– ident: ref6
  doi: 10.1109/TAP.2011.2167910
– ident: ref7
  doi: 10.1109/TAP.2012.2201085
– ident: ref14
  doi: 10.1109/TAP.2017.2681322
– ident: ref8
  doi: 10.1109/TAP.2014.2336659
– ident: ref20
  doi: 10.1103/PhysRevApplied.8.054048
– ident: ref17
  doi: 10.1109/TMTT.2017.2727486
– ident: ref5
  doi: 10.1109/TAP.2016.2521904
– ident: ref19
  doi: 10.1109/TAP.2017.2700015
– year: 2008
  ident: ref1
  publication-title: Modern Antenna Handbook
– ident: ref21
  doi: 10.1109/LAWP.2012.2202365
– ident: ref10
  doi: 10.1109/TAP.2015.2513089
– ident: ref3
  doi: 10.1109/JPROC.2012.2187410
– ident: ref4
  doi: 10.1109/APMC.2005.1606262
– ident: ref11
  doi: 10.1109/TAP.2014.2386339
– ident: ref18
  doi: 10.1109/TMTT.2016.2559479
– ident: ref15
  doi: 10.1109/TAP.2014.2333058
– ident: ref13
  doi: 10.1109/LAWP.2017.2731877
– ident: ref16
  doi: 10.1109/TMTT.2014.2328974
– ident: ref9
  doi: 10.1109/TAP.2014.2353673
SSID ssj0014844
Score 2.5795424
Snippet In this communication, we propose a high scanning rate leaky-wave antenna (LWA) based on a slow-wave substrate integrated waveguide (SIW) structure. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3747
SubjectTerms Antennas
Bandwidth
Bandwidths
Cutoff frequency
Frequency measurement
Frequency modulation
Group velocity
Harmonic analysis
Leaky-wave antenna (LWA)
Polaritons
Scanning
scanning rate
slow wave
substrate integrated waveguide (SIW)
Substrate integrated waveguides
Substrates
Title Scanning Rate Enhancement of Leaky-Wave Antennas Using Slow-Wave Substrate Integrated Waveguide Structure
URI https://ieeexplore.ieee.org/document/8352635
https://www.proquest.com/docview/2063058483
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34FqtVcvAiuNvtbvZ1LFJRURFbsbclTy3KVmyr6K93kn3gC_G2yyQh7Ewy32wm3wDsy8BHxyek48uUO7QjuMOZFztMdBhjcRIKbbMtLqOTG3o2DIdzcFjfhVFK2eQz5ZpHe5Yvx2JmfpW1DVpABzkP8xi4FXe16hMDmtCCcbmDC9iPhtWRpJe2B90rk8OVuOhK0Z_HX1yQranyYyO23uV4GS6qeRVJJQ_ubMpd8f6NsvG_E1-BpRJmkm5hF6swp_I1WPxEPrgOo74o6hWRa8SbpJffGwMwA5GxJueKPbw5t-xFka7Jcs_ZhNj0AtJ_HL8WArPpWHJbclqRTkhiJHezkUSxpaadPasNuDnuDY5OnLLwgiOCMJ46VPseD_0QFckjGuqYslhjbGawYSC1jvCd6tQLVOT7ypC4yiTkGJoxgYBd-8EmNPJxrraARFKGCkEno5JicBWkilERcURNKEFf2IR2pYtMlKzkpjjGY2ajEy_NUHuZ0V5Waq8JB3WPp4KR44-260YZdbtSD01oVerOyiU7yYzNegjHkmD79147sGDGLnJ1W9DAj6h2EZFM-Z41xQ91LNya
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcNjlwHMR5ekDF6RNmzp2HscKgQoUhKBoe4v8BARKEbQg-PWMnaTipdXeEo2dWJmx55t4_A3Ajo4oOj6lA6ozGbC2koEUYRII1RZCJClX1mdbnMbdS3Y04IMp-DM5C2OM8clnpuku_V6-Hqqx-1XWcmgBHeQPmEG_z2l5WmuyZ8BSVnIut3EK03hQb0qGWavfOXNZXGkTnSl69OSDE_JVVb4sxd6_HMzDST2yMq3ktjkeyaZ6_UTa-L9DX4C5CmiSTmkZizBliiWYfUc_uAw3F6qsWETOEXGS_eLamYB7EBla0jPi9iX4K54M6bg890I8Ep9gQC7uhs-lwC07nt6WHNa0E5o4ydX4RqPYk9OOH8xvuDzY7-91g6r0QqAinowCZmkoOeWoShkzbhMmEovRmUOHkbY2xntmszAyMaXG0bjqlEsMzoRCyG5ptALTxbAwq0BirblB2CmYZhheRZkRTMUScRNK0Bs2oFXrIlcVL7krj3GX-_gkzHLUXu60l1faa8DupMd9ycnxj7bLThmTdpUeGrBRqzuvJu1j7qw2RECWRmvf99qGn93-SS_vHZ4er8Mv954yc3cDpvGDmk3EJyO55c3yDSOt3-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scanning+Rate+Enhancement+of+Leaky-Wave+Antennas+Using+Slow-Wave+Substrate+Integrated+Waveguide+Structure&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Guan%2C+Dong-Fang&rft.au=Zhang%2C+Qingfeng&rft.au=You%2C+Peng&rft.au=Yang%2C+Zhang-Biao&rft.date=2018-07-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=66&rft.issue=7&rft.spage=3747&rft.epage=3751&rft_id=info:doi/10.1109%2FTAP.2018.2831257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2018_2831257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon