Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach

In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 16; no. 7; pp. 4670 - 4680
Main Authors Khan, Ameer Hamza, Li, Shuai, Luo, Xin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical for any industrial manipulator. The formulated control framework unifies the tracking control and obstacle avoidance into a single constrained optimization problem by introducing a penalty term into the objective function, which actively rewards the optimizer for avoiding the obstacles. One of the significant features of the proposed framework is the way that the penalty term is formulated following a straightforward principle: maximize the minimum distance between a manipulator and an obstacle. The distance calculations are based on Gilbert-Johnson-Keerthi algorithm, which calculates the distance between a manipulator and an obstacle by directly using their three-dimensional geometries, which also implies that our algorithm works for a manipulator and an arbitrarily shaped obstacle. Theoretical treatment proves the stability and convergence, and simulations results using an LBR IIWA seven-DOF manipulator are presented to analyze the performance of the proposed framework.
AbstractList In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical for any industrial manipulator. The formulated control framework unifies the tracking control and obstacle avoidance into a single constrained optimization problem by introducing a penalty term into the objective function, which actively rewards the optimizer for avoiding the obstacles. One of the significant features of the proposed framework is the way that the penalty term is formulated following a straightforward principle: maximize the minimum distance between a manipulator and an obstacle. The distance calculations are based on Gilbert-Johnson-Keerthi algorithm, which calculates the distance between a manipulator and an obstacle by directly using their three-dimensional geometries, which also implies that our algorithm works for a manipulator and an arbitrarily shaped obstacle. Theoretical treatment proves the stability and convergence, and simulations results using an LBR IIWA seven-DOF manipulator are presented to analyze the performance of the proposed framework.
Author Khan, Ameer Hamza
Li, Shuai
Luo, Xin
Author_xml – sequence: 1
  givenname: Ameer Hamza
  orcidid: 0000-0002-5367-5277
  surname: Khan
  fullname: Khan, Ameer Hamza
  email: ameer.h.khan@connect.polyu.hk
  organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0001-8316-5289
  surname: Li
  fullname: Li, Shuai
  email: shuaili@ieee.org
  organization: Swansea University, Swansea, U.K
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-1348-5305
  surname: Luo
  fullname: Luo, Xin
  email: luoxin21@cigit.ac.cn
  organization: Department of Electrical and Electronic Engineering, Chongqing Engineering Research Center of Big Data Application for Smart Cities and the Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
BookMark eNp9kM1LAzEUxIMoqNW74CXgeevLptndeKvFj4JaKPW8ZLNvNbomNckK_vemtHjw4OkNw8wb-B2TfessEnLGYMwYyMvVfD7OgclxLidMsmKPHLGkMgAB-0kLwTKeAz8kxyG8AfASuDwiH4smRKV7pNMvZ1plNVJlW7rySr8b-0Jnzkbveuo6usR2sCkS6dI1LhpNH5U166FX0fkrOrV0-fSUXauALX3EqF5x8CZsctP12julX0_IQaf6gKe7OyLPtzer2X32sLibz6YPmeaijNmk6UQhCt4yzUouVFF1mAwstW415l0hu6ZQpSxko9oyb5MhQANnHWiJleYjcrH9m2Y_BwyxfnODt2myznnF-QRkJVMKtintXQgeu3rtzYfy3zWDegO1TlDrDdR6BzVVij8VbaKKZgNJmf6_4vm2aBDxd6eqJlCVgv8AjmKGtg
CODEN ITIICH
CitedBy_id crossref_primary_10_1080_00207721_2021_1922952
crossref_primary_10_1109_TII_2021_3138794
crossref_primary_10_1016_j_eswa_2024_124546
crossref_primary_10_1109_TIE_2024_3413816
crossref_primary_10_1007_s10846_023_01985_1
crossref_primary_10_1109_JAS_2023_123180
crossref_primary_10_1109_TCSII_2021_3124043
crossref_primary_10_1016_j_eswa_2020_113882
crossref_primary_10_1109_TCSII_2021_3054374
crossref_primary_10_1109_TIM_2023_3265744
crossref_primary_10_1002_adc2_63
crossref_primary_10_1109_TIE_2022_3165277
crossref_primary_10_1109_TSMC_2024_3382748
crossref_primary_10_1109_TCSII_2021_3113955
crossref_primary_10_1007_s00500_020_04808_9
crossref_primary_10_1109_TII_2022_3197270
crossref_primary_10_1109_TIE_2023_3270533
crossref_primary_10_3390_app14083286
crossref_primary_10_1109_TCSII_2021_3074705
crossref_primary_10_1109_TII_2024_3383878
crossref_primary_10_1017_S026357472400016X
crossref_primary_10_1016_j_amc_2023_128298
crossref_primary_10_1007_s11432_020_2894_9
crossref_primary_10_1016_j_engappai_2022_105663
crossref_primary_10_1109_LRA_2022_3209161
crossref_primary_10_1109_TSMC_2024_3390235
crossref_primary_10_3390_app15031133
crossref_primary_10_1017_S026357472100045X
crossref_primary_10_1016_j_aei_2024_103047
crossref_primary_10_1109_TNNLS_2023_3245124
crossref_primary_10_1016_j_eswa_2022_116631
crossref_primary_10_1109_TCSII_2021_3049840
crossref_primary_10_1109_TII_2021_3109426
crossref_primary_10_1007_s11063_021_10448_3
crossref_primary_10_1109_ACCESS_2020_2993148
crossref_primary_10_1109_TNNLS_2024_3363241
crossref_primary_10_1016_j_cie_2024_110727
crossref_primary_10_3390_s22218177
crossref_primary_10_1109_TCSII_2021_3107535
crossref_primary_10_1007_s10462_024_10789_0
crossref_primary_10_1109_ACCESS_2020_3012564
crossref_primary_10_1007_s11063_021_10536_4
crossref_primary_10_1109_TCSII_2021_3086985
crossref_primary_10_1109_TCSII_2022_3170867
crossref_primary_10_1109_TII_2023_3348830
crossref_primary_10_1109_TNNLS_2022_3225309
crossref_primary_10_9726_kspse_2023_27_4_066
crossref_primary_10_1109_TCSII_2020_3016977
crossref_primary_10_1038_s41598_022_16226_y
crossref_primary_10_1109_TII_2023_3334305
crossref_primary_10_1007_s10614_024_10599_0
crossref_primary_10_1007_s11063_021_10724_2
crossref_primary_10_1007_s11370_023_00465_7
crossref_primary_10_1007_s41324_022_00500_2
crossref_primary_10_1016_j_matcom_2023_02_010
crossref_primary_10_1007_s00500_021_05991_z
crossref_primary_10_1109_ACCESS_2024_3382189
crossref_primary_10_1007_s40747_023_01131_2
crossref_primary_10_1016_j_mechatronics_2024_103220
crossref_primary_10_1109_JSYST_2023_3292430
crossref_primary_10_1177_09596518211027716
crossref_primary_10_3390_s23249802
crossref_primary_10_1109_TCSII_2021_3059890
crossref_primary_10_3390_axioms12030287
crossref_primary_10_1016_j_matcom_2025_01_006
crossref_primary_10_1007_s11063_021_10604_9
crossref_primary_10_1002_adc2_79
crossref_primary_10_1007_s11432_020_3073_5
crossref_primary_10_1007_s12065_022_00717_y
crossref_primary_10_1002_adc2_72
crossref_primary_10_1109_TCSII_2021_3077463
crossref_primary_10_1109_TCSII_2021_3079125
crossref_primary_10_1109_TIE_2023_3312427
crossref_primary_10_1109_TII_2021_3098499
crossref_primary_10_1109_TIE_2021_3118387
crossref_primary_10_3390_app13158925
crossref_primary_10_3390_s22207705
crossref_primary_10_1109_OJITS_2023_3335397
crossref_primary_10_1109_TCSII_2020_3035075
crossref_primary_10_1017_S0263574723001807
crossref_primary_10_1109_TCSII_2021_3066555
crossref_primary_10_1007_s00500_020_05440_3
crossref_primary_10_1007_s11227_022_04619_9
crossref_primary_10_3390_s23198075
crossref_primary_10_1007_s11063_020_10342_4
crossref_primary_10_1109_TCSII_2021_3055543
crossref_primary_10_1109_TCSII_2021_3053083
crossref_primary_10_1016_j_engappai_2024_107935
crossref_primary_10_1109_TCSII_2021_3115777
crossref_primary_10_1007_s44196_023_00295_6
crossref_primary_10_1049_cth2_12416
crossref_primary_10_3390_machines11111022
crossref_primary_10_1109_TIE_2022_3196372
crossref_primary_10_1007_s12065_023_00881_9
crossref_primary_10_3390_biomimetics7040144
crossref_primary_10_1002_apj_2603
crossref_primary_10_1093_jcde_qwad087
crossref_primary_10_1109_TCSII_2021_3051904
crossref_primary_10_1109_TII_2024_3393130
crossref_primary_10_1109_TCSII_2021_3082195
crossref_primary_10_1007_s11432_019_2735_6
crossref_primary_10_1109_TIE_2023_3347831
crossref_primary_10_1080_00207721_2020_1868612
crossref_primary_10_1115_1_4065613
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1016_j_amc_2023_128412
crossref_primary_10_1109_TII_2021_3058343
crossref_primary_10_1017_S0263574721001119
crossref_primary_10_1002_adc2_98
crossref_primary_10_1109_TCSII_2021_3116872
crossref_primary_10_1109_TII_2022_3145858
crossref_primary_10_1109_TII_2022_3175962
crossref_primary_10_1007_s11465_023_0753_3
crossref_primary_10_1016_j_birob_2024_100193
crossref_primary_10_1007_s11063_021_10612_9
crossref_primary_10_1109_TCSII_2021_3067014
crossref_primary_10_3390_app12168239
crossref_primary_10_1109_TCDS_2024_3387575
crossref_primary_10_1002_adc2_116
crossref_primary_10_1016_j_eswa_2023_122450
crossref_primary_10_1109_TCSII_2021_3049243
crossref_primary_10_1177_00368504211037771
crossref_primary_10_1109_TCSII_2021_3101510
crossref_primary_10_1109_TII_2021_3111816
crossref_primary_10_1109_TII_2023_3266378
crossref_primary_10_1155_2023_8868540
crossref_primary_10_1109_TCSII_2021_3084240
crossref_primary_10_1109_TCSS_2019_2958522
crossref_primary_10_1007_s11063_022_10788_8
crossref_primary_10_3390_biomimetics7030084
crossref_primary_10_1177_17298806241283382
crossref_primary_10_1016_j_memori_2022_100021
crossref_primary_10_1109_TSMC_2023_3283266
crossref_primary_10_1016_j_isatra_2023_12_003
crossref_primary_10_1115_1_4064654
crossref_primary_10_1007_s11063_021_10722_4
crossref_primary_10_3389_fnbot_2025_1553623
crossref_primary_10_3390_biomimetics7030124
crossref_primary_10_1016_j_mechatronics_2024_103263
crossref_primary_10_1109_TUFFC_2022_3177469
crossref_primary_10_1109_TCSII_2021_3054039
crossref_primary_10_1016_j_eswa_2025_126780
crossref_primary_10_1007_s40313_021_00873_z
crossref_primary_10_1002_rob_22543
crossref_primary_10_1016_j_eswa_2024_124994
crossref_primary_10_1016_j_engappai_2023_105861
crossref_primary_10_1016_j_ast_2022_107981
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1109_TCYB_2022_3179312
crossref_primary_10_3390_s23104642
crossref_primary_10_1080_01605682_2022_2096501
crossref_primary_10_1016_j_rcim_2021_102291
crossref_primary_10_1155_2022_7542104
crossref_primary_10_1109_TIE_2021_3123641
crossref_primary_10_1016_j_neucom_2023_126696
crossref_primary_10_1109_TCSII_2021_3075884
crossref_primary_10_1109_TCYB_2021_3070385
crossref_primary_10_3389_fnbot_2021_642733
crossref_primary_10_1080_01969722_2023_2177804
crossref_primary_10_1007_s40747_021_00346_5
crossref_primary_10_1002_rnc_6444
crossref_primary_10_1007_s11063_021_10440_x
crossref_primary_10_31763_ijrcs_v1i1_281
crossref_primary_10_1109_JAS_2024_124512
Cites_doi 10.1002/9780470640425
10.1007/s10846-016-0377-5
10.1109/TFUZZ.2018.2864940
10.1109/TIE.2014.2331036
10.1109/TCYB.2016.2554621
10.1080/00207179.2016.1153151
10.1016/j.rcim.2012.02.007
10.1109/SSD.2018.8570552
10.1109/LRA.2015.2510749
10.1109/TII.2016.2612646
10.1109/TII.2018.2826064
10.1109/ACCESS.2019.2899459
10.1109/TCYB.2014.2351416
10.1007/978-1-4613-8997-2_29
10.1017/S0263574717000601
10.1109/TNNLS.2018.2803167
10.1109/TSMC.1983.6313123
10.1016/j.neucom.2018.06.053
10.1109/TII.2017.2766455
10.1109/56.2083
10.1109/TIE.2016.2548439
10.1109/100.486658
10.1145/3083724
10.1145/3291842.3291872
10.1109/TII.2019.2922694
10.1017/S0263574714001349
10.1016/j.neucom.2012.01.034
10.1109/TII.2018.2789438
10.1109/TIE.2019.2920604
10.12913/22998624/65136
10.1109/ICIEA.2018.8397965
10.1109/TSMC.2019.2920870
10.1109/ICRA.2012.6225245
10.1109/TIE.2014.2364800
10.1109/TCST.2014.2312392
10.1109/TII.2019.2908442
10.1109/MRA.2013.2283650
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2941916
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 4680
ExternalDocumentID 10_1109_TII_2019_2941916
8840875
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-4bf56563d1c1735a68fe565e7ccdce2f69fb6a7969bad72df6950c031f0c9e8c3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:12:33 EDT 2025
Tue Jul 01 03:00:06 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Wed Aug 27 06:26:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-4bf56563d1c1735a68fe565e7ccdce2f69fb6a7969bad72df6950c031f0c9e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8316-5289
0000-0002-1348-5305
0000-0002-5367-5277
PQID 2383340989
PQPubID 85507
PageCount 11
ParticipantIDs crossref_primary_10_1109_TII_2019_2941916
proquest_journals_2383340989
crossref_citationtrail_10_1109_TII_2019_2941916
ieee_primary_8840875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref37
ref15
ref36
ref14
zhang (ref34) 2019
tsai (ref13) 2014
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
jiang (ref33) 2017
ong (ref42) 0; 2
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
yang (ref31) 2010
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1002/9780470640425
– ident: ref40
  doi: 10.1007/s10846-016-0377-5
– ident: ref25
  doi: 10.1109/TFUZZ.2018.2864940
– ident: ref21
  doi: 10.1109/TIE.2014.2331036
– ident: ref24
  doi: 10.1109/TCYB.2016.2554621
– ident: ref38
  doi: 10.1080/00207179.2016.1153151
– ident: ref9
  doi: 10.1109/TIE.2014.2331036
– ident: ref10
  doi: 10.1016/j.rcim.2012.02.007
– ident: ref39
  doi: 10.1109/SSD.2018.8570552
– year: 2017
  ident: ref33
  article-title: BAS: Beetle antennae search algorithm for optimization problems
– ident: ref18
  doi: 10.1109/LRA.2015.2510749
– ident: ref3
  doi: 10.1109/TII.2016.2612646
– ident: ref1
  doi: 10.1109/TII.2018.2826064
– ident: ref23
  doi: 10.1109/ACCESS.2019.2899459
– ident: ref4
  doi: 10.1109/TCYB.2014.2351416
– ident: ref28
  doi: 10.1007/978-1-4613-8997-2_29
– ident: ref2
  doi: 10.1017/S0263574717000601
– ident: ref22
  doi: 10.1109/TNNLS.2018.2803167
– ident: ref14
  doi: 10.1109/TSMC.1983.6313123
– ident: ref27
  doi: 10.1016/j.neucom.2018.06.053
– ident: ref17
  doi: 10.1109/TII.2017.2766455
– ident: ref30
  doi: 10.1109/56.2083
– ident: ref12
  doi: 10.1109/TIE.2016.2548439
– ident: ref43
  doi: 10.1109/100.486658
– ident: ref41
  doi: 10.1145/3083724
– ident: ref36
  doi: 10.1145/3291842.3291872
– year: 2014
  ident: ref13
  article-title: Online trajectory generation for robot manipulators in dynamic environment-An optimization-based approach
– year: 2010
  ident: ref31
  publication-title: Nature-Inspired Metaheuristic Algorithms
– ident: ref11
  doi: 10.1109/TII.2019.2922694
– ident: ref20
  doi: 10.1017/S0263574714001349
– ident: ref19
  doi: 10.1016/j.neucom.2012.01.034
– ident: ref7
  doi: 10.1109/TII.2018.2789438
– ident: ref26
  doi: 10.1109/TIE.2019.2920604
– ident: ref15
  doi: 10.12913/22998624/65136
– ident: ref35
  doi: 10.1109/ICIEA.2018.8397965
– ident: ref5
  doi: 10.1109/TSMC.2019.2920870
– year: 2019
  ident: ref34
  article-title: Convergence analysis of beetle antennae search algorithm and its applications
– ident: ref29
  doi: 10.1109/ICRA.2012.6225245
– ident: ref16
  doi: 10.1109/TIE.2014.2364800
– ident: ref6
  doi: 10.1109/TCST.2014.2312392
– volume: 2
  start-page: 1183
  year: 0
  ident: ref42
  article-title: The Gilbert-Johnson-Keerthi distance algorithm: A fast version for incremental motions
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref37
  doi: 10.1109/TII.2019.2908442
– ident: ref8
  doi: 10.1109/MRA.2013.2283650
SSID ssj0037039
Score 2.6297755
Snippet In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4670
SubjectTerms Algorithms
Antennae
Collision avoidance
Computer simulation
Heuristic methods
Kinematics
Manipulators
Mathematical analysis
Metaheuristic optimization
Obstacle avoidance
Optimization
recurrent neural network (RNN)
Recurrent neural networks
Robot arms
Robot control
Task analysis
Tracking control
Trajectory
Title Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach
URI https://ieeexplore.ieee.org/document/8840875
https://www.proquest.com/docview/2383340989
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQWmjV5aPygQtSvZu14yTubYuKoNIu0gokbpE_JipqSRBkOfDrO3aSVWmrqrfIsSNLb-J5Y4_fABxZrUymlODoZcVTVxleZBq5SqWwjixK2aj2ucjOrtKv1-p6Az6u78IgYkw-w3F4jGf5vnGrsFU2KSgaIX69CZsUuHV3tYZVV5Ll6qiNqqZcikQOR5KJnlyen4ccLj0WOqXwJHvmgmJNlT8W4uhdTrdhPsyrSyr5Pl61duyefpNs_N-Jv4ZXPc1ks84u3sAG1jvw8hfxwV24vbDEDOktmz02Nz6gz0ztGXkvF_bP2UmXxc6aii0xXDYjENiysQ19k81NfRNLfzX3n9isZsvFgn8mj-jZHFvzDVedAjSb9Zrlb-Hq9MvlyRnviy9wJ1Xe8tRWgetJP3XTXBKgRYXUgLlz3qGoMl3ZzOQ609b4XHhqUImjJaJKnMbCyXewVTc1vgemfOKFsZY6-TQN-vkqQSM0cVFnvcpGMBnwKF2vTB4KZPwoY4SS6JIQLAOCZY_gCI7XI-46VY5_9N0NgKz79ViM4GCAvOx_24eS-IuUFPEWeu_vo_bhhQgBd8zXPYCt9n6Fh8RKWvshmuNPoqHeyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUhQI-cEHCu1k7TmJuS0W1C91FWm2l3iI_JmoFJKhkOfDrGTvJipcQt8ixI0vfxPONPf4G4IXVymRKCY5eVjx1leFFppGrVArryKKUjWqfq2x-nr67UBd78Gp3FwYRY_IZjsNjPMv3jduGrbJJQdEI8esbcJP8vpp2t7WGdVeS7eqojqqmXIpEDoeSiZ5sFouQxaXHQqcUoGS_OKFYVeWPpTj6l9O7sBxm1qWVfBxvWzt2338Tbfzfqd-DOz3RZLPOMu7DHtYP4OAn-cFD-PzBEjekt2z2rbnyAX9mas_If7mwg85Oujx21lRsjeG6GcHA1o1t6JtsaeqrWPyruX7NZjVbr1b8DflEz5bYmkvcdhrQbNarlj-E89O3m5M578svcCdV3vLUVoHtST9101wSpEWF1IC5c96hqDJd2czkOtPW-Fx4alCJo0WiSpzGwslHsF83NR4BUz7xwlhLnXyaBgV9laARmtios15lI5gMeJSu1yYPJTI-lTFGSXRJCJYBwbJHcAQvdyO-dLoc_-h7GADZ9euxGMHxAHnZ_7hfS2IwUlLMW-jHfx_1HG7NN8uz8myxev8EbosQfsfs3WPYb6-3-JQ4SmufRdP8AWlk4hM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obstacle+Avoidance+and+Tracking+Control+of+Redundant+Robotic+Manipulator%3A+An+RNN-Based+Metaheuristic+Approach&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Khan%2C+Ameer+Hamza&rft.au=Li%2C+Shuai&rft.au=Luo%2C+Xin&rft.date=2020-07-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=7&rft.spage=4670&rft.epage=4680&rft_id=info:doi/10.1109%2FTII.2019.2941916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2019_2941916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon