Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach
In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical f...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 16; no. 7; pp. 4670 - 4680 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical for any industrial manipulator. The formulated control framework unifies the tracking control and obstacle avoidance into a single constrained optimization problem by introducing a penalty term into the objective function, which actively rewards the optimizer for avoiding the obstacles. One of the significant features of the proposed framework is the way that the penalty term is formulated following a straightforward principle: maximize the minimum distance between a manipulator and an obstacle. The distance calculations are based on Gilbert-Johnson-Keerthi algorithm, which calculates the distance between a manipulator and an obstacle by directly using their three-dimensional geometries, which also implies that our algorithm works for a manipulator and an arbitrarily shaped obstacle. Theoretical treatment proves the stability and convergence, and simulations results using an LBR IIWA seven-DOF manipulator are presented to analyze the performance of the proposed framework. |
---|---|
AbstractList | In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical for any industrial manipulator. The formulated control framework unifies the tracking control and obstacle avoidance into a single constrained optimization problem by introducing a penalty term into the objective function, which actively rewards the optimizer for avoiding the obstacles. One of the significant features of the proposed framework is the way that the penalty term is formulated following a straightforward principle: maximize the minimum distance between a manipulator and an obstacle. The distance calculations are based on Gilbert-Johnson-Keerthi algorithm, which calculates the distance between a manipulator and an obstacle by directly using their three-dimensional geometries, which also implies that our algorithm works for a manipulator and an arbitrarily shaped obstacle. Theoretical treatment proves the stability and convergence, and simulations results using an LBR IIWA seven-DOF manipulator are presented to analyze the performance of the proposed framework. |
Author | Khan, Ameer Hamza Li, Shuai Luo, Xin |
Author_xml | – sequence: 1 givenname: Ameer Hamza orcidid: 0000-0002-5367-5277 surname: Khan fullname: Khan, Ameer Hamza email: ameer.h.khan@connect.polyu.hk organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong – sequence: 2 givenname: Shuai orcidid: 0000-0001-8316-5289 surname: Li fullname: Li, Shuai email: shuaili@ieee.org organization: Swansea University, Swansea, U.K – sequence: 3 givenname: Xin orcidid: 0000-0002-1348-5305 surname: Luo fullname: Luo, Xin email: luoxin21@cigit.ac.cn organization: Department of Electrical and Electronic Engineering, Chongqing Engineering Research Center of Big Data Application for Smart Cities and the Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China |
BookMark | eNp9kM1LAzEUxIMoqNW74CXgeevLptndeKvFj4JaKPW8ZLNvNbomNckK_vemtHjw4OkNw8wb-B2TfessEnLGYMwYyMvVfD7OgclxLidMsmKPHLGkMgAB-0kLwTKeAz8kxyG8AfASuDwiH4smRKV7pNMvZ1plNVJlW7rySr8b-0Jnzkbveuo6usR2sCkS6dI1LhpNH5U166FX0fkrOrV0-fSUXauALX3EqF5x8CZsctP12julX0_IQaf6gKe7OyLPtzer2X32sLibz6YPmeaijNmk6UQhCt4yzUouVFF1mAwstW415l0hu6ZQpSxko9oyb5MhQANnHWiJleYjcrH9m2Y_BwyxfnODt2myznnF-QRkJVMKtintXQgeu3rtzYfy3zWDegO1TlDrDdR6BzVVij8VbaKKZgNJmf6_4vm2aBDxd6eqJlCVgv8AjmKGtg |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1080_00207721_2021_1922952 crossref_primary_10_1109_TII_2021_3138794 crossref_primary_10_1016_j_eswa_2024_124546 crossref_primary_10_1109_TIE_2024_3413816 crossref_primary_10_1007_s10846_023_01985_1 crossref_primary_10_1109_JAS_2023_123180 crossref_primary_10_1109_TCSII_2021_3124043 crossref_primary_10_1016_j_eswa_2020_113882 crossref_primary_10_1109_TCSII_2021_3054374 crossref_primary_10_1109_TIM_2023_3265744 crossref_primary_10_1002_adc2_63 crossref_primary_10_1109_TIE_2022_3165277 crossref_primary_10_1109_TSMC_2024_3382748 crossref_primary_10_1109_TCSII_2021_3113955 crossref_primary_10_1007_s00500_020_04808_9 crossref_primary_10_1109_TII_2022_3197270 crossref_primary_10_1109_TIE_2023_3270533 crossref_primary_10_3390_app14083286 crossref_primary_10_1109_TCSII_2021_3074705 crossref_primary_10_1109_TII_2024_3383878 crossref_primary_10_1017_S026357472400016X crossref_primary_10_1016_j_amc_2023_128298 crossref_primary_10_1007_s11432_020_2894_9 crossref_primary_10_1016_j_engappai_2022_105663 crossref_primary_10_1109_LRA_2022_3209161 crossref_primary_10_1109_TSMC_2024_3390235 crossref_primary_10_3390_app15031133 crossref_primary_10_1017_S026357472100045X crossref_primary_10_1016_j_aei_2024_103047 crossref_primary_10_1109_TNNLS_2023_3245124 crossref_primary_10_1016_j_eswa_2022_116631 crossref_primary_10_1109_TCSII_2021_3049840 crossref_primary_10_1109_TII_2021_3109426 crossref_primary_10_1007_s11063_021_10448_3 crossref_primary_10_1109_ACCESS_2020_2993148 crossref_primary_10_1109_TNNLS_2024_3363241 crossref_primary_10_1016_j_cie_2024_110727 crossref_primary_10_3390_s22218177 crossref_primary_10_1109_TCSII_2021_3107535 crossref_primary_10_1007_s10462_024_10789_0 crossref_primary_10_1109_ACCESS_2020_3012564 crossref_primary_10_1007_s11063_021_10536_4 crossref_primary_10_1109_TCSII_2021_3086985 crossref_primary_10_1109_TCSII_2022_3170867 crossref_primary_10_1109_TII_2023_3348830 crossref_primary_10_1109_TNNLS_2022_3225309 crossref_primary_10_9726_kspse_2023_27_4_066 crossref_primary_10_1109_TCSII_2020_3016977 crossref_primary_10_1038_s41598_022_16226_y crossref_primary_10_1109_TII_2023_3334305 crossref_primary_10_1007_s10614_024_10599_0 crossref_primary_10_1007_s11063_021_10724_2 crossref_primary_10_1007_s11370_023_00465_7 crossref_primary_10_1007_s41324_022_00500_2 crossref_primary_10_1016_j_matcom_2023_02_010 crossref_primary_10_1007_s00500_021_05991_z crossref_primary_10_1109_ACCESS_2024_3382189 crossref_primary_10_1007_s40747_023_01131_2 crossref_primary_10_1016_j_mechatronics_2024_103220 crossref_primary_10_1109_JSYST_2023_3292430 crossref_primary_10_1177_09596518211027716 crossref_primary_10_3390_s23249802 crossref_primary_10_1109_TCSII_2021_3059890 crossref_primary_10_3390_axioms12030287 crossref_primary_10_1016_j_matcom_2025_01_006 crossref_primary_10_1007_s11063_021_10604_9 crossref_primary_10_1002_adc2_79 crossref_primary_10_1007_s11432_020_3073_5 crossref_primary_10_1007_s12065_022_00717_y crossref_primary_10_1002_adc2_72 crossref_primary_10_1109_TCSII_2021_3077463 crossref_primary_10_1109_TCSII_2021_3079125 crossref_primary_10_1109_TIE_2023_3312427 crossref_primary_10_1109_TII_2021_3098499 crossref_primary_10_1109_TIE_2021_3118387 crossref_primary_10_3390_app13158925 crossref_primary_10_3390_s22207705 crossref_primary_10_1109_OJITS_2023_3335397 crossref_primary_10_1109_TCSII_2020_3035075 crossref_primary_10_1017_S0263574723001807 crossref_primary_10_1109_TCSII_2021_3066555 crossref_primary_10_1007_s00500_020_05440_3 crossref_primary_10_1007_s11227_022_04619_9 crossref_primary_10_3390_s23198075 crossref_primary_10_1007_s11063_020_10342_4 crossref_primary_10_1109_TCSII_2021_3055543 crossref_primary_10_1109_TCSII_2021_3053083 crossref_primary_10_1016_j_engappai_2024_107935 crossref_primary_10_1109_TCSII_2021_3115777 crossref_primary_10_1007_s44196_023_00295_6 crossref_primary_10_1049_cth2_12416 crossref_primary_10_3390_machines11111022 crossref_primary_10_1109_TIE_2022_3196372 crossref_primary_10_1007_s12065_023_00881_9 crossref_primary_10_3390_biomimetics7040144 crossref_primary_10_1002_apj_2603 crossref_primary_10_1093_jcde_qwad087 crossref_primary_10_1109_TCSII_2021_3051904 crossref_primary_10_1109_TII_2024_3393130 crossref_primary_10_1109_TCSII_2021_3082195 crossref_primary_10_1007_s11432_019_2735_6 crossref_primary_10_1109_TIE_2023_3347831 crossref_primary_10_1080_00207721_2020_1868612 crossref_primary_10_1115_1_4065613 crossref_primary_10_1007_s40997_023_00596_3 crossref_primary_10_1016_j_amc_2023_128412 crossref_primary_10_1109_TII_2021_3058343 crossref_primary_10_1017_S0263574721001119 crossref_primary_10_1002_adc2_98 crossref_primary_10_1109_TCSII_2021_3116872 crossref_primary_10_1109_TII_2022_3145858 crossref_primary_10_1109_TII_2022_3175962 crossref_primary_10_1007_s11465_023_0753_3 crossref_primary_10_1016_j_birob_2024_100193 crossref_primary_10_1007_s11063_021_10612_9 crossref_primary_10_1109_TCSII_2021_3067014 crossref_primary_10_3390_app12168239 crossref_primary_10_1109_TCDS_2024_3387575 crossref_primary_10_1002_adc2_116 crossref_primary_10_1016_j_eswa_2023_122450 crossref_primary_10_1109_TCSII_2021_3049243 crossref_primary_10_1177_00368504211037771 crossref_primary_10_1109_TCSII_2021_3101510 crossref_primary_10_1109_TII_2021_3111816 crossref_primary_10_1109_TII_2023_3266378 crossref_primary_10_1155_2023_8868540 crossref_primary_10_1109_TCSII_2021_3084240 crossref_primary_10_1109_TCSS_2019_2958522 crossref_primary_10_1007_s11063_022_10788_8 crossref_primary_10_3390_biomimetics7030084 crossref_primary_10_1177_17298806241283382 crossref_primary_10_1016_j_memori_2022_100021 crossref_primary_10_1109_TSMC_2023_3283266 crossref_primary_10_1016_j_isatra_2023_12_003 crossref_primary_10_1115_1_4064654 crossref_primary_10_1007_s11063_021_10722_4 crossref_primary_10_3389_fnbot_2025_1553623 crossref_primary_10_3390_biomimetics7030124 crossref_primary_10_1016_j_mechatronics_2024_103263 crossref_primary_10_1109_TUFFC_2022_3177469 crossref_primary_10_1109_TCSII_2021_3054039 crossref_primary_10_1016_j_eswa_2025_126780 crossref_primary_10_1007_s40313_021_00873_z crossref_primary_10_1002_rob_22543 crossref_primary_10_1016_j_eswa_2024_124994 crossref_primary_10_1016_j_engappai_2023_105861 crossref_primary_10_1016_j_ast_2022_107981 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1109_TCYB_2022_3179312 crossref_primary_10_3390_s23104642 crossref_primary_10_1080_01605682_2022_2096501 crossref_primary_10_1016_j_rcim_2021_102291 crossref_primary_10_1155_2022_7542104 crossref_primary_10_1109_TIE_2021_3123641 crossref_primary_10_1016_j_neucom_2023_126696 crossref_primary_10_1109_TCSII_2021_3075884 crossref_primary_10_1109_TCYB_2021_3070385 crossref_primary_10_3389_fnbot_2021_642733 crossref_primary_10_1080_01969722_2023_2177804 crossref_primary_10_1007_s40747_021_00346_5 crossref_primary_10_1002_rnc_6444 crossref_primary_10_1007_s11063_021_10440_x crossref_primary_10_31763_ijrcs_v1i1_281 crossref_primary_10_1109_JAS_2024_124512 |
Cites_doi | 10.1002/9780470640425 10.1007/s10846-016-0377-5 10.1109/TFUZZ.2018.2864940 10.1109/TIE.2014.2331036 10.1109/TCYB.2016.2554621 10.1080/00207179.2016.1153151 10.1016/j.rcim.2012.02.007 10.1109/SSD.2018.8570552 10.1109/LRA.2015.2510749 10.1109/TII.2016.2612646 10.1109/TII.2018.2826064 10.1109/ACCESS.2019.2899459 10.1109/TCYB.2014.2351416 10.1007/978-1-4613-8997-2_29 10.1017/S0263574717000601 10.1109/TNNLS.2018.2803167 10.1109/TSMC.1983.6313123 10.1016/j.neucom.2018.06.053 10.1109/TII.2017.2766455 10.1109/56.2083 10.1109/TIE.2016.2548439 10.1109/100.486658 10.1145/3083724 10.1145/3291842.3291872 10.1109/TII.2019.2922694 10.1017/S0263574714001349 10.1016/j.neucom.2012.01.034 10.1109/TII.2018.2789438 10.1109/TIE.2019.2920604 10.12913/22998624/65136 10.1109/ICIEA.2018.8397965 10.1109/TSMC.2019.2920870 10.1109/ICRA.2012.6225245 10.1109/TIE.2014.2364800 10.1109/TCST.2014.2312392 10.1109/TII.2019.2908442 10.1109/MRA.2013.2283650 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2019.2941916 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 4680 |
ExternalDocumentID | 10_1109_TII_2019_2941916 8840875 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-4bf56563d1c1735a68fe565e7ccdce2f69fb6a7969bad72df6950c031f0c9e8c3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:12:33 EDT 2025 Tue Jul 01 03:00:06 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Aug 27 06:26:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-4bf56563d1c1735a68fe565e7ccdce2f69fb6a7969bad72df6950c031f0c9e8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8316-5289 0000-0002-1348-5305 0000-0002-5367-5277 |
PQID | 2383340989 |
PQPubID | 85507 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TII_2019_2941916 proquest_journals_2383340989 crossref_citationtrail_10_1109_TII_2019_2941916 ieee_primary_8840875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref37 ref15 ref36 ref14 zhang (ref34) 2019 tsai (ref13) 2014 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 jiang (ref33) 2017 ong (ref42) 0; 2 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 yang (ref31) 2010 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref32 doi: 10.1002/9780470640425 – ident: ref40 doi: 10.1007/s10846-016-0377-5 – ident: ref25 doi: 10.1109/TFUZZ.2018.2864940 – ident: ref21 doi: 10.1109/TIE.2014.2331036 – ident: ref24 doi: 10.1109/TCYB.2016.2554621 – ident: ref38 doi: 10.1080/00207179.2016.1153151 – ident: ref9 doi: 10.1109/TIE.2014.2331036 – ident: ref10 doi: 10.1016/j.rcim.2012.02.007 – ident: ref39 doi: 10.1109/SSD.2018.8570552 – year: 2017 ident: ref33 article-title: BAS: Beetle antennae search algorithm for optimization problems – ident: ref18 doi: 10.1109/LRA.2015.2510749 – ident: ref3 doi: 10.1109/TII.2016.2612646 – ident: ref1 doi: 10.1109/TII.2018.2826064 – ident: ref23 doi: 10.1109/ACCESS.2019.2899459 – ident: ref4 doi: 10.1109/TCYB.2014.2351416 – ident: ref28 doi: 10.1007/978-1-4613-8997-2_29 – ident: ref2 doi: 10.1017/S0263574717000601 – ident: ref22 doi: 10.1109/TNNLS.2018.2803167 – ident: ref14 doi: 10.1109/TSMC.1983.6313123 – ident: ref27 doi: 10.1016/j.neucom.2018.06.053 – ident: ref17 doi: 10.1109/TII.2017.2766455 – ident: ref30 doi: 10.1109/56.2083 – ident: ref12 doi: 10.1109/TIE.2016.2548439 – ident: ref43 doi: 10.1109/100.486658 – ident: ref41 doi: 10.1145/3083724 – ident: ref36 doi: 10.1145/3291842.3291872 – year: 2014 ident: ref13 article-title: Online trajectory generation for robot manipulators in dynamic environment-An optimization-based approach – year: 2010 ident: ref31 publication-title: Nature-Inspired Metaheuristic Algorithms – ident: ref11 doi: 10.1109/TII.2019.2922694 – ident: ref20 doi: 10.1017/S0263574714001349 – ident: ref19 doi: 10.1016/j.neucom.2012.01.034 – ident: ref7 doi: 10.1109/TII.2018.2789438 – ident: ref26 doi: 10.1109/TIE.2019.2920604 – ident: ref15 doi: 10.12913/22998624/65136 – ident: ref35 doi: 10.1109/ICIEA.2018.8397965 – ident: ref5 doi: 10.1109/TSMC.2019.2920870 – year: 2019 ident: ref34 article-title: Convergence analysis of beetle antennae search algorithm and its applications – ident: ref29 doi: 10.1109/ICRA.2012.6225245 – ident: ref16 doi: 10.1109/TIE.2014.2364800 – ident: ref6 doi: 10.1109/TCST.2014.2312392 – volume: 2 start-page: 1183 year: 0 ident: ref42 article-title: The Gilbert-Johnson-Keerthi distance algorithm: A fast version for incremental motions publication-title: Proc IEEE Int Conf Robot Autom – ident: ref37 doi: 10.1109/TII.2019.2908442 – ident: ref8 doi: 10.1109/MRA.2013.2283650 |
SSID | ssj0037039 |
Score | 2.6297755 |
Snippet | In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4670 |
SubjectTerms | Algorithms Antennae Collision avoidance Computer simulation Heuristic methods Kinematics Manipulators Mathematical analysis Metaheuristic optimization Obstacle avoidance Optimization recurrent neural network (RNN) Recurrent neural networks Robot arms Robot control Task analysis Tracking control Trajectory |
Title | Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach |
URI | https://ieeexplore.ieee.org/document/8840875 https://www.proquest.com/docview/2383340989 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQWmjV5aPygQtSvZu14yTubYuKoNIu0gokbpE_JipqSRBkOfDrO3aSVWmrqrfIsSNLb-J5Y4_fABxZrUymlODoZcVTVxleZBq5SqWwjixK2aj2ucjOrtKv1-p6Az6u78IgYkw-w3F4jGf5vnGrsFU2KSgaIX69CZsUuHV3tYZVV5Ll6qiNqqZcikQOR5KJnlyen4ccLj0WOqXwJHvmgmJNlT8W4uhdTrdhPsyrSyr5Pl61duyefpNs_N-Jv4ZXPc1ks84u3sAG1jvw8hfxwV24vbDEDOktmz02Nz6gz0ztGXkvF_bP2UmXxc6aii0xXDYjENiysQ19k81NfRNLfzX3n9isZsvFgn8mj-jZHFvzDVedAjSb9Zrlb-Hq9MvlyRnviy9wJ1Xe8tRWgetJP3XTXBKgRYXUgLlz3qGoMl3ZzOQ609b4XHhqUImjJaJKnMbCyXewVTc1vgemfOKFsZY6-TQN-vkqQSM0cVFnvcpGMBnwKF2vTB4KZPwoY4SS6JIQLAOCZY_gCI7XI-46VY5_9N0NgKz79ViM4GCAvOx_24eS-IuUFPEWeu_vo_bhhQgBd8zXPYCt9n6Fh8RKWvshmuNPoqHeyg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUhQI-cEHCu1k7TmJuS0W1C91FWm2l3iI_JmoFJKhkOfDrGTvJipcQt8ixI0vfxPONPf4G4IXVymRKCY5eVjx1leFFppGrVArryKKUjWqfq2x-nr67UBd78Gp3FwYRY_IZjsNjPMv3jduGrbJJQdEI8esbcJP8vpp2t7WGdVeS7eqojqqmXIpEDoeSiZ5sFouQxaXHQqcUoGS_OKFYVeWPpTj6l9O7sBxm1qWVfBxvWzt2338Tbfzfqd-DOz3RZLPOMu7DHtYP4OAn-cFD-PzBEjekt2z2rbnyAX9mas_If7mwg85Oujx21lRsjeG6GcHA1o1t6JtsaeqrWPyruX7NZjVbr1b8DflEz5bYmkvcdhrQbNarlj-E89O3m5M578svcCdV3vLUVoHtST9101wSpEWF1IC5c96hqDJd2czkOtPW-Fx4alCJo0WiSpzGwslHsF83NR4BUz7xwlhLnXyaBgV9laARmtios15lI5gMeJSu1yYPJTI-lTFGSXRJCJYBwbJHcAQvdyO-dLoc_-h7GADZ9euxGMHxAHnZ_7hfS2IwUlLMW-jHfx_1HG7NN8uz8myxev8EbosQfsfs3WPYb6-3-JQ4SmufRdP8AWlk4hM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obstacle+Avoidance+and+Tracking+Control+of+Redundant+Robotic+Manipulator%3A+An+RNN-Based+Metaheuristic+Approach&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Khan%2C+Ameer+Hamza&rft.au=Li%2C+Shuai&rft.au=Luo%2C+Xin&rft.date=2020-07-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=7&rft.spage=4670&rft.epage=4680&rft_id=info:doi/10.1109%2FTII.2019.2941916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2019_2941916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |