Mixed-State Quantum Phases: Renormalization and Quantum Error Correction

Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 14; no. 3; p. 031044
Main Authors Sang, Shengqi, Zou, Yijian, Hsieh, Timothy H.
Format Journal Article
LanguageEnglish
Published American Physical Society 01.09.2024
Online AccessGet full text

Cover

Loading…
Abstract Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.
AbstractList Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.
ArticleNumber 031044
Author Zou, Yijian
Sang, Shengqi
Hsieh, Timothy H.
Author_xml – sequence: 1
  givenname: Shengqi
  surname: Sang
  fullname: Sang, Shengqi
– sequence: 2
  givenname: Yijian
  surname: Zou
  fullname: Zou, Yijian
– sequence: 3
  givenname: Timothy H.
  surname: Hsieh
  fullname: Hsieh, Timothy H.
BookMark eNp9kMFOAjEQhhuDiYi8gKd9gcXOttttvRmCQoJRURNvTWm7UrJsTbsY8eldQInx4Fxm8s_8_yTfKerUvrYInQMeAGBycb_YxJl9fxkAHWACmNIj1M2A4ZQQzDu_5hPUj3GJ22IYaFF00fjWfViTPjaqscnDWtXNepXcL1S08TKZ2dqHlarcp2qcrxNVm8PNKAQfkqEPwert8gwdl6qKtv_de-j5evQ0HKfTu5vJ8GqaapIXTUoVEyA0zjKjOVBORNZKhaGFtSXRUGac0HnOOSOm1JyUNmeCgy1IDsIaSnposs81Xi3lW3ArFTbSKyd3gg-vUoXG6cpK0KygPC9BGEMxYzwXGnAuCGTtQzJvs7J9lg4-xmDLQx5guUUrf9BKoHKPtjXxPybtmh2fJihX_Wf9AiVYgU4
CitedBy_id crossref_primary_10_1103_PhysRevB_110_155150
crossref_primary_10_1103_PhysRevB_111_115141
crossref_primary_10_1103_PhysRevX_15_011069
crossref_primary_10_1103_PhysRevB_111_115137
crossref_primary_10_1038_s41467_024_55570_7
crossref_primary_10_1103_PRXQuantum_6_010314
crossref_primary_10_1103_PRXQuantum_6_010315
crossref_primary_10_1103_PhysRevB_111_115123
crossref_primary_10_1103_PhysRevB_111_125128
crossref_primary_10_1103_PhysRevB_111_064111
crossref_primary_10_1103_PhysRevB_110_125152
crossref_primary_10_1103_PhysRevLett_134_010403
crossref_primary_10_1103_PhysRevLett_134_070403
Cites_doi 10.1093/qmath/39.1.97
10.1126/science.abi8378
10.1103/PRXQuantum.4.030318
10.26421/QIC17.3-4-1
10.1007/BF02099178
10.1109/TIT.2021.3130131
10.1103/RevModPhys.47.773
10.1016/j.aop.2016.12.030
10.1103/PhysRevLett.107.210501
10.1103/PhysRevB.72.045141
10.1103/PhysRevLett.111.200501
10.1063/1.1499754
10.1103/PhysRevX.13.031016
10.1103/PhysRevLett.69.2863
10.22331/q-2019-08-12-174
10.1103/PRXQuantum.5.020343
10.1038/s41467-024-45584-6
10.1103/PhysRevLett.131.200201
10.1126/science.abi8794
10.1007/s11005-024-01778-z
10.1103/PhysRevLett.104.050504
10.1103/PhysRevA.109.022422
10.1103/PhysRevLett.132.170602
10.1103/PhysRevA.90.032326
10.1103/PhysRevLett.99.220405
10.1038/nphys1342
10.22331/q-2022-11-10-856
10.1103/PhysRevB.108.214302
10.1103/PhysRevB.94.155125
10.1103/PhysRevLett.100.070404
10.1103/PhysRevLett.127.080602
10.1007/s00220-015-2466-x
10.1103/PhysRevLett.132.040404
10.1103/PhysRevLett.130.250403
10.1103/PhysRevLett.125.116801
10.1103/PhysicsPhysiqueFizika.2.263
10.1103/PhysRevB.82.155138
10.1038/s41567-019-0648-8
10.1109/TIT.2022.3143846
10.1103/PRXQuantum.4.030317
10.1016/S0003-4916(02)00019-2
10.1038/nphys1073
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevX.14.031044
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_1c67485f19dd4066859c10593127d43b
10_1103_PhysRevX_14_031044
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
PQGLB
PUEGO
ID FETCH-LOGICAL-c357t-4a6919c022dc81483924a67d47eef3c1f2834b58863dfc83fe56981e73519ed43
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:26:03 EDT 2025
Tue Jul 01 01:33:24 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-4a6919c022dc81483924a67d47eef3c1f2834b58863dfc83fe56981e73519ed43
OpenAccessLink https://doaj.org/article/1c67485f19dd4066859c10593127d43b
ParticipantIDs doaj_primary_oai_doaj_org_article_1c67485f19dd4066859c10593127d43b
crossref_primary_10_1103_PhysRevX_14_031044
crossref_citationtrail_10_1103_PhysRevX_14_031044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review. X
PublicationYear 2024
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.14.031044Cc2R1
PhysRevX.14.031044Cc1R1
PhysRevX.14.031044Cc4R1
PhysRevX.14.031044Cc20R1
PhysRevX.14.031044Cc3R1
PhysRevX.14.031044Cc5R1
PhysRevX.14.031044Cc8R1
PhysRevX.14.031044Cc7R1
PhysRevX.14.031044Cc41R1
PhysRevX.14.031044Cc42R1
PhysRevX.14.031044Cc21R1
PhysRevX.14.031044Cc43R1
PhysRevX.14.031044Cc22R1
PhysRevX.14.031044Cc44R1
PhysRevX.14.031044Cc23R1
PhysRevX.14.031044Cc26R1
PhysRevX.14.031044Cc27R1
PhysRevX.14.031044Cc28R1
PhysRevX.14.031044Cc49R1
PhysRevX.14.031044Cc29R1
PhysRevX.14.031044Cc19R1
PhysRevX.14.031044Cc17R1
PhysRevX.14.031044Cc16R1
James William Harrington (PhysRevX.14.031044Cc25R1) 2004
PhysRevX.14.031044Cc15R1
PhysRevX.14.031044Cc13R1
PhysRevX.14.031044Cc12R1
PhysRevX.14.031044Cc11R1
PhysRevX.14.031044Cc60R1
PhysRevX.14.031044Cc50R1
PhysRevX.14.031044Cc30R1
PhysRevX.14.031044Cc53R1
PhysRevX.14.031044Cc31R1
PhysRevX.14.031044Cc55R1
PhysRevX.14.031044Cc33R1
PhysRevX.14.031044Cc54R1
PhysRevX.14.031044Cc34R1
PhysRevX.14.031044Cc57R1
PhysRevX.14.031044Cc35R1
PhysRevX.14.031044Cc56R1
PhysRevX.14.031044Cc59R1
PhysRevX.14.031044Cc37R1
PhysRevX.14.031044Cc58R1
References_xml – ident: PhysRevX.14.031044Cc41R1
  doi: 10.1093/qmath/39.1.97
– ident: PhysRevX.14.031044Cc27R1
  doi: 10.1126/science.abi8378
– ident: PhysRevX.14.031044Cc12R1
  doi: 10.1103/PRXQuantum.4.030318
– ident: PhysRevX.14.031044Cc55R1
  doi: 10.26421/QIC17.3-4-1
– ident: PhysRevX.14.031044Cc23R1
  doi: 10.1007/BF02099178
– ident: PhysRevX.14.031044Cc43R1
  doi: 10.1109/TIT.2021.3130131
– ident: PhysRevX.14.031044Cc19R1
  doi: 10.1103/RevModPhys.47.773
– ident: PhysRevX.14.031044Cc31R1
  doi: 10.1016/j.aop.2016.12.030
– ident: PhysRevX.14.031044Cc35R1
  doi: 10.1103/PhysRevLett.107.210501
– ident: PhysRevX.14.031044Cc37R1
  doi: 10.1103/PhysRevB.72.045141
– ident: PhysRevX.14.031044Cc54R1
  doi: 10.1103/PhysRevLett.111.200501
– ident: PhysRevX.14.031044Cc49R1
  doi: 10.1063/1.1499754
– ident: PhysRevX.14.031044Cc4R1
  doi: 10.1103/PhysRevX.13.031016
– ident: PhysRevX.14.031044Cc21R1
  doi: 10.1103/PhysRevLett.69.2863
– ident: PhysRevX.14.031044Cc17R1
  doi: 10.22331/q-2019-08-12-174
– ident: PhysRevX.14.031044Cc5R1
  doi: 10.1103/PRXQuantum.5.020343
– volume-title: Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes
  year: 2004
  ident: PhysRevX.14.031044Cc25R1
– ident: PhysRevX.14.031044Cc33R1
  doi: 10.1038/s41467-024-45584-6
– ident: PhysRevX.14.031044Cc13R1
  doi: 10.1103/PhysRevLett.131.200201
– ident: PhysRevX.14.031044Cc26R1
  doi: 10.1126/science.abi8794
– ident: PhysRevX.14.031044Cc30R1
  doi: 10.1007/s11005-024-01778-z
– ident: PhysRevX.14.031044Cc53R1
  doi: 10.1103/PhysRevLett.104.050504
– ident: PhysRevX.14.031044Cc59R1
  doi: 10.1103/PhysRevA.109.022422
– ident: PhysRevX.14.031044Cc11R1
  doi: 10.1103/PhysRevLett.132.170602
– ident: PhysRevX.14.031044Cc56R1
  doi: 10.1103/PhysRevA.90.032326
– ident: PhysRevX.14.031044Cc22R1
  doi: 10.1103/PhysRevLett.99.220405
– ident: PhysRevX.14.031044Cc2R1
  doi: 10.1038/nphys1342
– ident: PhysRevX.14.031044Cc3R1
  doi: 10.22331/q-2022-11-10-856
– ident: PhysRevX.14.031044Cc15R1
  doi: 10.1103/PhysRevB.108.214302
– ident: PhysRevX.14.031044Cc28R1
  doi: 10.1103/PhysRevB.94.155125
– ident: PhysRevX.14.031044Cc50R1
  doi: 10.1103/PhysRevLett.100.070404
– ident: PhysRevX.14.031044Cc29R1
  doi: 10.1103/PhysRevLett.127.080602
– ident: PhysRevX.14.031044Cc42R1
  doi: 10.1007/s00220-015-2466-x
– ident: PhysRevX.14.031044Cc60R1
  doi: 10.1103/PhysRevLett.132.040404
– ident: PhysRevX.14.031044Cc8R1
  doi: 10.1103/PhysRevLett.130.250403
– ident: PhysRevX.14.031044Cc58R1
  doi: 10.1103/PhysRevLett.125.116801
– ident: PhysRevX.14.031044Cc20R1
  doi: 10.1103/PhysicsPhysiqueFizika.2.263
– ident: PhysRevX.14.031044Cc16R1
  doi: 10.1103/PhysRevB.82.155138
– ident: PhysRevX.14.031044Cc34R1
  doi: 10.1038/s41567-019-0648-8
– ident: PhysRevX.14.031044Cc44R1
  doi: 10.1109/TIT.2022.3143846
– ident: PhysRevX.14.031044Cc7R1
  doi: 10.1103/PRXQuantum.4.030317
– ident: PhysRevX.14.031044Cc57R1
  doi: 10.1016/S0003-4916(02)00019-2
– ident: PhysRevX.14.031044Cc1R1
  doi: 10.1038/nphys1073
SSID ssj0000601477
Score 2.4797962
Snippet Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 031044
Title Mixed-State Quantum Phases: Renormalization and Quantum Error Correction
URI https://doaj.org/article/1c67485f19dd4066859c10593127d43b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf5OBNYpPsJrvxpqWlCBUtFnoL-5hFoaaStuLPd3aTlnrRi9dlNiTfhJlvYOYbQq5yJqXCKBdSkBwLlJRhHGRZCFYxK2SSaK-2P3zMBmP2MEknG6u-XE9YLQ9cA9eJtVuHkdo4NwaTTybSXDtOQOOEG0aVi76Y8zaKqToGI_XnfDUlE9GOa6gcwecEQ8ONk8Nk7Ecm2hDs95mlv0d2G0oY3NWvsk-2oDwg2741U88PyWD49gUm9KwweF4iEsv34OkVs8_8NhhB6UjntJmmDGRp1ja9qppVQdet3_DDC0dk3O-9dAdhs_8g1DTli5DJLI9zjVnWaIFlC1IZPMKv5gCW6tgiNWAqFSKjxmpBLaRZLmLgbukeIDjHpFXOSjghAV6JZIJkw3LBQIs8AuR2yjKVKCcR3ybxCotCN-LgbkfFtPBFQkSLFX5YKxQ1fm1yvb7zUUtj_Gp97yBeWzpZa3-Azi4aZxd_Ofv0Px5yRnYSZCZ1o9g5aS2qJVwgs1ioS_8TfQN9GchB
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-State+Quantum+Phases%3A+Renormalization+and+Quantum+Error+Correction&rft.jtitle=Physical+review.+X&rft.au=Shengqi+Sang&rft.au=Yijian+Zou&rft.au=Timothy+H.+Hsieh&rft.date=2024-09-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=14&rft.issue=3&rft.spage=031044&rft_id=info:doi/10.1103%2FPhysRevX.14.031044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1c67485f19dd4066859c10593127d43b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon