Mixed-State Quantum Phases: Renormalization and Quantum Error Correction
Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the...
Saved in:
Published in | Physical review. X Vol. 14; no. 3; p. 031044 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.09.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase. |
---|---|
AbstractList | Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase. |
ArticleNumber | 031044 |
Author | Zou, Yijian Sang, Shengqi Hsieh, Timothy H. |
Author_xml | – sequence: 1 givenname: Shengqi surname: Sang fullname: Sang, Shengqi – sequence: 2 givenname: Yijian surname: Zou fullname: Zou, Yijian – sequence: 3 givenname: Timothy H. surname: Hsieh fullname: Hsieh, Timothy H. |
BookMark | eNp9kMFOAjEQhhuDiYi8gKd9gcXOttttvRmCQoJRURNvTWm7UrJsTbsY8eldQInx4Fxm8s_8_yTfKerUvrYInQMeAGBycb_YxJl9fxkAHWACmNIj1M2A4ZQQzDu_5hPUj3GJ22IYaFF00fjWfViTPjaqscnDWtXNepXcL1S08TKZ2dqHlarcp2qcrxNVm8PNKAQfkqEPwert8gwdl6qKtv_de-j5evQ0HKfTu5vJ8GqaapIXTUoVEyA0zjKjOVBORNZKhaGFtSXRUGac0HnOOSOm1JyUNmeCgy1IDsIaSnposs81Xi3lW3ArFTbSKyd3gg-vUoXG6cpK0KygPC9BGEMxYzwXGnAuCGTtQzJvs7J9lg4-xmDLQx5guUUrf9BKoHKPtjXxPybtmh2fJihX_Wf9AiVYgU4 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_110_155150 crossref_primary_10_1103_PhysRevB_111_115141 crossref_primary_10_1103_PhysRevX_15_011069 crossref_primary_10_1103_PhysRevB_111_115137 crossref_primary_10_1038_s41467_024_55570_7 crossref_primary_10_1103_PRXQuantum_6_010314 crossref_primary_10_1103_PRXQuantum_6_010315 crossref_primary_10_1103_PhysRevB_111_115123 crossref_primary_10_1103_PhysRevB_111_125128 crossref_primary_10_1103_PhysRevB_111_064111 crossref_primary_10_1103_PhysRevB_110_125152 crossref_primary_10_1103_PhysRevLett_134_010403 crossref_primary_10_1103_PhysRevLett_134_070403 |
Cites_doi | 10.1093/qmath/39.1.97 10.1126/science.abi8378 10.1103/PRXQuantum.4.030318 10.26421/QIC17.3-4-1 10.1007/BF02099178 10.1109/TIT.2021.3130131 10.1103/RevModPhys.47.773 10.1016/j.aop.2016.12.030 10.1103/PhysRevLett.107.210501 10.1103/PhysRevB.72.045141 10.1103/PhysRevLett.111.200501 10.1063/1.1499754 10.1103/PhysRevX.13.031016 10.1103/PhysRevLett.69.2863 10.22331/q-2019-08-12-174 10.1103/PRXQuantum.5.020343 10.1038/s41467-024-45584-6 10.1103/PhysRevLett.131.200201 10.1126/science.abi8794 10.1007/s11005-024-01778-z 10.1103/PhysRevLett.104.050504 10.1103/PhysRevA.109.022422 10.1103/PhysRevLett.132.170602 10.1103/PhysRevA.90.032326 10.1103/PhysRevLett.99.220405 10.1038/nphys1342 10.22331/q-2022-11-10-856 10.1103/PhysRevB.108.214302 10.1103/PhysRevB.94.155125 10.1103/PhysRevLett.100.070404 10.1103/PhysRevLett.127.080602 10.1007/s00220-015-2466-x 10.1103/PhysRevLett.132.040404 10.1103/PhysRevLett.130.250403 10.1103/PhysRevLett.125.116801 10.1103/PhysicsPhysiqueFizika.2.263 10.1103/PhysRevB.82.155138 10.1038/s41567-019-0648-8 10.1109/TIT.2022.3143846 10.1103/PRXQuantum.4.030317 10.1016/S0003-4916(02)00019-2 10.1038/nphys1073 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevX.14.031044 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_1c67485f19dd4066859c10593127d43b 10_1103_PhysRevX_14_031044 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W PQGLB PUEGO |
ID | FETCH-LOGICAL-c357t-4a6919c022dc81483924a67d47eef3c1f2834b58863dfc83fe56981e73519ed43 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:26:03 EDT 2025 Tue Jul 01 01:33:24 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-4a6919c022dc81483924a67d47eef3c1f2834b58863dfc83fe56981e73519ed43 |
OpenAccessLink | https://doaj.org/article/1c67485f19dd4066859c10593127d43b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c67485f19dd4066859c10593127d43b crossref_primary_10_1103_PhysRevX_14_031044 crossref_citationtrail_10_1103_PhysRevX_14_031044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physical review. X |
PublicationYear | 2024 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.14.031044Cc2R1 PhysRevX.14.031044Cc1R1 PhysRevX.14.031044Cc4R1 PhysRevX.14.031044Cc20R1 PhysRevX.14.031044Cc3R1 PhysRevX.14.031044Cc5R1 PhysRevX.14.031044Cc8R1 PhysRevX.14.031044Cc7R1 PhysRevX.14.031044Cc41R1 PhysRevX.14.031044Cc42R1 PhysRevX.14.031044Cc21R1 PhysRevX.14.031044Cc43R1 PhysRevX.14.031044Cc22R1 PhysRevX.14.031044Cc44R1 PhysRevX.14.031044Cc23R1 PhysRevX.14.031044Cc26R1 PhysRevX.14.031044Cc27R1 PhysRevX.14.031044Cc28R1 PhysRevX.14.031044Cc49R1 PhysRevX.14.031044Cc29R1 PhysRevX.14.031044Cc19R1 PhysRevX.14.031044Cc17R1 PhysRevX.14.031044Cc16R1 James William Harrington (PhysRevX.14.031044Cc25R1) 2004 PhysRevX.14.031044Cc15R1 PhysRevX.14.031044Cc13R1 PhysRevX.14.031044Cc12R1 PhysRevX.14.031044Cc11R1 PhysRevX.14.031044Cc60R1 PhysRevX.14.031044Cc50R1 PhysRevX.14.031044Cc30R1 PhysRevX.14.031044Cc53R1 PhysRevX.14.031044Cc31R1 PhysRevX.14.031044Cc55R1 PhysRevX.14.031044Cc33R1 PhysRevX.14.031044Cc54R1 PhysRevX.14.031044Cc34R1 PhysRevX.14.031044Cc57R1 PhysRevX.14.031044Cc35R1 PhysRevX.14.031044Cc56R1 PhysRevX.14.031044Cc59R1 PhysRevX.14.031044Cc37R1 PhysRevX.14.031044Cc58R1 |
References_xml | – ident: PhysRevX.14.031044Cc41R1 doi: 10.1093/qmath/39.1.97 – ident: PhysRevX.14.031044Cc27R1 doi: 10.1126/science.abi8378 – ident: PhysRevX.14.031044Cc12R1 doi: 10.1103/PRXQuantum.4.030318 – ident: PhysRevX.14.031044Cc55R1 doi: 10.26421/QIC17.3-4-1 – ident: PhysRevX.14.031044Cc23R1 doi: 10.1007/BF02099178 – ident: PhysRevX.14.031044Cc43R1 doi: 10.1109/TIT.2021.3130131 – ident: PhysRevX.14.031044Cc19R1 doi: 10.1103/RevModPhys.47.773 – ident: PhysRevX.14.031044Cc31R1 doi: 10.1016/j.aop.2016.12.030 – ident: PhysRevX.14.031044Cc35R1 doi: 10.1103/PhysRevLett.107.210501 – ident: PhysRevX.14.031044Cc37R1 doi: 10.1103/PhysRevB.72.045141 – ident: PhysRevX.14.031044Cc54R1 doi: 10.1103/PhysRevLett.111.200501 – ident: PhysRevX.14.031044Cc49R1 doi: 10.1063/1.1499754 – ident: PhysRevX.14.031044Cc4R1 doi: 10.1103/PhysRevX.13.031016 – ident: PhysRevX.14.031044Cc21R1 doi: 10.1103/PhysRevLett.69.2863 – ident: PhysRevX.14.031044Cc17R1 doi: 10.22331/q-2019-08-12-174 – ident: PhysRevX.14.031044Cc5R1 doi: 10.1103/PRXQuantum.5.020343 – volume-title: Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Codes year: 2004 ident: PhysRevX.14.031044Cc25R1 – ident: PhysRevX.14.031044Cc33R1 doi: 10.1038/s41467-024-45584-6 – ident: PhysRevX.14.031044Cc13R1 doi: 10.1103/PhysRevLett.131.200201 – ident: PhysRevX.14.031044Cc26R1 doi: 10.1126/science.abi8794 – ident: PhysRevX.14.031044Cc30R1 doi: 10.1007/s11005-024-01778-z – ident: PhysRevX.14.031044Cc53R1 doi: 10.1103/PhysRevLett.104.050504 – ident: PhysRevX.14.031044Cc59R1 doi: 10.1103/PhysRevA.109.022422 – ident: PhysRevX.14.031044Cc11R1 doi: 10.1103/PhysRevLett.132.170602 – ident: PhysRevX.14.031044Cc56R1 doi: 10.1103/PhysRevA.90.032326 – ident: PhysRevX.14.031044Cc22R1 doi: 10.1103/PhysRevLett.99.220405 – ident: PhysRevX.14.031044Cc2R1 doi: 10.1038/nphys1342 – ident: PhysRevX.14.031044Cc3R1 doi: 10.22331/q-2022-11-10-856 – ident: PhysRevX.14.031044Cc15R1 doi: 10.1103/PhysRevB.108.214302 – ident: PhysRevX.14.031044Cc28R1 doi: 10.1103/PhysRevB.94.155125 – ident: PhysRevX.14.031044Cc50R1 doi: 10.1103/PhysRevLett.100.070404 – ident: PhysRevX.14.031044Cc29R1 doi: 10.1103/PhysRevLett.127.080602 – ident: PhysRevX.14.031044Cc42R1 doi: 10.1007/s00220-015-2466-x – ident: PhysRevX.14.031044Cc60R1 doi: 10.1103/PhysRevLett.132.040404 – ident: PhysRevX.14.031044Cc8R1 doi: 10.1103/PhysRevLett.130.250403 – ident: PhysRevX.14.031044Cc58R1 doi: 10.1103/PhysRevLett.125.116801 – ident: PhysRevX.14.031044Cc20R1 doi: 10.1103/PhysicsPhysiqueFizika.2.263 – ident: PhysRevX.14.031044Cc16R1 doi: 10.1103/PhysRevB.82.155138 – ident: PhysRevX.14.031044Cc34R1 doi: 10.1038/s41567-019-0648-8 – ident: PhysRevX.14.031044Cc44R1 doi: 10.1109/TIT.2022.3143846 – ident: PhysRevX.14.031044Cc7R1 doi: 10.1103/PRXQuantum.4.030317 – ident: PhysRevX.14.031044Cc57R1 doi: 10.1016/S0003-4916(02)00019-2 – ident: PhysRevX.14.031044Cc1R1 doi: 10.1038/nphys1073 |
SSID | ssj0000601477 |
Score | 2.4797962 |
Snippet | Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 031044 |
Title | Mixed-State Quantum Phases: Renormalization and Quantum Error Correction |
URI | https://doaj.org/article/1c67485f19dd4066859c10593127d43b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf5OBNYpPsJrvxpqWlCBUtFnoL-5hFoaaStuLPd3aTlnrRi9dlNiTfhJlvYOYbQq5yJqXCKBdSkBwLlJRhHGRZCFYxK2SSaK-2P3zMBmP2MEknG6u-XE9YLQ9cA9eJtVuHkdo4NwaTTybSXDtOQOOEG0aVi76Y8zaKqToGI_XnfDUlE9GOa6gcwecEQ8ONk8Nk7Ecm2hDs95mlv0d2G0oY3NWvsk-2oDwg2741U88PyWD49gUm9KwweF4iEsv34OkVs8_8NhhB6UjntJmmDGRp1ja9qppVQdet3_DDC0dk3O-9dAdhs_8g1DTli5DJLI9zjVnWaIFlC1IZPMKv5gCW6tgiNWAqFSKjxmpBLaRZLmLgbukeIDjHpFXOSjghAV6JZIJkw3LBQIs8AuR2yjKVKCcR3ybxCotCN-LgbkfFtPBFQkSLFX5YKxQ1fm1yvb7zUUtj_Gp97yBeWzpZa3-Azi4aZxd_Ofv0Px5yRnYSZCZ1o9g5aS2qJVwgs1ioS_8TfQN9GchB |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-State+Quantum+Phases%3A+Renormalization+and+Quantum+Error+Correction&rft.jtitle=Physical+review.+X&rft.au=Shengqi+Sang&rft.au=Yijian+Zou&rft.au=Timothy+H.+Hsieh&rft.date=2024-09-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=14&rft.issue=3&rft.spage=031044&rft_id=info:doi/10.1103%2FPhysRevX.14.031044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1c67485f19dd4066859c10593127d43b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |