Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene

Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 6; no. 10; pp. 5458 - 5466
Main Authors Juanjuan, Zhang, Ruiyi, Li, Zaijun, Li, Junkang, Liu, Zhiguo, Gu, Guangli, Wang
Format Journal Article
LanguageEnglish
Published England 21.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H 2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10 3 S m −1 ), specific surface area (1258 m 2 g −1 ), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s −1 ), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o -dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10 −8 to 1.8 × 10 −4 M for HQ and 1 × 10 −8 to 2.0 × 10 −4 M for DHB. The detection limit is 1.5 × 10 −8 M for HQ and 3.3 × 10 −9 M for DHB ( S / N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8–103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.
AbstractList Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H 2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10 3 S m −1 ), specific surface area (1258 m 2 g −1 ), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s −1 ), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o -dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10 −8 to 1.8 × 10 −4 M for HQ and 1 × 10 −8 to 2.0 × 10 −4 M for DHB. The detection limit is 1.5 × 10 −8 M for HQ and 3.3 × 10 −9 M for DHB ( S / N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8–103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.
Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.
Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H sub(2) environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 10 super(3) S m super(-1)), specific surface area (1258 m super(2) g super(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 plus or minus 0.15 cm s super(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 10 super(-8) to 1.8 10 super(-4) M for HQ and 1 10 super(-8) to 2.0 10 super(-4) M for DHB. The detection limit is 1.5 10 super(-8) M for HQ and 3.3 10 super(-9) M for DHB (S/N= 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.
Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially applied in biosensors, electrocatalysis, and energy storage/conversion devices.
Author Juanjuan, Zhang
Zaijun, Li
Zhiguo, Gu
Junkang, Liu
Guangli, Wang
Ruiyi, Li
Author_xml – sequence: 1
  givenname: Zhang
  surname: Juanjuan
  fullname: Juanjuan, Zhang
  organization: School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
– sequence: 2
  givenname: Li
  surname: Ruiyi
  fullname: Ruiyi, Li
  organization: The University of Birmingham, Birmingham, UK
– sequence: 3
  givenname: Li
  surname: Zaijun
  fullname: Zaijun, Li
  organization: School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China, Key Laboratory of Food Colloids and Biotechnology, Ministry of Education
– sequence: 4
  givenname: Liu
  surname: Junkang
  fullname: Junkang, Liu
  organization: School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
– sequence: 5
  givenname: Gu
  surname: Zhiguo
  fullname: Zhiguo, Gu
  organization: School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
– sequence: 6
  givenname: Wang
  surname: Guangli
  fullname: Guangli, Wang
  organization: School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24722983$$D View this record in MEDLINE/PubMed
BookMark eNqNkduKFDEQhoOsuAe98QEklyK0m3OnL2VwVVgUPFw3maR6JpJJ2iSzOD6OT2p6dldBvDA3Vfz56q9K6hydxBQBoaeUvKSED5cr8f4jaUdePUBnjAjScd6zk9-5EqfovJSvhKiBK_4InTLRMzZofoZ-fjrEuoXiC04Tjr7mtIHYuTSDw8ZWf2NqyzbZzFuIgA0sQLjcpOBwNDHNJldvAxRsosO-tjjPwVtTfYp4ShlDANts7RZ2TQ7YQW3Ccts6bg8up297vzzp6JA654_i98Ma4o_W8zF6OJlQ4MldvEBfrl5_Xr3trj-8ebd6dd1ZLvvaCcGZ5NysYRgGKhhXanCKSA1gOeuVmJiTynGh9ZoqTg3VzkyMMuNAwsD4BXp-6zsvE0Gp484XCyGYCGlfRioFFaLXmvwHSrWmkmnZ0Gd36H69AzfO2e9MPoz3K2gAuQVsTqVkmEbr6_H3ajY-jJSMy5bHP1tuJS_-Krl3_Qf8Cyp4qhA
CitedBy_id crossref_primary_10_1063_5_0219584
crossref_primary_10_1016_j_matlet_2017_07_043
crossref_primary_10_1016_j_electacta_2016_03_034
crossref_primary_10_1080_2374068X_2018_1484998
crossref_primary_10_3390_chemosensors9100282
crossref_primary_10_1002_smll_201902826
crossref_primary_10_1007_s10934_017_0371_8
crossref_primary_10_1039_C9NR07861D
crossref_primary_10_1016_j_polymer_2019_121974
crossref_primary_10_1002_ppap_201600218
crossref_primary_10_1038_s41598_021_84294_7
crossref_primary_10_1039_C5NR05909G
crossref_primary_10_1016_j_mser_2015_12_003
crossref_primary_10_1021_acs_iecr_9b05941
crossref_primary_10_1016_j_electacta_2016_07_054
crossref_primary_10_1039_D0NJ04806B
crossref_primary_10_1021_nn507426u
crossref_primary_10_1016_j_ijhydene_2014_10_129
crossref_primary_10_1016_j_cej_2019_123948
crossref_primary_10_1016_j_cej_2021_129700
crossref_primary_10_1149_1945_7111_ab6bc4
crossref_primary_10_1016_j_matdes_2022_110912
crossref_primary_10_1016_j_cossms_2021_100936
crossref_primary_10_1016_j_jece_2024_113933
crossref_primary_10_1039_D0NR05533F
crossref_primary_10_1039_C9NR01309A
crossref_primary_10_1080_1536383X_2018_1479695
crossref_primary_10_1016_j_bios_2015_12_092
crossref_primary_10_1021_es504421y
crossref_primary_10_1021_acsaem_4c02667
crossref_primary_10_1021_am5042065
crossref_primary_10_1039_C5TA00355E
crossref_primary_10_1007_s10008_024_05824_7
crossref_primary_10_1039_C5RA18228J
crossref_primary_10_1039_C6AN00812G
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_2139_ssrn_4172825
crossref_primary_10_1016_j_jelechem_2020_114832
crossref_primary_10_1016_j_desal_2023_116820
crossref_primary_10_1039_C6NR04770J
crossref_primary_10_1016_j_bios_2016_05_002
crossref_primary_10_1016_j_matlet_2018_07_024
crossref_primary_10_1016_j_bios_2016_02_070
crossref_primary_10_1016_j_mtcomm_2020_101125
crossref_primary_10_1002_smll_201903780
crossref_primary_10_1016_j_jelechem_2019_01_004
crossref_primary_10_1039_C5RA06196B
crossref_primary_10_3390_catal14010008
crossref_primary_10_1039_C4RA11024B
crossref_primary_10_1016_j_commatsci_2022_111277
crossref_primary_10_1021_acsbiomaterials_2c01248
crossref_primary_10_1039_C4RA07383E
crossref_primary_10_1016_j_ccr_2024_215874
crossref_primary_10_1016_j_bios_2018_07_060
crossref_primary_10_1016_j_matchemphys_2023_127661
crossref_primary_10_1039_C5RA15595A
crossref_primary_10_1016_j_jallcom_2018_01_187
crossref_primary_10_1016_j_snb_2019_126866
crossref_primary_10_1016_j_electacta_2015_05_016
crossref_primary_10_3390_mi11070626
crossref_primary_10_1039_C6NJ03443H
crossref_primary_10_1088_1361_6528_abcfe8
crossref_primary_10_1016_j_colsurfb_2015_05_035
crossref_primary_10_1007_s12274_017_1494_6
crossref_primary_10_1016_j_colsurfa_2020_124666
crossref_primary_10_1016_j_snb_2018_08_143
crossref_primary_10_1142_S1793292023500534
crossref_primary_10_1002_adfm_202002788
crossref_primary_10_1016_j_apsusc_2022_154730
crossref_primary_10_1016_j_diamond_2021_108772
crossref_primary_10_1039_C5NJ00831J
crossref_primary_10_3390_s19245483
crossref_primary_10_1021_acsomega_3c04607
crossref_primary_10_1007_s00216_019_02275_2
crossref_primary_10_1016_j_aca_2020_06_003
crossref_primary_10_1016_j_electacta_2016_06_028
crossref_primary_10_1016_j_matchemphys_2019_05_071
Cites_doi 10.1016/j.solmat.2013.01.046
10.1039/c3cp51710a
10.1002/anie.201301128
10.1126/science.1200770
10.1039/c3nr00971h
10.1021/am301373n
10.1039/c3ta10657h
10.1021/nn302984x
10.1002/anie.201210166
10.1039/c2ta00820c
10.1039/c1jm13960f
10.3390/s130506204
10.1039/c000051e
10.1016/j.carbon.2004.11.005
10.1039/c2jm35278h
10.1016/j.materresbull.2013.05.056
10.1021/jp1021278
10.1016/j.bios.2013.02.010
10.1039/C2CS35353A
10.1039/c2jm00055e
10.1039/c3cc45641b
10.1021/ja01539a017
10.1021/nn100740x
10.1002/ange.201301128
10.1021/la203498j
10.1002/adma.201102838
10.1002/anie.201300711
10.1021/ja1072299
10.1016/j.carbon.2012.06.013
10.1016/S0022-0728(79)80075-3
10.1016/j.apsusc.2011.10.019
10.1016/j.carbon.2012.11.041
10.1007/s10008-011-1526-1
10.1186/1556-276X-8-247
10.1103/PhysRevB.61.14095
10.1021/nn1027104
10.1016/j.jcis.2012.05.040
10.1016/j.cplett.2013.01.033
10.1016/j.electacta.2013.01.003
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/C4NR00005F
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 5466
ExternalDocumentID 24722983
10_1039_C4NR00005F
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c357t-4432533abe9991423669d6058eec32764f2d56d3488b1631a18daf212ade5e923
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 05:35:32 EDT 2025
Fri Jul 11 05:50:02 EDT 2025
Mon Jul 21 06:08:14 EDT 2025
Tue Jul 01 02:44:54 EDT 2025
Thu Apr 24 23:05:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-4432533abe9991423669d6058eec32764f2d56d3488b1631a18daf212ade5e923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24722983
PQID 1518815285
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1541447880
proquest_miscellaneous_1518815285
pubmed_primary_24722983
crossref_citationtrail_10_1039_C4NR00005F
crossref_primary_10_1039_C4NR00005F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-21
PublicationDateYYYYMMDD 2014-05-21
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2014
References Ferrari (C4NR00005F-(cit24)/*[position()=1]) 2000; 61
Raymundo-Pinero (C4NR00005F-(cit22)/*[position()=2]) 2005; 43
He (C4NR00005F-(cit10)/*[position()=1]) 2013; 48
Nanda (C4NR00005F-(cit5)/*[position()=1]) 2013; 52
Fan (C4NR00005F-(cit27)/*[position()=2]) 2013; 561–562
Adhikari (C4NR00005F-(cit5)/*[position()=3]) 2012; 28
Tang (C4NR00005F-(cit18)/*[position()=1]) 2013; 52
Meng (C4NR00005F-(cit27)/*[position()=3]) 2011; 21
Zhang (C4NR00005F-(cit31)/*[position()=1]) 2013; 13
Mou (C4NR00005F-(cit25)/*[position()=1]) 2011; 258
Nanda (C4NR00005F-(cit5)/*[position()=2]) 2013; 125
Barranco (C4NR00005F-(cit22)/*[position()=1]) 2010; 114
Liu (C4NR00005F-(cit12)/*[position()=1]) 2013; 45
Wang (C4NR00005F-(cit30)/*[position()=1]) 2013; 92
Bai (C4NR00005F-(cit3)/*[position()=1]) 2010; 46
Han (C4NR00005F-(cit14)/*[position()=1]) 2013; 5
Worsley (C4NR00005F-(cit28)/*[position()=3]) 2010; 132
Nardecchia (C4NR00005F-(cit1)/*[position()=1]) 2013; 42
Xu (C4NR00005F-(cit2)/*[position()=1]) 2010; 4
Mi (C4NR00005F-(cit9)/*[position()=1]) 2012; 50
Chen (C4NR00005F-(cit5)/*[position()=4]) 2011; 23
Li (C4NR00005F-(cit7)/*[position()=1]) 2012; 382
Zhu (C4NR00005F-(cit16)/*[position()=1]) 2011; 332
Si (C4NR00005F-(cit13)/*[position()=1]) 2013; 8
Cheng (C4NR00005F-(cit27)/*[position()=1]) 2013; 54
Wu (C4NR00005F-(cit15)/*[position()=1]) 2012; 22
Adhikari (C4NR00005F-(cit4)/*[position()=1]) 2012; 4
Ren (C4NR00005F-(cit8)/*[position()=1]) 2013; 1
Zhong (C4NR00005F-(cit11)/*[position()=1]) 2013; 113
Sui (C4NR00005F-(cit28)/*[position()=2]) 2012; 22
Wang (C4NR00005F-(cit32)/*[position()=1]) 2012; 16
Cheng (C4NR00005F-(cit20)/*[position()=1]) 2013; 52
Hummers (C4NR00005F-(cit21)/*[position()=1]) 1958; 80
Yasuda (C4NR00005F-(cit26)/*[position()=1]) 2013; 49
Yuan (C4NR00005F-(cit6)/*[position()=1]) 2013; 15
Yin (C4NR00005F-(cit17)/*[position()=1]) 2013; 25
Wu (C4NR00005F-(cit23)/*[position()=1]) 2010; 4
Chen (C4NR00005F-(cit28)/*[position()=1]) 2013; 1
Yin (C4NR00005F-(cit19)/*[position()=1]) 2012; 6
Laviron (C4NR00005F-(cit29)/*[position()=1]) 1979; 101
References_xml – volume: 113
  start-page: 195
  year: 2013
  ident: C4NR00005F-(cit11)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.01.046
– volume: 15
  start-page: 12940
  year: 2013
  ident: C4NR00005F-(cit6)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51710a
– volume: 52
  start-page: 5041
  year: 2013
  ident: C4NR00005F-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301128
– volume: 332
  start-page: 1537
  year: 2011
  ident: C4NR00005F-(cit16)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 5
  start-page: 5462
  year: 2013
  ident: C4NR00005F-(cit14)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr00971h
– volume: 25
  start-page: 6276
  year: 2013
  ident: C4NR00005F-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5472
  year: 2012
  ident: C4NR00005F-(cit4)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301373n
– volume: 1
  start-page: 5689
  year: 2013
  ident: C4NR00005F-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10657h
– volume: 6
  start-page: 8288
  year: 2012
  ident: C4NR00005F-(cit19)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302984x
– volume: 52
  start-page: 3750
  year: 2013
  ident: C4NR00005F-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210166
– volume: 1
  start-page: 2869
  year: 2013
  ident: C4NR00005F-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2ta00820c
– volume: 21
  start-page: 18537
  year: 2011
  ident: C4NR00005F-(cit27)/*[position()=3]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm13960f
– volume: 13
  start-page: 6204
  year: 2013
  ident: C4NR00005F-(cit31)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s130506204
– volume: 46
  start-page: 2376
  year: 2010
  ident: C4NR00005F-(cit3)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c000051e
– volume: 43
  start-page: 786
  year: 2005
  ident: C4NR00005F-(cit22)/*[position()=2]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.11.005
– volume: 22
  start-page: 23186
  year: 2012
  ident: C4NR00005F-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35278h
– volume: 48
  start-page: 3553
  year: 2013
  ident: C4NR00005F-(cit10)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.05.056
– volume: 114
  start-page: 10302
  year: 2010
  ident: C4NR00005F-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1021278
– volume: 45
  start-page: 206
  year: 2013
  ident: C4NR00005F-(cit12)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.010
– volume: 42
  start-page: 794
  year: 2013
  ident: C4NR00005F-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35353A
– volume: 22
  start-page: 8767
  year: 2012
  ident: C4NR00005F-(cit28)/*[position()=2]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00055e
– volume: 49
  start-page: 9627
  year: 2013
  ident: C4NR00005F-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45641b
– volume: 80
  start-page: 1339
  year: 1958
  ident: C4NR00005F-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 4
  start-page: 3187
  year: 2010
  ident: C4NR00005F-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100740x
– volume: 125
  start-page: 5145
  year: 2013
  ident: C4NR00005F-(cit5)/*[position()=2]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201301128
– volume: 28
  start-page: 1460
  year: 2012
  ident: C4NR00005F-(cit5)/*[position()=3]
  publication-title: Langmuir
  doi: 10.1021/la203498j
– volume: 23
  start-page: 5679
  year: 2011
  ident: C4NR00005F-(cit5)/*[position()=4]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102838
– volume: 52
  start-page: 5585
  year: 2013
  ident: C4NR00005F-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300711
– volume: 132
  start-page: 14067
  year: 2010
  ident: C4NR00005F-(cit28)/*[position()=3]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1072299
– volume: 50
  start-page: 4856
  year: 2012
  ident: C4NR00005F-(cit9)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.06.013
– volume: 101
  start-page: 19
  year: 1979
  ident: C4NR00005F-(cit29)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(79)80075-3
– volume: 258
  start-page: 1704
  year: 2011
  ident: C4NR00005F-(cit25)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.10.019
– volume: 54
  start-page: 291
  year: 2013
  ident: C4NR00005F-(cit27)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.11.041
– volume: 16
  start-page: 1323
  year: 2012
  ident: C4NR00005F-(cit32)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1526-1
– volume: 8
  start-page: 247
  year: 2013
  ident: C4NR00005F-(cit13)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-247
– volume: 61
  start-page: 14095
  year: 2000
  ident: C4NR00005F-(cit24)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.61.14095
– volume: 4
  start-page: 7358
  year: 2010
  ident: C4NR00005F-(cit2)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1027104
– volume: 382
  start-page: 13
  year: 2012
  ident: C4NR00005F-(cit7)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.05.040
– volume: 561–562
  start-page: 92
  year: 2013
  ident: C4NR00005F-(cit27)/*[position()=2]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.01.033
– volume: 92
  start-page: 216
  year: 2013
  ident: C4NR00005F-(cit30)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.01.003
SSID ssj0069363
Score 2.4220793
Snippet Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5458
SubjectTerms Aerogels
Electron transfer
Electronics
Gold
Graphene
Oxides
Sensors
Specific surface
Title Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene
URI https://www.ncbi.nlm.nih.gov/pubmed/24722983
https://www.proquest.com/docview/1518815285
https://www.proquest.com/docview/1541447880
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiDvlJiN4QVO2JHbS5nFMK1Mp5YFW9C2yEwdlVM7UNYjud_AL-KWcEyduwgYavESV5dptz9dz8fH5DiGvs1QOQneoHC_jrsPBpjlSKuFIHiHXBxgNH2uHP0zDkzkfL4JFr_ejdWupXMv95OLKupL_kSqMgVyxSvYfJGsXhQF4DfKFJ0gYnteS8aeNBv-tphSB_-aqgKlOWpyBF4kFC98E-pMVJzWotD2hcMIS9vtSLNM9LTREzPXFOJtEaGW0DR246ZOTNMQCqVqrxLqZmxQtS64LbdIQhZPm1eD3jVT6QunOTSNQ5cU5LGLBNC6FPi3NGWx1dG3zP2W-MXXbuT3aFvlpqbtj41J_rQ-8J3nZPsHwOCbfTVm0UXQ-3mpkzLCZ76v22KCjqcM2IN2W2sXsX8uEB9x0crlkHlyG7KoJ1yu000G2NYJN4n_6MR7NJ5N4dryY3SC7PgQfoD13D9-_ffe5sfBhxKoOffZzN7S3LDrYrt11dP4QvVRezOwOuV2HH_TQSP0u6Sl9j9xqkVLeJz8tqmiR0S6qqEUVbVBFa1QdIKZoB1MUEEEBU7SFKQqYor9hilpM4Y5tTFUrXMbUAzIfHc-OTpy6k4eTsGCwdjhnPsQVQiqMR8CDD8MoxYS8UgnzByHP_DQIUwbWREKA4AlvmIoMvCqRqkBBDPKQ7OCujwl8T3AVMtACQnpchEwOlVDJAAIf5vrCZX3ypvnZ46SmucduK8u4um7BoviIT6sui8GoT17ZuWeG3OXKWS8b6cWgezGhJrQqyvPYQzZDcICHwd_mcI9jjwq3Tx4Z0du9fGRqjYbsyTXe_ZTc3P53npGd9apUz8EfXssXNTx_ASvFwJQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+nitrogen-doped+activated+graphene+aerogel%2Fgold+nanoparticles+and+its+application+for+electrochemical+detection+of+hydroquinone+and+o-dihydroxybenzene&rft.jtitle=Nanoscale&rft.au=Juanjuan%2C+Zhang&rft.au=Ruiyi%2C+Li&rft.au=Zaijun%2C+Li&rft.au=Junkang%2C+Liu&rft.date=2014-05-21&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=6&rft.issue=10&rft.spage=5458&rft.epage=5466&rft_id=info:doi/10.1039%2Fc4nr00005f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon