Two Temperature Extension of Phonon Hydrodynamics
Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal energy field into the status of an extra independent state variable. The governing equations of both the phonon and the extended (two temperature) phonon...
Saved in:
Published in | Journal of non-equilibrium thermodynamics Vol. 45; no. 3; pp. 291 - 304 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
26.07.2020
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal energy field into the status of an extra independent state variable. The governing equations of both the phonon and the extended (two temperature) phonon hydrodynamics are formulated as particular realizations of the abstract GENERIC equation. Such unified formulation makes both theories manifestly compatible with mechanics and thermodynamics. Also differences and similarities (in the physical content, in the mathematical structure, and in qualitative properties of solutions) between the two heat transfer theories, as well as their mutual compatibility, become manifestly displayed. |
---|---|
AbstractList | Abstract
Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal energy field into the status of an extra independent state variable. The governing equations of both the phonon and the extended (two temperature) phonon hydrodynamics are formulated as particular realizations of the abstract GENERIC equation. Such unified formulation makes both theories manifestly compatible with mechanics and thermodynamics. Also differences and similarities (in the physical content, in the mathematical structure, and in qualitative properties of solutions) between the two heat transfer theories, as well as their mutual compatibility, become manifestly displayed. Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal energy field into the status of an extra independent state variable. The governing equations of both the phonon and the extended (two temperature) phonon hydrodynamics are formulated as particular realizations of the abstract GENERIC equation. Such unified formulation makes both theories manifestly compatible with mechanics and thermodynamics. Also differences and similarities (in the physical content, in the mathematical structure, and in qualitative properties of solutions) between the two heat transfer theories, as well as their mutual compatibility, become manifestly displayed. |
Author | Cao, Bing-Yang Hua, Yu-Chao Nie, Ben-Dian Guo, Zeng-Yuan Grmela, Miroslav |
Author_xml | – sequence: 1 givenname: Bing-Yang surname: Cao fullname: Cao, Bing-Yang email: caoby@tsinghua.edu.cn organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of 4 Engineering Mechanics, 12442 Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Miroslav surname: Grmela fullname: Grmela, Miroslav email: miroslav.grmela@polymtl.ca organization: École Polytechnique de Montréal, C.P.079 suc. Centre-ville, Montréal H3C 3A7, Québec, Canada – sequence: 3 givenname: Zeng-Yuan surname: Guo fullname: Guo, Zeng-Yuan email: demgzy@tsinghua.edu.cn organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of 4 Engineering Mechanics, 12442 Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Yu-Chao surname: Hua fullname: Hua, Yu-Chao email: huayuchao19@163.com organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of 4 Engineering Mechanics, 12442 Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Ben-Dian surname: Nie fullname: Nie, Ben-Dian email: nbd15@mails.tsinghua.edu.cn organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of 4 Engineering Mechanics, 12442 Tsinghua University, Beijing 100084, China |
BookMark | eNptkE1LwzAYx4NMcJtePRc8d-a1TcCLjOmEgR7mOWTpE93Ykpm0zH57UyZ48fS88H-B3wSNfPCA0C3BMyKIuN95aEuKKS4xpuoCjQlndcmZkCM0xoznP8X8Ck1S2mGMRaXqMSLrUyjWcDhCNG0XoVh8t-DTNvgiuOLtM-SSYtk3MTS9N4etTdfo0pl9gpvfOUXvT4v1fFmuXp9f5o-r0jJRtyVzlWwYsw3hRoGrqRAYb6yV3EpqHBGSi8oJUJUCTtSmUjTf1jaUWCxUxabo7px7jOGrg9TqXeiiz5WaciKlZDkhq2ZnlY0hpQhOH-P2YGKvCdYDFj1g0QMWPWDJhoez4WT2LcQGPmLX5-Uv_X9j7qKKsB8dg2pu |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2020_120519 crossref_primary_10_1016_j_icheatmasstransfer_2021_105581 |
Cites_doi | 10.1038/nmat2568 10.3934/krm.2018023 10.1063/1.3684973 10.1007/978-90-481-3074-0 10.1103/PhysRevE.83.061134 10.1016/j.physrep.2015.07.003 10.1038/nature06381 10.1021/nl050714d 10.1515/jnet-2018-0059 10.1063/1.3634113 10.1103/PhysRevLett.24.100 10.1103/PhysRevB.76.075337 10.1080/15567265.2017.1344752 10.1016/j.physe.2013.10.006 10.1063/1.2775215 10.1103/PhysRevLett.16.789 10.1115/1.4000987 10.1103/PhysRevE.85.061107 10.1103/PhysRevLett.36.480 10.1016/0020-7225(83)90115-5 10.1021/acs.jpcc.6b11855 10.1103/PhysRevLett.28.1461 10.1103/PhysRevLett.25.26 10.1103/PhysRevE.95.033121 10.3390/e20060457 10.30919/esee8c146 10.1126/science.aav3548 10.1016/j.ijheatmasstransfer.2011.01.011 10.1007/s10955-008-9558-3 10.3390/e21070715 10.1002/andp.19293950803 10.1103/RevModPhys.61.41 10.1007/978-3-319-13341-6 10.1016/S0378-4371(97)00552-9 10.1115/1.3644060 10.1016/j.ijheatmasstransfer.2014.12.045 10.1088/2399-6528/aab642 10.1103/PhysRev.148.766 10.1007/s00161-011-0213-x 10.1063/PT.3.3762 10.1103/PhysRev.148.778 10.1098/rsta.2019.0472 10.1515/9783110350951 |
ContentType | Journal Article |
Copyright | 2020 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1515/jnet-2020-0029 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1437-4358 |
EndPage | 304 |
ExternalDocumentID | 10_1515_jnet_2020_0029 10_1515_jnet_2020_0029453291 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAEMA AAFPC AAGVJ AAJBH AALGR AAPJK AAQCX AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABFLS ABIQR ABPLS ABPTK ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACIWK ACTFP ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFCXV AFQUK AFYRI AHVWV AHXUK AIERV AIGSN AJATJ ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BBCWN BCIFA CAG CFGNV CS3 DBYYV DU5 EBS HZ~ IY9 O9- P2P QD8 RDG SA. TN5 WTRAM AAWFC AAYXX ABJNI ABVMU ABWLS ACPMA AGBEV AKXKS CITATION KDIRW P0W SLJYH UK5 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c357t-3f68d33cd14a9ef725500bcc84c82af158456f5e969e419b69256fccd21c05963 |
ISSN | 0340-0204 |
IngestDate | Thu Oct 10 16:41:16 EDT 2024 Thu Sep 12 16:50:47 EDT 2024 Fri Nov 25 09:47:07 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-3f68d33cd14a9ef725500bcc84c82af158456f5e969e419b69256fccd21c05963 |
PQID | 2418883845 |
PQPubID | 2045211 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2418883845 crossref_primary_10_1515_jnet_2020_0029 walterdegruyter_journals_10_1515_jnet_2020_0029453291 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-26 |
PublicationDateYYYYMMDD | 2020-07-26 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of non-equilibrium thermodynamics |
PublicationYear | 2020 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | Cao, B. Y.; Guo, Z. Y. (j_jnet-2020-0029_ref_019) 2007; 102 Grmela, M.; Teichmann, J. (j_jnet-2020-0029_ref_027) 1983; 21 Grmela, M. (j_jnet-2020-0029_ref_045) 2008; 132 Siemens, M. E. (j_jnet-2020-0029_ref_009) 2010; 9 Hyun Oh, J.; Shin, M.; Jang, M. -G. (j_jnet-2020-0029_ref_014) 2012; 111 Grmela, M.; Lebon, G. (j_jnet-2020-0029_ref_034) 1998; 248 Dong, Y.; Guo, Z. Y. (j_jnet-2020-0029_ref_024) 2011; 54 Grmela, M. (j_jnet-2020-0029_ref_031) 2018; 2 Grmela, M.; Pavelka, M.; Klika, V.; Cao, B. Y.; Bendian, N. (j_jnet-2020-0029_ref_036) 2019; 44 Vernotte, P. (j_jnet-2020-0029_ref_016) 1958; 246 Guo, Z. Y. (j_jnet-2020-0029_ref_022) 2018 Grmela, M.; Pavelka, M. (j_jnet-2020-0029_ref_042) 2018; 11 Joseph, D. D.; Preziosi, L. (j_jnet-2020-0029_ref_007) 1989; 61 Kovács, R.; Ván, P. (j_jnet-2020-0029_ref_017) 2015; 83 McNelly, T. (j_jnet-2020-0029_ref_002) 1970; 24 Dong, Y.; Cao, B. Y.; Guo, Z. Y. (j_jnet-2020-0029_ref_023) 2012; 85 Guyer, R. A.; Krumhansl, J. A. (j_jnet-2020-0029_ref_037) 1966; 148 Dong, Y.; Cao, B. Y.; Guo, Z. Y. (j_jnet-2020-0029_ref_025) 2014; 56 Peierls, R. (j_jnet-2020-0029_ref_041) 1929; 3 Dong, Y.; Cao, B. Y.; Guo, Z. Y. (j_jnet-2020-0029_ref_021) 2011; 110 Cattaneo, C. (j_jnet-2020-0029_ref_015) 1948; 3 Guo, Y.; Wang, M. (j_jnet-2020-0029_ref_026) 2015; 595 Huberman, S. (j_jnet-2020-0029_ref_006) 2019; 364 Hua, Y. C.; Cao, B. Y. (j_jnet-2020-0029_ref_012) 2017; 121 Mingo, N.; Broido, D. (j_jnet-2020-0029_ref_013) 2005; 5 Klika, V.; Pavelka, M.; Vágner, P.; Grmela, M. (j_jnet-2020-0029_ref_039) 2019; 21 Ackerman, C. C. (j_jnet-2020-0029_ref_001) 1966; 16 Narayanamurti, V.; Dynes, R. (j_jnet-2020-0029_ref_004) 1972; 28 Grmela, M.; Lebon, G.; Dubois, C. (j_jnet-2020-0029_ref_035) 2011; 83 Hua, Y. C.; Cao, B. Y. (j_jnet-2020-0029_ref_011) 2017; 21 Guo, Z. Y.; Hou, Q. W. (j_jnet-2020-0029_ref_020) 2010; 132 Grmela, M.; Hong, L.; Jou, D.; Lebon, G.; Pavelka, M. (j_jnet-2020-0029_ref_028) 2017; 95 Leyva, I. (j_jnet-2020-0029_ref_040) 2017; 70 Hochbaum, A. I. (j_jnet-2020-0029_ref_010) 2008; 451 Guyer, R. A.; Krumhansl, J. A. (j_jnet-2020-0029_ref_038) 1966; 148 Highland, M. (j_jnet-2020-0029_ref_008) 2007; 76 Pavelka, M.; Klika, V.; Grmela, M. (j_jnet-2020-0029_ref_043) 2018 Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. (j_jnet-2020-0029_ref_029) 2011; 24 Jackson, H. E.; Walker, C. T.; McNelly, T. F. (j_jnet-2020-0029_ref_003) 1970; 25 Pohl, D. W.; Irniger, V. (j_jnet-2020-0029_ref_005) 1976; 36 2023033121524431974_j_jnet-2020-0029_ref_013_w2aab3b7e1605b1b6b1ab2ac13Aa 2023033121524431974_j_jnet-2020-0029_ref_018_w2aab3b7e1605b1b6b1ab2ac18Aa 2023033121524431974_j_jnet-2020-0029_ref_004_w2aab3b7e1605b1b6b1ab2ab4Aa 2023033121524431974_j_jnet-2020-0029_ref_022_w2aab3b7e1605b1b6b1ab2ac22Aa 2023033121524431974_j_jnet-2020-0029_ref_027_w2aab3b7e1605b1b6b1ab2ac27Aa 2023033121524431974_j_jnet-2020-0029_ref_031_w2aab3b7e1605b1b6b1ab2ac31Aa 2023033121524431974_j_jnet-2020-0029_ref_036_w2aab3b7e1605b1b6b1ab2ac36Aa 2023033121524431974_j_jnet-2020-0029_ref_008_w2aab3b7e1605b1b6b1ab2ab8Aa 2023033121524431974_j_jnet-2020-0029_ref_032_w2aab3b7e1605b1b6b1ab2ac32Aa 2023033121524431974_j_jnet-2020-0029_ref_037_w2aab3b7e1605b1b6b1ab2ac37Aa 2023033121524431974_j_jnet-2020-0029_ref_041_w2aab3b7e1605b1b6b1ab2ac41Aa 2023033121524431974_j_jnet-2020-0029_ref_021_w2aab3b7e1605b1b6b1ab2ac21Aa 2023033121524431974_j_jnet-2020-0029_ref_026_w2aab3b7e1605b1b6b1ab2ac26Aa 2023033121524431974_j_jnet-2020-0029_ref_030_w2aab3b7e1605b1b6b1ab2ac30Aa 2023033121524431974_j_jnet-2020-0029_ref_035_w2aab3b7e1605b1b6b1ab2ac35Aa 2023033121524431974_j_jnet-2020-0029_ref_005_w2aab3b7e1605b1b6b1ab2ab5Aa 2023033121524431974_j_jnet-2020-0029_ref_044_w2aab3b7e1605b1b6b1ab2ac44Aa 2023033121524431974_j_jnet-2020-0029_ref_040_w2aab3b7e1605b1b6b1ab2ac40Aa 2023033121524431974_j_jnet-2020-0029_ref_045_w2aab3b7e1605b1b6b1ab2ac45Aa 2023033121524431974_j_jnet-2020-0029_ref_012_w2aab3b7e1605b1b6b1ab2ac12Aa 2023033121524431974_j_jnet-2020-0029_ref_002_w2aab3b7e1605b1b6b1ab2ab2Aa 2023033121524431974_j_jnet-2020-0029_ref_017_w2aab3b7e1605b1b6b1ab2ac17Aa 2023033121524431974_j_jnet-2020-0029_ref_009_w2aab3b7e1605b1b6b1ab2ab9Aa 2023033121524431974_j_jnet-2020-0029_ref_034_w2aab3b7e1605b1b6b1ab2ac34Aa 2023033121524431974_j_jnet-2020-0029_ref_039_w2aab3b7e1605b1b6b1ab2ac39Aa 2023033121524431974_j_jnet-2020-0029_ref_043_w2aab3b7e1605b1b6b1ab2ac43Aa 2023033121524431974_j_jnet-2020-0029_ref_006_w2aab3b7e1605b1b6b1ab2ab6Aa 2023033121524431974_j_jnet-2020-0029_ref_010_w2aab3b7e1605b1b6b1ab2ac10Aa 2023033121524431974_j_jnet-2020-0029_ref_015_w2aab3b7e1605b1b6b1ab2ac15Aa 2023033121524431974_j_jnet-2020-0029_ref_011_w2aab3b7e1605b1b6b1ab2ac11Aa 2023033121524431974_j_jnet-2020-0029_ref_016_w2aab3b7e1605b1b6b1ab2ac16Aa 2023033121524431974_j_jnet-2020-0029_ref_020_w2aab3b7e1605b1b6b1ab2ac20Aa 2023033121524431974_j_jnet-2020-0029_ref_025_w2aab3b7e1605b1b6b1ab2ac25Aa 2023033121524431974_j_jnet-2020-0029_ref_001_w2aab3b7e1605b1b6b1ab2ab1Aa 2023033121524431974_j_jnet-2020-0029_ref_042_w2aab3b7e1605b1b6b1ab2ac42Aa 2023033121524431974_j_jnet-2020-0029_ref_003_w2aab3b7e1605b1b6b1ab2ab3Aa 2023033121524431974_j_jnet-2020-0029_ref_014_w2aab3b7e1605b1b6b1ab2ac14Aa 2023033121524431974_j_jnet-2020-0029_ref_019_w2aab3b7e1605b1b6b1ab2ac19Aa 2023033121524431974_j_jnet-2020-0029_ref_023_w2aab3b7e1605b1b6b1ab2ac23Aa 2023033121524431974_j_jnet-2020-0029_ref_028_w2aab3b7e1605b1b6b1ab2ac28Aa 2023033121524431974_j_jnet-2020-0029_ref_024_w2aab3b7e1605b1b6b1ab2ac24Aa 2023033121524431974_j_jnet-2020-0029_ref_029_w2aab3b7e1605b1b6b1ab2ac29Aa 2023033121524431974_j_jnet-2020-0029_ref_007_w2aab3b7e1605b1b6b1ab2ab7Aa 2023033121524431974_j_jnet-2020-0029_ref_033_w2aab3b7e1605b1b6b1ab2ac33Aa 2023033121524431974_j_jnet-2020-0029_ref_038_w2aab3b7e1605b1b6b1ab2ac38Aa |
References_xml | – volume: 110 issue: 6 year: 2011 ident: j_jnet-2020-0029_ref_021 article-title: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics publication-title: J. Appl. Phys. contributor: fullname: Dong, Y.; Cao, B. Y.; Guo, Z. Y. – volume: 148 start-page: 778 issue: 2 year: 1966 end-page: 788 ident: j_jnet-2020-0029_ref_038 article-title: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals publication-title: Phys. Rev. contributor: fullname: Guyer, R. A.; Krumhansl, J. A. – volume: 24 start-page: 100 issue: 3 year: 1970 ident: j_jnet-2020-0029_ref_002 article-title: Heat pulses in NaF: onset of second sound publication-title: Phys. Rev. Lett. contributor: fullname: McNelly, T. – volume: 9 start-page: 26 issue: 1 year: 2010 end-page: 30 ident: j_jnet-2020-0029_ref_009 article-title: Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams publication-title: Nat. Mater. contributor: fullname: Siemens, M. E. – volume: 24 start-page: 271 year: 2011 end-page: 292 ident: j_jnet-2020-0029_ref_029 publication-title: Contin. Mech. Thermodyn. contributor: fullname: Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. – volume: 44 start-page: 217 issue: 3 year: 2019 end-page: 233 ident: j_jnet-2020-0029_ref_036 article-title: Entropy and entropy production in multiscale dynamics publication-title: J. Non-Equilib. Thermodyn. contributor: fullname: Grmela, M.; Pavelka, M.; Klika, V.; Cao, B. Y.; Bendian, N. – volume: 70 start-page: 30 issue: 11 year: 2017 ident: j_jnet-2020-0029_ref_040 article-title: The relentless pursuit of hypersonic flight publication-title: Phys. Today contributor: fullname: Leyva, I. – volume: 102 issue: 5 year: 2007 ident: j_jnet-2020-0029_ref_019 article-title: Equation of motion of a phonon gas and non-Fourier heat conduction publication-title: J. Appl. Phys. contributor: fullname: Cao, B. Y.; Guo, Z. Y. – volume: 85 issue: 6 Pt 1 year: 2012 ident: j_jnet-2020-0029_ref_023 article-title: General expression for entropy production in transport processes based on the thermomass model publication-title: Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. contributor: fullname: Dong, Y.; Cao, B. Y.; Guo, Z. Y. – volume: 83 start-page: 613 year: 2015 end-page: 620 ident: j_jnet-2020-0029_ref_017 article-title: Generalized heat conduction in heat pulse experiments publication-title: Int. J. Heat Mass Transf. contributor: fullname: Kovács, R.; Ván, P. – volume: 2 year: 2018 ident: j_jnet-2020-0029_ref_031 article-title: GENERIC guide to the multiscale dynamics and thermodynamics publication-title: J. Phys. Commun. contributor: fullname: Grmela, M. – volume: 83 start-page: 061134-1 year: 2011 end-page: 061134-15 ident: j_jnet-2020-0029_ref_035 article-title: Multiscale mechanics and thermodynamic of heat publication-title: Phys. Rev. E contributor: fullname: Grmela, M.; Lebon, G.; Dubois, C. – volume: 121 start-page: 5293 issue: 9 year: 2017 end-page: 5301 ident: j_jnet-2020-0029_ref_012 article-title: Anisotropic heat conduction in two-dimensional periodic silicon nanoporous films publication-title: J. Phys. Chem. C contributor: fullname: Hua, Y. C.; Cao, B. Y. – volume: 111 issue: 4 year: 2012 ident: j_jnet-2020-0029_ref_014 article-title: Phonon thermal conductivity in silicon nanowires: The effects of surface roughness at low temperatures publication-title: J. Appl. Phys. contributor: fullname: Hyun Oh, J.; Shin, M.; Jang, M. -G. – year: 2018 ident: j_jnet-2020-0029_ref_022 article-title: Energy-mass duality of heat and its applications publication-title: ES Energy and Environ. contributor: fullname: Guo, Z. Y. – volume: 3 start-page: 83 year: 1948 end-page: 101 ident: j_jnet-2020-0029_ref_015 article-title: Sulla conduzione del calore publication-title: Atti Semin. Mat. Fis. Univ. Modena contributor: fullname: Cattaneo, C. – volume: 132 issue: 7 year: 2010 ident: j_jnet-2020-0029_ref_020 article-title: Thermal wave based on the thermomass model publication-title: J. Heat Transf. contributor: fullname: Guo, Z. Y.; Hou, Q. W. – volume: 95 year: 2017 ident: j_jnet-2020-0029_ref_028 article-title: Hamiltonian and Godunov structures of the Grad hierarchy publication-title: Phys. Rev. E contributor: fullname: Grmela, M.; Hong, L.; Jou, D.; Lebon, G.; Pavelka, M. – volume: 3 start-page: 1055 year: 1929 ident: j_jnet-2020-0029_ref_041 article-title: Zur kinetischen Theorie der Wärmeleitung in Kristallen publication-title: Ann. Phys. contributor: fullname: Peierls, R. – volume: 36 start-page: 480 issue: 9 year: 1976 end-page: 483 ident: j_jnet-2020-0029_ref_005 article-title: Observation of second sound in NaF by means of light scattering publication-title: Phys. Rev. Lett. contributor: fullname: Pohl, D. W.; Irniger, V. – volume: 61 start-page: 41 issue: 1 year: 1989 end-page: 73 ident: j_jnet-2020-0029_ref_007 article-title: Heat waves publication-title: Rev. Mod. Phys. contributor: fullname: Joseph, D. D.; Preziosi, L. – volume: 132 start-page: 581 year: 2008 end-page: 602 ident: j_jnet-2020-0029_ref_045 article-title: Extensions of classical hydrodynamics publication-title: J. Stat. Phys. contributor: fullname: Grmela, M. – volume: 16 start-page: 789 issue: 18 year: 1966 end-page: 791 ident: j_jnet-2020-0029_ref_001 article-title: Second sound in solid helium publication-title: Phys. Rev. Lett. contributor: fullname: Ackerman, C. C. – volume: 364 start-page: 375 issue: 6438 year: 2019 end-page: 379 ident: j_jnet-2020-0029_ref_006 article-title: Observation of second sound in graphite at temperatures above 100 K publication-title: Science contributor: fullname: Huberman, S. – start-page: 20 year: 2018 ident: j_jnet-2020-0029_ref_043 article-title: Thermodynamic explanation of Landau damping by reduction to hydrodynamics publication-title: Entropy contributor: fullname: Pavelka, M.; Klika, V.; Grmela, M. – volume: 11 start-page: 521 issue: 3 year: 2018 end-page: 545 ident: j_jnet-2020-0029_ref_042 article-title: Landau damping in the multiscale Vlasov theory publication-title: Kinet. Relat. Models contributor: fullname: Grmela, M.; Pavelka, M. – volume: 246 start-page: 154-3 issue: 3 year: 1958 ident: j_jnet-2020-0029_ref_016 article-title: Paradoxes in the continuous theory of the heat equation publication-title: C. R. Acad. Sci. contributor: fullname: Vernotte, P. – volume: 21 start-page: 159 issue: 3 year: 2017 end-page: 176 ident: j_jnet-2020-0029_ref_011 article-title: Slip boundary conditions in ballistic–diffusive heat transport in nanostructures publication-title: Nanoscale Microscale Thermophys. Eng. contributor: fullname: Hua, Y. C.; Cao, B. Y. – volume: 5 start-page: 1221 issue: 7 year: 2005 end-page: 1225 ident: j_jnet-2020-0029_ref_013 article-title: Length dependence of carbon nanotube thermal conductivity and the “problem of long waves” publication-title: Nano Lett. contributor: fullname: Mingo, N.; Broido, D. – volume: 28 start-page: 1461 issue: 22 year: 1972 ident: j_jnet-2020-0029_ref_004 article-title: Observation of second sound in bismuth publication-title: Phys. Rev. Lett. contributor: fullname: Narayanamurti, V.; Dynes, R. – volume: 148 start-page: 766 issue: 2 year: 1966 end-page: 778 ident: j_jnet-2020-0029_ref_037 article-title: Solution of the inearized phonon Boltzmann equation publication-title: Phys. Rev. contributor: fullname: Guyer, R. A.; Krumhansl, J. A. – volume: 21 year: 1983 ident: j_jnet-2020-0029_ref_027 article-title: Lagrangian formulation of Maxwell–Cattaneo hydrodynamics publication-title: Int. J. Eng. Sci. contributor: fullname: Grmela, M.; Teichmann, J. – volume: 54 start-page: 1924 issue: 9-10 year: 2011 end-page: 1929 ident: j_jnet-2020-0029_ref_024 article-title: Entropy analyses for hyperbolic heat conduction based on the thermomass model publication-title: Int. J. Heat Mass Transf. contributor: fullname: Dong, Y.; Guo, Z. Y. – volume: 595 start-page: 1 year: 2015 end-page: 44 ident: j_jnet-2020-0029_ref_026 article-title: Phonon hydrodynamics and its applications in nanoscale heat transport publication-title: Phys. Rep. contributor: fullname: Guo, Y.; Wang, M. – volume: 248 start-page: 428 year: 1998 end-page: 441 ident: j_jnet-2020-0029_ref_034 article-title: Finite-speed propagation of heat: a nonlocal and nonlinear approach publication-title: Physica A contributor: fullname: Grmela, M.; Lebon, G. – volume: 25 start-page: 26 issue: 1 year: 1970 ident: j_jnet-2020-0029_ref_003 article-title: Second sound in NaF publication-title: Phys. Rev. Lett. contributor: fullname: Jackson, H. E.; Walker, C. T.; McNelly, T. F. – volume: 56 start-page: 256 year: 2014 end-page: 262 ident: j_jnet-2020-0029_ref_025 article-title: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics publication-title: Physica E, Low-Dimens. Syst. Nanostruct. contributor: fullname: Dong, Y.; Cao, B. Y.; Guo, Z. Y. – volume: 451 start-page: 163 issue: 7175 year: 2008 ident: j_jnet-2020-0029_ref_010 article-title: Enhanced thermoelectric performance of rough silicon nanowires publication-title: Nature contributor: fullname: Hochbaum, A. I. – volume: 76 issue: 7 year: 2007 ident: j_jnet-2020-0029_ref_008 article-title: Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance publication-title: Phys. Rev. B contributor: fullname: Highland, M. – volume: 21 start-page: 715 year: 2019 ident: j_jnet-2020-0029_ref_039 article-title: Dynamic maximum entropy reduction publication-title: Entropy contributor: fullname: Klika, V.; Pavelka, M.; Vágner, P.; Grmela, M. – ident: 2023033121524431974_j_jnet-2020-0029_ref_015_w2aab3b7e1605b1b6b1ab2ac15Aa – ident: 2023033121524431974_j_jnet-2020-0029_ref_009_w2aab3b7e1605b1b6b1ab2ab9Aa doi: 10.1038/nmat2568 – ident: 2023033121524431974_j_jnet-2020-0029_ref_042_w2aab3b7e1605b1b6b1ab2ac42Aa doi: 10.3934/krm.2018023 – ident: 2023033121524431974_j_jnet-2020-0029_ref_014_w2aab3b7e1605b1b6b1ab2ac14Aa doi: 10.1063/1.3684973 – ident: 2023033121524431974_j_jnet-2020-0029_ref_033_w2aab3b7e1605b1b6b1ab2ac33Aa doi: 10.1007/978-90-481-3074-0 – ident: 2023033121524431974_j_jnet-2020-0029_ref_035_w2aab3b7e1605b1b6b1ab2ac35Aa doi: 10.1103/PhysRevE.83.061134 – ident: 2023033121524431974_j_jnet-2020-0029_ref_026_w2aab3b7e1605b1b6b1ab2ac26Aa doi: 10.1016/j.physrep.2015.07.003 – ident: 2023033121524431974_j_jnet-2020-0029_ref_010_w2aab3b7e1605b1b6b1ab2ac10Aa doi: 10.1038/nature06381 – ident: 2023033121524431974_j_jnet-2020-0029_ref_013_w2aab3b7e1605b1b6b1ab2ac13Aa doi: 10.1021/nl050714d – ident: 2023033121524431974_j_jnet-2020-0029_ref_036_w2aab3b7e1605b1b6b1ab2ac36Aa doi: 10.1515/jnet-2018-0059 – ident: 2023033121524431974_j_jnet-2020-0029_ref_021_w2aab3b7e1605b1b6b1ab2ac21Aa doi: 10.1063/1.3634113 – ident: 2023033121524431974_j_jnet-2020-0029_ref_002_w2aab3b7e1605b1b6b1ab2ab2Aa doi: 10.1103/PhysRevLett.24.100 – ident: 2023033121524431974_j_jnet-2020-0029_ref_008_w2aab3b7e1605b1b6b1ab2ab8Aa doi: 10.1103/PhysRevB.76.075337 – ident: 2023033121524431974_j_jnet-2020-0029_ref_011_w2aab3b7e1605b1b6b1ab2ac11Aa doi: 10.1080/15567265.2017.1344752 – ident: 2023033121524431974_j_jnet-2020-0029_ref_025_w2aab3b7e1605b1b6b1ab2ac25Aa doi: 10.1016/j.physe.2013.10.006 – ident: 2023033121524431974_j_jnet-2020-0029_ref_016_w2aab3b7e1605b1b6b1ab2ac16Aa – ident: 2023033121524431974_j_jnet-2020-0029_ref_019_w2aab3b7e1605b1b6b1ab2ac19Aa doi: 10.1063/1.2775215 – ident: 2023033121524431974_j_jnet-2020-0029_ref_001_w2aab3b7e1605b1b6b1ab2ab1Aa doi: 10.1103/PhysRevLett.16.789 – ident: 2023033121524431974_j_jnet-2020-0029_ref_020_w2aab3b7e1605b1b6b1ab2ac20Aa doi: 10.1115/1.4000987 – ident: 2023033121524431974_j_jnet-2020-0029_ref_023_w2aab3b7e1605b1b6b1ab2ac23Aa doi: 10.1103/PhysRevE.85.061107 – ident: 2023033121524431974_j_jnet-2020-0029_ref_005_w2aab3b7e1605b1b6b1ab2ab5Aa doi: 10.1103/PhysRevLett.36.480 – ident: 2023033121524431974_j_jnet-2020-0029_ref_027_w2aab3b7e1605b1b6b1ab2ac27Aa doi: 10.1016/0020-7225(83)90115-5 – ident: 2023033121524431974_j_jnet-2020-0029_ref_012_w2aab3b7e1605b1b6b1ab2ac12Aa doi: 10.1021/acs.jpcc.6b11855 – ident: 2023033121524431974_j_jnet-2020-0029_ref_004_w2aab3b7e1605b1b6b1ab2ab4Aa doi: 10.1103/PhysRevLett.28.1461 – ident: 2023033121524431974_j_jnet-2020-0029_ref_003_w2aab3b7e1605b1b6b1ab2ab3Aa doi: 10.1103/PhysRevLett.25.26 – ident: 2023033121524431974_j_jnet-2020-0029_ref_028_w2aab3b7e1605b1b6b1ab2ac28Aa doi: 10.1103/PhysRevE.95.033121 – ident: 2023033121524431974_j_jnet-2020-0029_ref_043_w2aab3b7e1605b1b6b1ab2ac43Aa doi: 10.3390/e20060457 – ident: 2023033121524431974_j_jnet-2020-0029_ref_022_w2aab3b7e1605b1b6b1ab2ac22Aa doi: 10.30919/esee8c146 – ident: 2023033121524431974_j_jnet-2020-0029_ref_006_w2aab3b7e1605b1b6b1ab2ab6Aa doi: 10.1126/science.aav3548 – ident: 2023033121524431974_j_jnet-2020-0029_ref_024_w2aab3b7e1605b1b6b1ab2ac24Aa doi: 10.1016/j.ijheatmasstransfer.2011.01.011 – ident: 2023033121524431974_j_jnet-2020-0029_ref_045_w2aab3b7e1605b1b6b1ab2ac45Aa doi: 10.1007/s10955-008-9558-3 – ident: 2023033121524431974_j_jnet-2020-0029_ref_039_w2aab3b7e1605b1b6b1ab2ac39Aa doi: 10.3390/e21070715 – ident: 2023033121524431974_j_jnet-2020-0029_ref_041_w2aab3b7e1605b1b6b1ab2ac41Aa doi: 10.1002/andp.19293950803 – ident: 2023033121524431974_j_jnet-2020-0029_ref_007_w2aab3b7e1605b1b6b1ab2ab7Aa doi: 10.1103/RevModPhys.61.41 – ident: 2023033121524431974_j_jnet-2020-0029_ref_030_w2aab3b7e1605b1b6b1ab2ac30Aa doi: 10.1007/978-3-319-13341-6 – ident: 2023033121524431974_j_jnet-2020-0029_ref_034_w2aab3b7e1605b1b6b1ab2ac34Aa doi: 10.1016/S0378-4371(97)00552-9 – ident: 2023033121524431974_j_jnet-2020-0029_ref_032_w2aab3b7e1605b1b6b1ab2ac32Aa doi: 10.1115/1.3644060 – ident: 2023033121524431974_j_jnet-2020-0029_ref_017_w2aab3b7e1605b1b6b1ab2ac17Aa doi: 10.1016/j.ijheatmasstransfer.2014.12.045 – ident: 2023033121524431974_j_jnet-2020-0029_ref_031_w2aab3b7e1605b1b6b1ab2ac31Aa doi: 10.1088/2399-6528/aab642 – ident: 2023033121524431974_j_jnet-2020-0029_ref_037_w2aab3b7e1605b1b6b1ab2ac37Aa doi: 10.1103/PhysRev.148.766 – ident: 2023033121524431974_j_jnet-2020-0029_ref_029_w2aab3b7e1605b1b6b1ab2ac29Aa doi: 10.1007/s00161-011-0213-x – ident: 2023033121524431974_j_jnet-2020-0029_ref_040_w2aab3b7e1605b1b6b1ab2ac40Aa doi: 10.1063/PT.3.3762 – ident: 2023033121524431974_j_jnet-2020-0029_ref_038_w2aab3b7e1605b1b6b1ab2ac38Aa doi: 10.1103/PhysRev.148.778 – ident: 2023033121524431974_j_jnet-2020-0029_ref_044_w2aab3b7e1605b1b6b1ab2ac44Aa doi: 10.1098/rsta.2019.0472 – ident: 2023033121524431974_j_jnet-2020-0029_ref_018_w2aab3b7e1605b1b6b1ab2ac18Aa doi: 10.1515/9783110350951 |
SSID | ssj0005697 |
Score | 2.2443414 |
Snippet | Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal energy field... Abstract Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We extend it by promoting the microscopic internal... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 291 |
SubjectTerms | Computational fluid dynamics Fluid flow Fluid mechanics GENERIC Heat flux heat transport Hydrodynamics Internal energy Mathematical analysis Phonons State variable thermodynamics |
Title | Two Temperature Extension of Phonon Hydrodynamics |
URI | http://www.degruyter.com/doi/10.1515/jnet-2020-0029 https://www.proquest.com/docview/2418883845 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKyQuFeUhQh_yAYlDtMX2-rE-tlVKhATikKKWi7Ver2lR20Bit5Rfz7eP2HEJUuFiRc7OZrMznvlmPQ9CXkdJJeFlBJTzjNNIcka5wMXPyjRNfMFYpROcP3xMxsfR-5P4pAsdMtkldbEnf63MK_kfruIe-KqzZP-Bs-2kuIHP4C-u4DCu9-PxzXQ4UQC-tjDycPTTxKNbCPjpbArXfji-LaEjbd_5-V-gKMZR9aM5N_H_jUk3mV32icxrCnOsegBjR0-Fs3gmdOdSXQgbgw-beyGu228aQ_FFaYqmk8NxY4afNvTwTEyXDx7gZfoptdnti4QrHRka2u7Be8rqz4ilFAiMLytYWy_SCRJb1pa2UZczvMzO9IdOj035i29XqqZ2Gb47I-kVz75j1NpQQ-3kYIZc0-eaPtf0D8l6CM0Elbi-_-5g9LmLCrL9eNr_5up8Yoa3_RX0cUznnGzcmDCHUn2dNbf14rW6QSuTJ2TD8dbbtzKzSR6oq6fkkQn3lfNnJIDkeEuS47WS400rz0qO15Oc5-T4aDQ5HFPXPINKFqc1ZVXCS8ZkGUQiU1UK19H3Cyk5nsdQVAGAZ5xUscqSTEVBViQZwG8lZRkGUrdkYi_IGn5LvSReBiMQlgqaO5NRGDAB4CMKbF-QsiLw-YC8WWxF_t3WSMlXb_uAbC92KnfP0TwHhuScM6xnQOI7u9eNWj1hFDMI0at7L2CLPO5EeZus1bNG7QBV1sWuk4TfqUx1eQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Temperature+Extension+of+Phonon+Hydrodynamics&rft.jtitle=Journal+of+non-equilibrium+thermodynamics&rft.au=Cao%2C+Bing-Yang&rft.au=Grmela%2C+Miroslav&rft.au=Guo%2C+Zeng-Yuan&rft.au=Hua%2C+Yu-Chao&rft.date=2020-07-26&rft.issn=0340-0204&rft.eissn=1437-4358&rft.volume=45&rft.issue=3&rft.spage=291&rft.epage=304&rft_id=info:doi/10.1515%2Fjnet-2020-0029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jnet_2020_0029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-0204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-0204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-0204&client=summon |