SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning

With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenari...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent and connected vehicles Vol. 6; no. 4; pp. 264 - 274
Main Authors Yang, Lan, Yuan, Jiaqi, Zhao, Xiangmo, Fang, Shan, He, Zeyu, Zhan, Jiahao, Hu, Zhiqiang, Li, Xia
Format Journal Article
LanguageEnglish
Published Tsinghua University Press 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing.
AbstractList With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing.
Author Zhao, Xiangmo
He, Zeyu
Hu, Zhiqiang
Yang, Lan
Zhan, Jiahao
Li, Xia
Yuan, Jiaqi
Fang, Shan
Author_xml – sequence: 1
  givenname: Lan
  surname: Yang
  fullname: Yang, Lan
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 2
  givenname: Jiaqi
  surname: Yuan
  fullname: Yuan, Jiaqi
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 3
  givenname: Xiangmo
  surname: Zhao
  fullname: Zhao, Xiangmo
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 4
  givenname: Shan
  surname: Fang
  fullname: Fang, Shan
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 5
  givenname: Zeyu
  surname: He
  fullname: He, Zeyu
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 6
  givenname: Jiahao
  surname: Zhan
  fullname: Zhan, Jiahao
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 7
  givenname: Zhiqiang
  surname: Hu
  fullname: Hu, Zhiqiang
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
– sequence: 8
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: School of Information Engineering, Chang'an University,Xi'an,China,710064
BookMark eNp9kM9OAjEQhxujiYi8gKe-wOK2-6dbbysqrEE9qFyb0p3CEmhJu8Tw9nYBE-PBS6eZzPdl5neFzo01gNANiYc0zzi_fa5GsyGNaTLklMShnqEeTTiPeBHT81__SzTwfhWHkSIuOGU9pN8VjMvXO1ziF2iXtsbaOjwGA062jVngctdaYzd25_EMlo1aAx7t2qgyOJBGusZ6bA2eNIvll9x7fC891F3nAWCLpyCdCZprdKHl2sPgVPvo8-nxYzSJpm_jalROI5VkrI1ozaViUquM0FrXbM4y4JJp0HlRM8ipDpfkksmUkQRAZSwhOs3TYp5kQDQkfVQdvbWVK7F1zUa6vbCyEYeGdQshXdtdITKq52lepDWEJ-CckyBPiFJFpikhwVUcXcpZ7x1ooZo2hGJN62SzFiQWh_hFF7_o4hen-ANK_6A_q_wDfQN0pIkL
CitedBy_id crossref_primary_10_3390_app14209269
crossref_primary_10_1016_j_aap_2025_107962
crossref_primary_10_3390_su16135768
crossref_primary_10_1016_j_jsr_2025_02_018
crossref_primary_10_1016_j_aap_2025_108013
crossref_primary_10_1016_j_inffus_2024_102915
Cites_doi 10.1109/CVPR46437.2021.00095
10.1007/s42979-023-01714-3
10.1109/ITSC.2017.8317919
10.1109/JAS.2023.123744
10.1109/ICDM51629.2021.00058
10.1109/TITS.2020.2988309
10.1016/j.physa.2021.126625
10.1109/ITSC48978.2021.9565050
10.1109/TII.2022.3170594
10.1108/JICV-01-2018-0002
10.1109/MITS.2019.2926269
10.1108/JICV-04-2022-0016
10.1038/s41586-023-05732-2
10.1162/neco.1997.9.8.1735
10.1177/09544070221125523
10.1109/ITSC.2018.8569661
10.1109/tiv.2023.3303408
10.1109/itsc.2018.8569552
10.1016/j.aap.2018.09.017
10.1016/j.xinn.2023.100520
10.1016/j.tre.2022.102694
10.1109/ITSC.2015.164
10.1016/j.infsof.2019.106200
10.1080/21680566.2021.1989079
10.1109/ITSC.2018.8569971
10.1109/TPAMI.2018.2823766
10.1145/2964284.2967274
10.1109/CVCI54083.2021.9661128
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26599/JICV.2023.9210023
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2399-9802
EndPage 274
ExternalDocumentID oai_doaj_org_article_52fb4684de68435e99139931cc85f211
10_26599_JICV_2023_9210023
GroupedDBID AAFWJ
AAGBP
AAYXX
ABVLG
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AUCOK
BCNDV
BENPR
CCPQU
CITATION
EBS
EJD
ESBDL
GEI
GROUPED_DOAJ
H13
JAVBF
M~E
OK1
PHGZM
PHGZT
PIMPY
XDTOA
ID FETCH-LOGICAL-c357t-2d9ac7afc512dfd7b75e9a7fef68d7e62f3996a7a4713eec5731f4648b35e1fe3
IEDL.DBID DOA
ISSN 2399-9802
IngestDate Wed Aug 27 01:26:48 EDT 2025
Thu Apr 24 22:51:46 EDT 2025
Tue Jul 01 03:31:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-2d9ac7afc512dfd7b75e9a7fef68d7e62f3996a7a4713eec5731f4648b35e1fe3
OpenAccessLink https://doaj.org/article/52fb4684de68435e99139931cc85f211
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_52fb4684de68435e99139931cc85f211
crossref_citationtrail_10_26599_JICV_2023_9210023
crossref_primary_10_26599_JICV_2023_9210023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Journal of intelligent and connected vehicles
PublicationYear 2023
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref13
ref35
ref12
ref15
Yoon (ref31) 2019
ref14
Maaten (ref22) 2008; 9
ref36
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref19
Vaswani (ref28) 2017
ref18
Li (ref16) 2022; 13
Zhou (ref34) 2021; 1
ref24
ref23
ref26
ref20
Shu (ref25) 2019; 32
ref21
ref27
ref29
ref7
Gulrajani (ref8) 2017
Zhu (ref33) 2022; 35
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref26
  doi: 10.1109/CVPR46437.2021.00095
– volume: 1
  start-page: 11
  year: 2021
  ident: ref34
  article-title: Vehicle cut-in test case generation methods for testing of autonomous driving on highway
  publication-title: Automob Technol
– ident: ref2
  doi: 10.1007/s42979-023-01714-3
– ident: ref24
  doi: 10.1109/ITSC.2017.8317919
– ident: ref18
  doi: 10.1109/JAS.2023.123744
– ident: ref23
  doi: 10.1109/ICDM51629.2021.00058
– ident: ref5
  doi: 10.1109/TITS.2020.2988309
– start-page: 5769
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
  year: 2017
  ident: ref8
  article-title: Improved training of Wasserstein GANs
– volume: 13
  start-page: 697
  year: 2022
  ident: ref16
  article-title: Complexity evaluation of vehicle-vehicle accident scenarios for autonomous driving simulation tests
  publication-title: J Automo Saf Energy
– ident: ref35
  doi: 10.1016/j.physa.2021.126625
– ident: ref11
  doi: 10.1109/ITSC48978.2021.9565050
– ident: ref19
  doi: 10.1109/TII.2022.3170594
– ident: ref29
  doi: 10.1108/JICV-01-2018-0002
– ident: ref3
  doi: 10.1109/MITS.2019.2926269
– ident: ref7
  doi: 10.1108/JICV-04-2022-0016
– ident: ref6
  doi: 10.1038/s41586-023-05732-2
– ident: ref10
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref12
  doi: 10.1177/09544070221125523
– ident: ref13
  doi: 10.1109/ITSC.2018.8569661
– year: 2017
  ident: ref28
  publication-title: Attention is all You need
– ident: ref9
  doi: 10.1109/tiv.2023.3303408
– ident: ref15
  doi: 10.1109/itsc.2018.8569552
– ident: ref4
  doi: 10.1016/j.aap.2018.09.017
– start-page: 5508
  volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems
  year: 2019
  ident: ref31
  article-title: Time-series generative adversarial networks
– volume: 35
  start-page: 89
  year: 2022
  ident: ref33
  article-title: Automatic generation algorithm of lane-change virtual test scenario on highways for automated vehicles using Monte Carlo simulation
  publication-title: China J Highw Transp
– ident: ref21
  doi: 10.1016/j.xinn.2023.100520
– ident: ref20
  doi: 10.1016/j.tre.2022.102694
– ident: ref27
  doi: 10.1109/ITSC.2015.164
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref22
  article-title: Visualizing Data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1016/j.infsof.2019.106200
– ident: ref36
  doi: 10.1080/21680566.2021.1989079
– ident: ref14
  doi: 10.1109/ITSC.2018.8569971
– ident: ref1
  doi: 10.1109/TPAMI.2018.2823766
– ident: ref32
  doi: 10.1145/2964284.2967274
– volume: 32
  start-page: 245
  year: 2019
  ident: ref25
  article-title: Construction of basic test scenarios of automated vehicles
  publication-title: China J Highw Transp
– ident: ref30
  doi: 10.1109/CVCI54083.2021.9661128
SSID ssj0002808927
Score 2.3361118
Snippet With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 264
SubjectTerms autonomous vehicles testing
cut-in
generative adversarial network (gan)
scenario generation
transformer
Title SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning
URI https://doaj.org/article/52fb4684de68435e99139931cc85f211
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5OBN6jbpRxJvq7jqgl50xVtJk8mqSHfRruC_N9NUqRe9eOkhpCG8DryZMvMeIYe6lMwxF0dloiBKrY4jDSqNMmYkZ5rZ0JtzfZNfjtPRQ_bQsfrCnrAgDxyA62fclWkuUwv-kWSgUMdSJcwYmTkepno953WKqefml1EsFRdhSobnmVL90dXZ_TGahR8rjrqjyQ8m6gj2N8wyXCUrbUpIB-Eqa2QBqnWy3BEK3CDu1sDF4OaEDmiwfKY-16STRjIa-5apntc4neDLePoOj3gONfM6eqooqjX5enj6RqcVbcSJ9ccbRfKyuGIBZrS1jphskvHw_O7sMmodEiKTZKKOuFXaCO2Mp23rrCiFB0gLBy6XVkDOnccq10J7CkoATCYS5tI8laVHkjlItshiNa1gm1AlrHZcS8mMSnlsZOkh9slaDpiRlaJH2BdahWnlw9HF4qXwZUSDcIEIF4hw0SLcI0ff78yCeMavu0_xI3zvROHrZsGHQ9GGQ_FXOOz8xyG7ZAkvFrpW9shi_TqHfZ971OVBE2afeznT4Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SceGAN%3A+A+method+for+generating+autonomous+vehicle+cut-in+scenarios+on+highways+based+on+deep+learning&rft.jtitle=Journal+of+intelligent+and+connected+vehicles&rft.au=Lan+Yang&rft.au=Jiaqi+Yuan&rft.au=Xiangmo+Zhao&rft.au=Shan+Fang&rft.date=2023-12-01&rft.pub=Tsinghua+University+Press&rft.eissn=2399-9802&rft.volume=6&rft.issue=4&rft.spage=264&rft.epage=274&rft_id=info:doi/10.26599%2FJICV.2023.9210023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52fb4684de68435e99139931cc85f211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-9802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-9802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-9802&client=summon