SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning
With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenari...
Saved in:
Published in | Journal of intelligent and connected vehicles Vol. 6; no. 4; pp. 264 - 274 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tsinghua University Press
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing. |
---|---|
AbstractList | With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous vehicles into the market. Traditional public road and closed-field testing failed to meet the requirements of high testing efficiency and scenario coverage. Therefore, scenario-based autonomous vehicle simulation testing has emerged. Many scenarios form the basis of simulation testing. Generating additional scenarios from an existing scenario library is a significant problem. Taking the scenarios of a proceeding vehicle cutting into an adjacent lane on highways as an example, based on an autoencoder and a generative adversarial network (GAN), a method that combines Transformer to capture the features of a long-time series, called SceGAN, is proposed to model and generate scenarios of autonomous vehicles on highways. An evaluation system is established to analyze the reliability of SceGAN using discriminative and predictive scores and further evaluate the effect of scenario generation in terms of similarity and coverage. Experiments showed that compared with TimeGAN and AEGAN, SceGAN is superior in data fidelity and availability, and their similarity increased by 27.22% and 21.39%, respectively. The coverage increased from 79.84% to 93.98% as generated scenarios increased from 2,547 to 50,000, indicating that the proposed method has a strong generalization capability for generating multiple trajectories, providing a basis for generating test scenarios and promoting autonomous vehicle testing. |
Author | Zhao, Xiangmo He, Zeyu Hu, Zhiqiang Yang, Lan Zhan, Jiahao Li, Xia Yuan, Jiaqi Fang, Shan |
Author_xml | – sequence: 1 givenname: Lan surname: Yang fullname: Yang, Lan organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 2 givenname: Jiaqi surname: Yuan fullname: Yuan, Jiaqi organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 3 givenname: Xiangmo surname: Zhao fullname: Zhao, Xiangmo organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 4 givenname: Shan surname: Fang fullname: Fang, Shan organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 5 givenname: Zeyu surname: He fullname: He, Zeyu organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 6 givenname: Jiahao surname: Zhan fullname: Zhan, Jiahao organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 7 givenname: Zhiqiang surname: Hu fullname: Hu, Zhiqiang organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 – sequence: 8 givenname: Xia surname: Li fullname: Li, Xia organization: School of Information Engineering, Chang'an University,Xi'an,China,710064 |
BookMark | eNp9kM9OAjEQhxujiYi8gKe-wOK2-6dbbysqrEE9qFyb0p3CEmhJu8Tw9nYBE-PBS6eZzPdl5neFzo01gNANiYc0zzi_fa5GsyGNaTLklMShnqEeTTiPeBHT81__SzTwfhWHkSIuOGU9pN8VjMvXO1ziF2iXtsbaOjwGA062jVngctdaYzd25_EMlo1aAx7t2qgyOJBGusZ6bA2eNIvll9x7fC891F3nAWCLpyCdCZprdKHl2sPgVPvo8-nxYzSJpm_jalROI5VkrI1ozaViUquM0FrXbM4y4JJp0HlRM8ipDpfkksmUkQRAZSwhOs3TYp5kQDQkfVQdvbWVK7F1zUa6vbCyEYeGdQshXdtdITKq52lepDWEJ-CckyBPiFJFpikhwVUcXcpZ7x1ooZo2hGJN62SzFiQWh_hFF7_o4hen-ANK_6A_q_wDfQN0pIkL |
CitedBy_id | crossref_primary_10_3390_app14209269 crossref_primary_10_1016_j_aap_2025_107962 crossref_primary_10_3390_su16135768 crossref_primary_10_1016_j_jsr_2025_02_018 crossref_primary_10_1016_j_aap_2025_108013 crossref_primary_10_1016_j_inffus_2024_102915 |
Cites_doi | 10.1109/CVPR46437.2021.00095 10.1007/s42979-023-01714-3 10.1109/ITSC.2017.8317919 10.1109/JAS.2023.123744 10.1109/ICDM51629.2021.00058 10.1109/TITS.2020.2988309 10.1016/j.physa.2021.126625 10.1109/ITSC48978.2021.9565050 10.1109/TII.2022.3170594 10.1108/JICV-01-2018-0002 10.1109/MITS.2019.2926269 10.1108/JICV-04-2022-0016 10.1038/s41586-023-05732-2 10.1162/neco.1997.9.8.1735 10.1177/09544070221125523 10.1109/ITSC.2018.8569661 10.1109/tiv.2023.3303408 10.1109/itsc.2018.8569552 10.1016/j.aap.2018.09.017 10.1016/j.xinn.2023.100520 10.1016/j.tre.2022.102694 10.1109/ITSC.2015.164 10.1016/j.infsof.2019.106200 10.1080/21680566.2021.1989079 10.1109/ITSC.2018.8569971 10.1109/TPAMI.2018.2823766 10.1145/2964284.2967274 10.1109/CVCI54083.2021.9661128 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.26599/JICV.2023.9210023 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2399-9802 |
EndPage | 274 |
ExternalDocumentID | oai_doaj_org_article_52fb4684de68435e99139931cc85f211 10_26599_JICV_2023_9210023 |
GroupedDBID | AAFWJ AAGBP AAYXX ABVLG ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AUCOK BCNDV BENPR CCPQU CITATION EBS EJD ESBDL GEI GROUPED_DOAJ H13 JAVBF M~E OK1 PHGZM PHGZT PIMPY XDTOA |
ID | FETCH-LOGICAL-c357t-2d9ac7afc512dfd7b75e9a7fef68d7e62f3996a7a4713eec5731f4648b35e1fe3 |
IEDL.DBID | DOA |
ISSN | 2399-9802 |
IngestDate | Wed Aug 27 01:26:48 EDT 2025 Thu Apr 24 22:51:46 EDT 2025 Tue Jul 01 03:31:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-2d9ac7afc512dfd7b75e9a7fef68d7e62f3996a7a4713eec5731f4648b35e1fe3 |
OpenAccessLink | https://doaj.org/article/52fb4684de68435e99139931cc85f211 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52fb4684de68435e99139931cc85f211 crossref_citationtrail_10_26599_JICV_2023_9210023 crossref_primary_10_26599_JICV_2023_9210023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of intelligent and connected vehicles |
PublicationYear | 2023 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | ref13 ref35 ref12 ref15 Yoon (ref31) 2019 ref14 Maaten (ref22) 2008; 9 ref36 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref19 Vaswani (ref28) 2017 ref18 Li (ref16) 2022; 13 Zhou (ref34) 2021; 1 ref24 ref23 ref26 ref20 Shu (ref25) 2019; 32 ref21 ref27 ref29 ref7 Gulrajani (ref8) 2017 Zhu (ref33) 2022; 35 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref26 doi: 10.1109/CVPR46437.2021.00095 – volume: 1 start-page: 11 year: 2021 ident: ref34 article-title: Vehicle cut-in test case generation methods for testing of autonomous driving on highway publication-title: Automob Technol – ident: ref2 doi: 10.1007/s42979-023-01714-3 – ident: ref24 doi: 10.1109/ITSC.2017.8317919 – ident: ref18 doi: 10.1109/JAS.2023.123744 – ident: ref23 doi: 10.1109/ICDM51629.2021.00058 – ident: ref5 doi: 10.1109/TITS.2020.2988309 – start-page: 5769 volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems year: 2017 ident: ref8 article-title: Improved training of Wasserstein GANs – volume: 13 start-page: 697 year: 2022 ident: ref16 article-title: Complexity evaluation of vehicle-vehicle accident scenarios for autonomous driving simulation tests publication-title: J Automo Saf Energy – ident: ref35 doi: 10.1016/j.physa.2021.126625 – ident: ref11 doi: 10.1109/ITSC48978.2021.9565050 – ident: ref19 doi: 10.1109/TII.2022.3170594 – ident: ref29 doi: 10.1108/JICV-01-2018-0002 – ident: ref3 doi: 10.1109/MITS.2019.2926269 – ident: ref7 doi: 10.1108/JICV-04-2022-0016 – ident: ref6 doi: 10.1038/s41586-023-05732-2 – ident: ref10 doi: 10.1162/neco.1997.9.8.1735 – ident: ref12 doi: 10.1177/09544070221125523 – ident: ref13 doi: 10.1109/ITSC.2018.8569661 – year: 2017 ident: ref28 publication-title: Attention is all You need – ident: ref9 doi: 10.1109/tiv.2023.3303408 – ident: ref15 doi: 10.1109/itsc.2018.8569552 – ident: ref4 doi: 10.1016/j.aap.2018.09.017 – start-page: 5508 volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: ref31 article-title: Time-series generative adversarial networks – volume: 35 start-page: 89 year: 2022 ident: ref33 article-title: Automatic generation algorithm of lane-change virtual test scenario on highways for automated vehicles using Monte Carlo simulation publication-title: China J Highw Transp – ident: ref21 doi: 10.1016/j.xinn.2023.100520 – ident: ref20 doi: 10.1016/j.tre.2022.102694 – ident: ref27 doi: 10.1109/ITSC.2015.164 – volume: 9 start-page: 2579 year: 2008 ident: ref22 article-title: Visualizing Data using t-SNE publication-title: J Mach Learn Res – ident: ref17 doi: 10.1016/j.infsof.2019.106200 – ident: ref36 doi: 10.1080/21680566.2021.1989079 – ident: ref14 doi: 10.1109/ITSC.2018.8569971 – ident: ref1 doi: 10.1109/TPAMI.2018.2823766 – ident: ref32 doi: 10.1145/2964284.2967274 – volume: 32 start-page: 245 year: 2019 ident: ref25 article-title: Construction of basic test scenarios of automated vehicles publication-title: China J Highw Transp – ident: ref30 doi: 10.1109/CVCI54083.2021.9661128 |
SSID | ssj0002808927 |
Score | 2.3361118 |
Snippet | With the increasing level of automation of autonomous vehicles, it is important to conduct comprehensive and extensive testing before releasing autonomous... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 264 |
SubjectTerms | autonomous vehicles testing cut-in generative adversarial network (gan) scenario generation transformer |
Title | SceGAN: A Method for Generating Autonomous Vehicle Cut-In Scenarios on Highways Based on Deep Learning |
URI | https://doaj.org/article/52fb4684de68435e99139931cc85f211 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65f5OBN6jbpRxJvq7jqgl50xVtJk8mqSHfRruC_N9NUqRe9eOkhpCG8DryZMvMeIYe6lMwxF0dloiBKrY4jDSqNMmYkZ5rZ0JtzfZNfjtPRQ_bQsfrCnrAgDxyA62fclWkuUwv-kWSgUMdSJcwYmTkepno953WKqefml1EsFRdhSobnmVL90dXZ_TGahR8rjrqjyQ8m6gj2N8wyXCUrbUpIB-Eqa2QBqnWy3BEK3CDu1sDF4OaEDmiwfKY-16STRjIa-5apntc4neDLePoOj3gONfM6eqooqjX5enj6RqcVbcSJ9ccbRfKyuGIBZrS1jphskvHw_O7sMmodEiKTZKKOuFXaCO2Mp23rrCiFB0gLBy6XVkDOnccq10J7CkoATCYS5tI8laVHkjlItshiNa1gm1AlrHZcS8mMSnlsZOkh9slaDpiRlaJH2BdahWnlw9HF4qXwZUSDcIEIF4hw0SLcI0ff78yCeMavu0_xI3zvROHrZsGHQ9GGQ_FXOOz8xyG7ZAkvFrpW9shi_TqHfZ971OVBE2afeznT4Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SceGAN%3A+A+method+for+generating+autonomous+vehicle+cut-in+scenarios+on+highways+based+on+deep+learning&rft.jtitle=Journal+of+intelligent+and+connected+vehicles&rft.au=Lan+Yang&rft.au=Jiaqi+Yuan&rft.au=Xiangmo+Zhao&rft.au=Shan+Fang&rft.date=2023-12-01&rft.pub=Tsinghua+University+Press&rft.eissn=2399-9802&rft.volume=6&rft.issue=4&rft.spage=264&rft.epage=274&rft_id=info:doi/10.26599%2FJICV.2023.9210023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_52fb4684de68435e99139931cc85f211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-9802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-9802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-9802&client=summon |