Enhancement of heat transfer in heat sink under the effect of a magnetic field and an impingement jet
Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To m...
Saved in:
Published in | Frontiers in mechanical engineering Vol. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
30.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2297-3079 2297-3079 |
DOI | 10.3389/fmech.2023.1266729 |
Cover
Loading…
Abstract | Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe
3
O
4
/water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device. |
---|---|
AbstractList | Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe3O4/water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device. Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe 3 O 4 /water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device. |
Author | Azadi, Shervin Afshar, Hossein Abjadi, Ali Ahmadi Danesh Ashtiani, Hossein Vahdat Azad, Abazar |
Author_xml | – sequence: 1 givenname: Shervin surname: Azadi fullname: Azadi, Shervin – sequence: 2 givenname: Ali surname: Abjadi fullname: Abjadi, Ali – sequence: 3 givenname: Abazar surname: Vahdat Azad fullname: Vahdat Azad, Abazar – sequence: 4 givenname: Hossein surname: Ahmadi Danesh Ashtiani fullname: Ahmadi Danesh Ashtiani, Hossein – sequence: 5 givenname: Hossein surname: Afshar fullname: Afshar, Hossein |
BookMark | eNp9kM1KAzEUhYNUsNa-gKu8QGt-JpNkKaVqoeBG1-FO5qZN7WTKTFz49k5_BHHh4nIvh3sOh--WjFKbkJB7zuZSGvsQGvTbuWBCzrkoSy3sFRkLYfVMMm1Hv-4bMu37HWOMG22s4WOCy7SF5LHBlGkb6BYh09xB6gN2NKaz0Mf0QT9TPUh5ixRDQH96B9rAJmGOnoaI-5pCOg6NzSGmzTl1h_mOXAfY9zi97Al5f1q-LV5m69fn1eJxPfNS6TwTWlWccRtKHnjJQQawtcUKpFJKa6PQ89JIBFMpKbVmIIQCDhxrKaXnckJW59y6hZ07dLGB7su1EN1JaLuNg24ou0enlS58IUWhFSt0zUEUTJvAlS1UZcpyyDLnLN-1fd9hcD5myLFNA564d5y5I313ou-O9N2F_mAVf6w_Vf4xfQMQlomk |
CitedBy_id | crossref_primary_10_3389_fmech_2024_1386254 crossref_primary_10_3389_fmech_2024_1378433 crossref_primary_10_3389_fmech_2024_1450972 |
Cites_doi | 10.1016/j.csite.2023.102886 10.1016/j.expthermflusci.2010.11.013 10.1299/jsmeb.36.1 10.1007/s12217-020-09784-1 10.1016/j.enconman.2009.06.030 10.3389/fmech.2023.1120985 10.1016/0045-7825(74)90029-2 10.1016/j.ijheatmasstransfer.2018.11.073 10.1016/j.applthermaleng.2016.07.021 10.1142/s0217984922501974 10.1088/1402-4896/ac2bdf 10.1109/tps.2013.2280612 10.1016/0304-8853(83)90428-6 10.3389/fmech.2015.00007 10.1007/s11051-004-3170-5 10.1016/j.csite.2022.102443 10.4028/www.scientific.net/amm.186.75 10.1109/tps.2012.2187683 10.1007/s00162-020-00516-0 10.1016/j.csite.2023.102944 10.1007/s10494-022-00327-9 10.1016/j.rinp.2023.106371 10.1016/j.ijheatmasstransfer.2015.01.025 10.1016/j.wavemoti.2021.102867 10.1016/j.csite.2023.102961 10.1016/j.ijheatmasstransfer.2013.05.059 10.3390/sym13112051 10.1063/1.1736691 10.1016/j.csite.2021.101037 10.3389/fmech.2016.00007 10.1007/s13369-013-0772-1 10.1007/s00231-014-1467-1 10.1109/95.650935 10.1007/s10973-019-08754-z 10.3390/en14030731 10.1088/1873-7005/ac12af 10.3389/fmech.2022.900316 10.1016/j.expthermflusci.2012.01.033 10.29252/jafm.11.04.28559 10.1016/j.matpr.2022.02.503 10.1007/s00419-020-01828-7 10.1016/j.csite.2018.100388 10.1016/j.enconman.2013.09.008 10.1061/(ASCE)AS.1943-5525.0001463 10.1007/s12217-020-09839-3 10.1016/j.jmmm.2019.01.028 10.1016/j.expthermflusci.2008.12.003 10.1007/s40430-018-1120-x 10.1016/s0924-4247(03)00103-1 10.1016/s0017-9310(99)00369-5 10.1007/s10765-015-1977-1 10.1016/j.csite.2023.103345 10.1016/j.powtec.2021.04.03 10.1016/j.csite.2021.101445 10.1016/j.ijheatmasstransfer.2009.02.041 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fmech.2023.1266729 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2297-3079 |
ExternalDocumentID | oai_doaj_org_article_7574c432475047d1a24078f15945b866 10_3389_fmech_2023_1266729 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c357t-275b1019f61f161a3fa9d9eba35557785ec1683ea8b533770a225a1a1ed333c13 |
IEDL.DBID | DOA |
ISSN | 2297-3079 |
IngestDate | Wed Aug 27 01:25:31 EDT 2025 Tue Jul 01 02:07:42 EDT 2025 Thu Apr 24 23:01:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-275b1019f61f161a3fa9d9eba35557785ec1683ea8b533770a225a1a1ed333c13 |
OpenAccessLink | https://doaj.org/article/7574c432475047d1a24078f15945b866 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7574c432475047d1a24078f15945b866 crossref_citationtrail_10_3389_fmech_2023_1266729 crossref_primary_10_3389_fmech_2023_1266729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-30 |
PublicationDateYYYYMMDD | 2023-08-30 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in mechanical engineering |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | (B4) 2016 Sheikholeslam Noori (B48); 34 Bezaatpour (B10) 2019; 476 Sheikholeslam Noori (B47) 2021; 53 Jalili (B20); 45 Taleghani (B52) 2018; 40 Li (B33) 2009; 33 Zamzamian (B57) 2011; 35 Abdolahipour (B1); 35 Abdolahipour (B3); 109 Biber (B11) 1997; 20 Pandey (B39) 2022; 56 Pereira (B40) 2015; 1 Singh (B49) 2021; 14 Jalili (B21); 45 Gan (B17) 2020; 141 Naphon (B37) 2019; 131 Sadighi (B42) 2023; 49 Forghan (B14) 2001 Mohammadi (B35) 2014; 39 Jalili (B22); 48 Sadighi (B41); 8 Jazmi (B25) 2021; 91 Jang (B24) 2003; 105 Kondo (B29) 1998 Sadighi (B59) 2023; 44 Bahiraei (B6) 2016; 107 Zhong (B58) 2021; 387 Ganguly (B18) 2004; 16 Karimi (B27) 2015; 36 Koo (B30) 2004; 6 Bahiraei (B7) 2013; 76 Kim (B28) 2009; 52 Froissart (B16) 2021; 28 Bar-Cohen (B9) 1993; 36 Li (B32) 2009; 50 Johnson (B26) 2016; 2 Xie (B55) 2021; 13 Ashjaee (B5) 2015; 51 Selvakumar (B45) 2012; 40 Taeibi Rahni (B51) 2022; 111 El-Shorbagy (B13) 2021; 26 Mirzaei (B34) 2012; 186 Xuan (B56) 2000; 43 Fox (B15) 2020 Spalding (B50) 1974; 3 Byon (B12) 2015; 84 Abdolahipour (B2) 2021; 96 Noori (B38) 2020; 32 Jalili (B23); 37 Sadighi (B43); 40 Sheikholeslam Noori (B46); 32 Bailey (B8) 1983; 39 Wong (B54) 2013; 65 Hussain (B19) 2019; 13 Kotb (B31) 2023; 9 Taleghani (B53) 2012; 40 Mohammadzadeh (B36) 2018; 11 Salmasi (B44) 2013; 41 |
References_xml | – volume: 44 start-page: 102886 year: 2023 ident: B59 article-title: MHD flow and conductive heat transfer on a permeable stretching cylinder: benchmark solutions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102886 – volume-title: ANSYS fluent theory guide year: 2016 ident: B4 – volume: 35 start-page: 495 year: 2011 ident: B57 article-title: Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.11.013 – volume: 36 start-page: 1 year: 1993 ident: B9 article-title: Thermal management of electronic components with dielectric liquids publication-title: JSME Int. J. Ser. B Fluids Therm. Eng. doi: 10.1299/jsmeb.36.1 – volume: 32 start-page: 647 year: 2020 ident: B38 article-title: Numerical analysis of droplet motion over a flat plate due to surface acoustic waves publication-title: Microgravity Sci. Technol. doi: 10.1007/s12217-020-09784-1 – volume: 50 start-page: 2738 year: 2009 ident: B32 article-title: Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.06.030 – volume: 9 start-page: 1120985 year: 2023 ident: B31 article-title: On the impingement of heat transfer using swirled air jets publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2023.1120985 – volume: 3 start-page: 269 year: 1974 ident: B50 article-title: The numerical computation of turbulent flow publication-title: Comp. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(74)90029-2 – volume: 131 start-page: 329 year: 2019 ident: B37 article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.073 – volume: 107 start-page: 700 year: 2016 ident: B6 article-title: Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.021 – volume: 37 start-page: 2250197 ident: B23 article-title: Micro-polar nanofluid in the presence of thermophoresis, hall currents, and Brownian motion in a rotating system publication-title: Mod. Phys. Lett. B doi: 10.1142/s0217984922501974 – volume: 96 start-page: 125012 year: 2021 ident: B2 article-title: Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac2bdf – volume: 41 start-page: 3079 year: 2013 ident: B44 article-title: Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/tps.2013.2280612 – volume: 39 start-page: 178 year: 1983 ident: B8 article-title: Lesser known applications of ferrofluids publication-title: J. magnetism magnetic Mater. doi: 10.1016/0304-8853(83)90428-6 – volume: 1 start-page: 7 year: 2015 ident: B40 article-title: Development and performance of an advanced ejector cooling system for a sustainable built environment publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2015.00007 – volume: 6 start-page: 577 year: 2004 ident: B30 article-title: A new thermal conductivity model for nanofluids publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-004-3170-5 – volume-title: Fox and McDonald's introduction to fluid mechanics year: 2020 ident: B15 – volume: 40 start-page: 102443 ident: B43 article-title: MHD heat and mass transfer nanofluid flow on a porous cylinder with chemical reaction and viscous dissipation effects: benchmark solutions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102443 – volume: 186 start-page: 75 year: 2012 ident: B34 article-title: Experimental study of vortex shedding control using plasma actuator publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/amm.186.75 – volume: 40 start-page: 1434 year: 2012 ident: B53 article-title: Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/tps.2012.2187683 – volume: 34 start-page: 145 ident: B48 article-title: Effects of contact angle hysteresis on drop manipulation using surface acoustic waves publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-020-00516-0 – volume: 45 start-page: 102944 ident: B20 article-title: Numerical modeling of magnetic field impact on the thermal behavior of a microchannel heat sink publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102944 – volume: 109 start-page: 65 ident: B3 article-title: Pressure improvement on a supercritical high-lift wing using simple and modulated pulse jet vortex generator publication-title: Flow. Turbul. Combust. doi: 10.1007/s10494-022-00327-9 – volume: 48 start-page: 106371 ident: B22 article-title: Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106371 – volume: 84 start-page: 1056 year: 2015 ident: B12 article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.01.025 – volume: 111 start-page: 102867 year: 2022 ident: B51 article-title: Computational simulation of water removal from a flat plate, using surface acoustic waves publication-title: Wave Motion doi: 10.1016/j.wavemoti.2021.102867 – volume: 45 start-page: 102961 ident: B21 article-title: The magnetohydrodynamic flow of viscous fluid and heat transfer examination between permeable disks by AGM and FEM publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102961 – volume: 65 start-page: 1 year: 2013 ident: B54 article-title: Impingement heat transfer of a plate fin heat sink with fillet profile publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.05.059 – volume: 13 start-page: 2051 year: 2021 ident: B55 article-title: Ferrohydrodynamic and magnetohydrodynamic effects on jet flow and heat transfer of Fe3O4-H2O nanofluid in a microchannel subjected to permanent magnets publication-title: Symmetry doi: 10.3390/sym13112051 – volume: 16 start-page: 2228 year: 2004 ident: B18 article-title: Thermomagnetic convection in a square enclosure using a line dipole publication-title: Phys. Fluids doi: 10.1063/1.1736691 – volume: 26 start-page: 101037 year: 2021 ident: B13 article-title: Effect of fin thickness on mixed convection of hybrid nanofluid exposed to magnetic field-Enhancement of heat sink efficiency publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101037 – volume: 2 start-page: 7 year: 2016 ident: B26 article-title: Impingement cooling using the ionic wind generated by a low-voltage piezoelectric transformer publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2016.00007 – volume: 39 start-page: 2363 year: 2014 ident: B35 article-title: Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-013-0772-1 – volume-title: Annual meeting for ISME year: 2001 ident: B14 article-title: Experimental and theoretical investigation of thermal performance of heat sinks – volume: 51 start-page: 953 year: 2015 ident: B5 article-title: Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink publication-title: Heat Mass Transf. doi: 10.1007/s00231-014-1467-1 – volume: 20 start-page: 458 year: 1997 ident: B11 article-title: Pressure drop and heat transfer in an isothermal channel with impinging flow publication-title: IEEE Trans. Components, Packag. Manuf. Technol. Part A doi: 10.1109/95.650935 – volume: 141 start-page: 45 year: 2020 ident: B17 article-title: Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets publication-title: J. Therm. Analysis Calorim. doi: 10.1007/s10973-019-08754-z – start-page: 259 volume-title: Optimization of finned heat sinks for impingement cooling of electronic packages year: 1998 ident: B29 – volume: 14 start-page: 731 year: 2021 ident: B49 article-title: CFD analysis of turbulent flow of power-law fluid in a partially blocked eccentric annulus publication-title: Energies doi: 10.3390/en14030731 – volume: 53 start-page: 045503 year: 2021 ident: B47 article-title: Surface acoustic waves as control actuator for drop removal from solid surface publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/ac12af – volume: 8 start-page: 900316 ident: B41 article-title: An analytical approach to entropy production in MHD mixed convection micropolar fluid flow over an inclined porous stretching sheet publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.900316 – volume: 40 start-page: 57 year: 2012 ident: B45 article-title: Convective performance of CuO/water nanofluid in an electronic heat sink publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2012.01.033 – volume: 11 start-page: 861 year: 2018 ident: B36 article-title: Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell publication-title: J. Appl. Fluid Mech. doi: 10.29252/jafm.11.04.28559 – volume: 56 start-page: 845 year: 2022 ident: B39 article-title: Comparison of the parallel microchannel and Pin-Fin heat Sinks: an experimental study publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.02.503 – volume: 91 start-page: 1391 year: 2021 ident: B25 article-title: Numerical investigation of water droplet behavior in anode channel of a PEM fuel cell with partial blockage publication-title: Archive Appl. Mech. doi: 10.1007/s00419-020-01828-7 – volume: 13 start-page: 100388 year: 2019 ident: B19 article-title: Numerical investigation of heat transfer enhancement in plate-fin heat sinks: effect of flow direction and fillet profile publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2018.100388 – volume: 76 start-page: 1125 year: 2013 ident: B7 article-title: Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.09.008 – volume: 35 start-page: 2022 ident: B1 article-title: Experimental investigation of flow control on a high-lift wing using modulated pulse jet vortex generator publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0001463 – volume: 32 start-page: 1147 ident: B46 article-title: Phenomenological investigation of drop manipulation using surface acoustic waves publication-title: Microgravity Sci. Technol. doi: 10.1007/s12217-020-09839-3 – volume: 476 start-page: 506 year: 2019 ident: B10 article-title: Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2019.01.028 – volume: 33 start-page: 591 year: 2009 ident: B33 article-title: Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2008.12.003 – volume: 40 start-page: 173 year: 2018 ident: B52 article-title: Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1120-x – volume: 105 start-page: 211 year: 2003 ident: B24 article-title: Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array publication-title: Sensors Actuators A Phys. doi: 10.1016/s0924-4247(03)00103-1 – volume: 43 start-page: 3701 year: 2000 ident: B56 article-title: Conceptions for heat transfer correlation of nanofluids publication-title: Int. J. heat Mass Transf. doi: 10.1016/s0017-9310(99)00369-5 – volume: 36 start-page: 2720 year: 2015 ident: B27 article-title: Thermal conductivity of $$\mathrm{Fe}_{2}\mathrm{O}_{3}$$ Fe 2 O 3 and $$\mathrm{Fe}_{3}\mathrm{O}_{4}$$ Fe 3 O 4 magnetic nanofluids under the influence of magnetic field publication-title: Int. J. Thermophys. doi: 10.1007/s10765-015-1977-1 – volume: 49 start-page: 103345 year: 2023 ident: B42 article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103345 – volume: 387 start-page: 251 year: 2021 ident: B58 article-title: Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.04.03 – volume: 28 start-page: 101445 year: 2021 ident: B16 article-title: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101445 – volume: 52 start-page: 3510 year: 2009 ident: B28 article-title: Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.041 |
SSID | ssj0001878981 |
Score | 2.258704 |
Snippet | Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | enhancement of heat transfer ferrofluid flow control heat sink impingement jet magnetic field |
Title | Enhancement of heat transfer in heat sink under the effect of a magnetic field and an impingement jet |
URI | https://doaj.org/article/7574c432475047d1a24078f15945b866 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnuJZeWBDgTiOY2cs0KpClAUqsUW2Y_Nsiqrw_7mzA3SChSGL5VjWPXLfOXefCTmBiMpMJl2SGV8nuRYiUcZD1irTzDiZSheKMce3xWiSXz-Ih4WrvrAmLNIDR8GdSyFzi7RxyEMua6YxBVEeonAujCoC2TbEvIVkKpyuKKlKxWKXDGRhJajJhZ8PGT9jEJQipvyJRAuE_SGyDDfIegcJaT9uZZMsuWaLrC0QBW4TN2ieUD14lEdnnuIXlLYBc7o5fW7iAKT9rxSbwuYUYB2NpRo4XdOpfmywXZGGijWqG3zo8xS7peKqL67dIZPh4P5ylHQXJCSWC9kmmRQGXKr0BfOA3DT3uqxLZzSACCGlEs6yQnGnlQFUJ2WqwXs108zVnHPL-C5ZbmaN2yPUcvBdxH7G1rkGr4a0Q6XGCuZtIb3fJ-xLWJXt2MPxEou3CrIIFHAVBFyhgKtOwPvk9Pud98id8evsC9TB90zkvQ4DYA1VZw3VX9Zw8B-LHJJV3Fg4OU6PyHI7_3DHAD1a0yMr_avxzV0vWNsnt_7S_w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+heat+transfer+in+heat+sink+under+the+effect+of+a+magnetic+field+and+an+impingement+jet&rft.jtitle=Frontiers+in+mechanical+engineering&rft.au=Azadi%2C+Shervin&rft.au=Abjadi%2C+Ali&rft.au=Vahdat+Azad%2C+Abazar&rft.au=Ahmadi+Danesh+Ashtiani%2C+Hossein&rft.date=2023-08-30&rft.issn=2297-3079&rft.eissn=2297-3079&rft.volume=9&rft_id=info:doi/10.3389%2Ffmech.2023.1266729&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmech_2023_1266729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-3079&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-3079&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-3079&client=summon |