Enhancement of heat transfer in heat sink under the effect of a magnetic field and an impingement jet

Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To m...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in mechanical engineering Vol. 9
Main Authors Azadi, Shervin, Abjadi, Ali, Vahdat Azad, Abazar, Ahmadi Danesh Ashtiani, Hossein, Afshar, Hossein
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.08.2023
Subjects
Online AccessGet full text
ISSN2297-3079
2297-3079
DOI10.3389/fmech.2023.1266729

Cover

Loading…
Abstract Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe 3 O 4 /water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device.
AbstractList Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe3O4/water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device.
Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic field impingement jet (MF-IJ)] to improve the convective heat transfer coefficient in a designed heat sink is numerically investigated. To model heat transfer, a steady three-dimensional computational fluid dynamics (CFD) approach is employed. Numerical results including velocity and temperature contours, as well as the distribution of wall temperature of the heat sink and also the convective heat transfer coefficient are analyzed. The results show that the use of ferrofluid (Fe 3 O 4 /water) flow with an external magnetic field alone increases the heat transfer coefficient by 10%, while the use of an air impingement jet with pure water and without a magnetic field increases it by 22.4%. By using the MF-IJ method, a 32% enhancement of heat transfer coefficient is achieved compared to the case of pure water flow and without MF-IJ. Based on results, at a Reynolds number of 600, by applying the magnetic field intensities of 400, 800, and 1600 G, the average heat transfer coefficient increases by 5.35, 11.77, and 16.11%, respectively. It is also found that the cooling of the heat sink and temperature distribution is improved by increasing the Reynolds number and the inlet mass flow rate of the impingement jet. For instance, at z = 0.02 m, the application of an impingement jet with mass flow rates of 0.001, 0.004, and 0.005 kg/s results in a respective decrease of 0.36, 1.62, and 1.82% in wall temperature. The results of the current study suggest that the combination method of MF-IJ can be utilized for heat sinks with high heat flux generation as a flow control device.
Author Azadi, Shervin
Afshar, Hossein
Abjadi, Ali
Ahmadi Danesh Ashtiani, Hossein
Vahdat Azad, Abazar
Author_xml – sequence: 1
  givenname: Shervin
  surname: Azadi
  fullname: Azadi, Shervin
– sequence: 2
  givenname: Ali
  surname: Abjadi
  fullname: Abjadi, Ali
– sequence: 3
  givenname: Abazar
  surname: Vahdat Azad
  fullname: Vahdat Azad, Abazar
– sequence: 4
  givenname: Hossein
  surname: Ahmadi Danesh Ashtiani
  fullname: Ahmadi Danesh Ashtiani, Hossein
– sequence: 5
  givenname: Hossein
  surname: Afshar
  fullname: Afshar, Hossein
BookMark eNp9kM1KAzEUhYNUsNa-gKu8QGt-JpNkKaVqoeBG1-FO5qZN7WTKTFz49k5_BHHh4nIvh3sOh--WjFKbkJB7zuZSGvsQGvTbuWBCzrkoSy3sFRkLYfVMMm1Hv-4bMu37HWOMG22s4WOCy7SF5LHBlGkb6BYh09xB6gN2NKaz0Mf0QT9TPUh5ixRDQH96B9rAJmGOnoaI-5pCOg6NzSGmzTl1h_mOXAfY9zi97Al5f1q-LV5m69fn1eJxPfNS6TwTWlWccRtKHnjJQQawtcUKpFJKa6PQ89JIBFMpKbVmIIQCDhxrKaXnckJW59y6hZ07dLGB7su1EN1JaLuNg24ou0enlS58IUWhFSt0zUEUTJvAlS1UZcpyyDLnLN-1fd9hcD5myLFNA564d5y5I313ou-O9N2F_mAVf6w_Vf4xfQMQlomk
CitedBy_id crossref_primary_10_3389_fmech_2024_1386254
crossref_primary_10_3389_fmech_2024_1378433
crossref_primary_10_3389_fmech_2024_1450972
Cites_doi 10.1016/j.csite.2023.102886
10.1016/j.expthermflusci.2010.11.013
10.1299/jsmeb.36.1
10.1007/s12217-020-09784-1
10.1016/j.enconman.2009.06.030
10.3389/fmech.2023.1120985
10.1016/0045-7825(74)90029-2
10.1016/j.ijheatmasstransfer.2018.11.073
10.1016/j.applthermaleng.2016.07.021
10.1142/s0217984922501974
10.1088/1402-4896/ac2bdf
10.1109/tps.2013.2280612
10.1016/0304-8853(83)90428-6
10.3389/fmech.2015.00007
10.1007/s11051-004-3170-5
10.1016/j.csite.2022.102443
10.4028/www.scientific.net/amm.186.75
10.1109/tps.2012.2187683
10.1007/s00162-020-00516-0
10.1016/j.csite.2023.102944
10.1007/s10494-022-00327-9
10.1016/j.rinp.2023.106371
10.1016/j.ijheatmasstransfer.2015.01.025
10.1016/j.wavemoti.2021.102867
10.1016/j.csite.2023.102961
10.1016/j.ijheatmasstransfer.2013.05.059
10.3390/sym13112051
10.1063/1.1736691
10.1016/j.csite.2021.101037
10.3389/fmech.2016.00007
10.1007/s13369-013-0772-1
10.1007/s00231-014-1467-1
10.1109/95.650935
10.1007/s10973-019-08754-z
10.3390/en14030731
10.1088/1873-7005/ac12af
10.3389/fmech.2022.900316
10.1016/j.expthermflusci.2012.01.033
10.29252/jafm.11.04.28559
10.1016/j.matpr.2022.02.503
10.1007/s00419-020-01828-7
10.1016/j.csite.2018.100388
10.1016/j.enconman.2013.09.008
10.1061/(ASCE)AS.1943-5525.0001463
10.1007/s12217-020-09839-3
10.1016/j.jmmm.2019.01.028
10.1016/j.expthermflusci.2008.12.003
10.1007/s40430-018-1120-x
10.1016/s0924-4247(03)00103-1
10.1016/s0017-9310(99)00369-5
10.1007/s10765-015-1977-1
10.1016/j.csite.2023.103345
10.1016/j.powtec.2021.04.03
10.1016/j.csite.2021.101445
10.1016/j.ijheatmasstransfer.2009.02.041
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fmech.2023.1266729
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2297-3079
ExternalDocumentID oai_doaj_org_article_7574c432475047d1a24078f15945b866
10_3389_fmech_2023_1266729
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-275b1019f61f161a3fa9d9eba35557785ec1683ea8b533770a225a1a1ed333c13
IEDL.DBID DOA
ISSN 2297-3079
IngestDate Wed Aug 27 01:25:31 EDT 2025
Tue Jul 01 02:07:42 EDT 2025
Thu Apr 24 23:01:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-275b1019f61f161a3fa9d9eba35557785ec1683ea8b533770a225a1a1ed333c13
OpenAccessLink https://doaj.org/article/7574c432475047d1a24078f15945b866
ParticipantIDs doaj_primary_oai_doaj_org_article_7574c432475047d1a24078f15945b866
crossref_citationtrail_10_3389_fmech_2023_1266729
crossref_primary_10_3389_fmech_2023_1266729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in mechanical engineering
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References (B4) 2016
Sheikholeslam Noori (B48); 34
Bezaatpour (B10) 2019; 476
Sheikholeslam Noori (B47) 2021; 53
Jalili (B20); 45
Taleghani (B52) 2018; 40
Li (B33) 2009; 33
Zamzamian (B57) 2011; 35
Abdolahipour (B1); 35
Abdolahipour (B3); 109
Biber (B11) 1997; 20
Pandey (B39) 2022; 56
Pereira (B40) 2015; 1
Singh (B49) 2021; 14
Jalili (B21); 45
Gan (B17) 2020; 141
Naphon (B37) 2019; 131
Sadighi (B42) 2023; 49
Forghan (B14) 2001
Mohammadi (B35) 2014; 39
Jalili (B22); 48
Sadighi (B41); 8
Jazmi (B25) 2021; 91
Jang (B24) 2003; 105
Kondo (B29) 1998
Sadighi (B59) 2023; 44
Bahiraei (B6) 2016; 107
Zhong (B58) 2021; 387
Ganguly (B18) 2004; 16
Karimi (B27) 2015; 36
Koo (B30) 2004; 6
Bahiraei (B7) 2013; 76
Kim (B28) 2009; 52
Froissart (B16) 2021; 28
Bar-Cohen (B9) 1993; 36
Li (B32) 2009; 50
Johnson (B26) 2016; 2
Xie (B55) 2021; 13
Ashjaee (B5) 2015; 51
Selvakumar (B45) 2012; 40
Taeibi Rahni (B51) 2022; 111
El-Shorbagy (B13) 2021; 26
Mirzaei (B34) 2012; 186
Xuan (B56) 2000; 43
Fox (B15) 2020
Spalding (B50) 1974; 3
Byon (B12) 2015; 84
Abdolahipour (B2) 2021; 96
Noori (B38) 2020; 32
Jalili (B23); 37
Sadighi (B43); 40
Sheikholeslam Noori (B46); 32
Bailey (B8) 1983; 39
Wong (B54) 2013; 65
Hussain (B19) 2019; 13
Kotb (B31) 2023; 9
Taleghani (B53) 2012; 40
Mohammadzadeh (B36) 2018; 11
Salmasi (B44) 2013; 41
References_xml – volume: 44
  start-page: 102886
  year: 2023
  ident: B59
  article-title: MHD flow and conductive heat transfer on a permeable stretching cylinder: benchmark solutions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102886
– volume-title: ANSYS fluent theory guide
  year: 2016
  ident: B4
– volume: 35
  start-page: 495
  year: 2011
  ident: B57
  article-title: Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.11.013
– volume: 36
  start-page: 1
  year: 1993
  ident: B9
  article-title: Thermal management of electronic components with dielectric liquids
  publication-title: JSME Int. J. Ser. B Fluids Therm. Eng.
  doi: 10.1299/jsmeb.36.1
– volume: 32
  start-page: 647
  year: 2020
  ident: B38
  article-title: Numerical analysis of droplet motion over a flat plate due to surface acoustic waves
  publication-title: Microgravity Sci. Technol.
  doi: 10.1007/s12217-020-09784-1
– volume: 50
  start-page: 2738
  year: 2009
  ident: B32
  article-title: Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.06.030
– volume: 9
  start-page: 1120985
  year: 2023
  ident: B31
  article-title: On the impingement of heat transfer using swirled air jets
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2023.1120985
– volume: 3
  start-page: 269
  year: 1974
  ident: B50
  article-title: The numerical computation of turbulent flow
  publication-title: Comp. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(74)90029-2
– volume: 131
  start-page: 329
  year: 2019
  ident: B37
  article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.073
– volume: 107
  start-page: 700
  year: 2016
  ident: B6
  article-title: Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.021
– volume: 37
  start-page: 2250197
  ident: B23
  article-title: Micro-polar nanofluid in the presence of thermophoresis, hall currents, and Brownian motion in a rotating system
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/s0217984922501974
– volume: 96
  start-page: 125012
  year: 2021
  ident: B2
  article-title: Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac2bdf
– volume: 41
  start-page: 3079
  year: 2013
  ident: B44
  article-title: Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/tps.2013.2280612
– volume: 39
  start-page: 178
  year: 1983
  ident: B8
  article-title: Lesser known applications of ferrofluids
  publication-title: J. magnetism magnetic Mater.
  doi: 10.1016/0304-8853(83)90428-6
– volume: 1
  start-page: 7
  year: 2015
  ident: B40
  article-title: Development and performance of an advanced ejector cooling system for a sustainable built environment
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2015.00007
– volume: 6
  start-page: 577
  year: 2004
  ident: B30
  article-title: A new thermal conductivity model for nanofluids
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-004-3170-5
– volume-title: Fox and McDonald's introduction to fluid mechanics
  year: 2020
  ident: B15
– volume: 40
  start-page: 102443
  ident: B43
  article-title: MHD heat and mass transfer nanofluid flow on a porous cylinder with chemical reaction and viscous dissipation effects: benchmark solutions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102443
– volume: 186
  start-page: 75
  year: 2012
  ident: B34
  article-title: Experimental study of vortex shedding control using plasma actuator
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/amm.186.75
– volume: 40
  start-page: 1434
  year: 2012
  ident: B53
  article-title: Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/tps.2012.2187683
– volume: 34
  start-page: 145
  ident: B48
  article-title: Effects of contact angle hysteresis on drop manipulation using surface acoustic waves
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-020-00516-0
– volume: 45
  start-page: 102944
  ident: B20
  article-title: Numerical modeling of magnetic field impact on the thermal behavior of a microchannel heat sink
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102944
– volume: 109
  start-page: 65
  ident: B3
  article-title: Pressure improvement on a supercritical high-lift wing using simple and modulated pulse jet vortex generator
  publication-title: Flow. Turbul. Combust.
  doi: 10.1007/s10494-022-00327-9
– volume: 48
  start-page: 106371
  ident: B22
  article-title: Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106371
– volume: 84
  start-page: 1056
  year: 2015
  ident: B12
  article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.025
– volume: 111
  start-page: 102867
  year: 2022
  ident: B51
  article-title: Computational simulation of water removal from a flat plate, using surface acoustic waves
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2021.102867
– volume: 45
  start-page: 102961
  ident: B21
  article-title: The magnetohydrodynamic flow of viscous fluid and heat transfer examination between permeable disks by AGM and FEM
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102961
– volume: 65
  start-page: 1
  year: 2013
  ident: B54
  article-title: Impingement heat transfer of a plate fin heat sink with fillet profile
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.05.059
– volume: 13
  start-page: 2051
  year: 2021
  ident: B55
  article-title: Ferrohydrodynamic and magnetohydrodynamic effects on jet flow and heat transfer of Fe3O4-H2O nanofluid in a microchannel subjected to permanent magnets
  publication-title: Symmetry
  doi: 10.3390/sym13112051
– volume: 16
  start-page: 2228
  year: 2004
  ident: B18
  article-title: Thermomagnetic convection in a square enclosure using a line dipole
  publication-title: Phys. Fluids
  doi: 10.1063/1.1736691
– volume: 26
  start-page: 101037
  year: 2021
  ident: B13
  article-title: Effect of fin thickness on mixed convection of hybrid nanofluid exposed to magnetic field-Enhancement of heat sink efficiency
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101037
– volume: 2
  start-page: 7
  year: 2016
  ident: B26
  article-title: Impingement cooling using the ionic wind generated by a low-voltage piezoelectric transformer
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2016.00007
– volume: 39
  start-page: 2363
  year: 2014
  ident: B35
  article-title: Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-013-0772-1
– volume-title: Annual meeting for ISME
  year: 2001
  ident: B14
  article-title: Experimental and theoretical investigation of thermal performance of heat sinks
– volume: 51
  start-page: 953
  year: 2015
  ident: B5
  article-title: Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-014-1467-1
– volume: 20
  start-page: 458
  year: 1997
  ident: B11
  article-title: Pressure drop and heat transfer in an isothermal channel with impinging flow
  publication-title: IEEE Trans. Components, Packag. Manuf. Technol. Part A
  doi: 10.1109/95.650935
– volume: 141
  start-page: 45
  year: 2020
  ident: B17
  article-title: Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets
  publication-title: J. Therm. Analysis Calorim.
  doi: 10.1007/s10973-019-08754-z
– start-page: 259
  volume-title: Optimization of finned heat sinks for impingement cooling of electronic packages
  year: 1998
  ident: B29
– volume: 14
  start-page: 731
  year: 2021
  ident: B49
  article-title: CFD analysis of turbulent flow of power-law fluid in a partially blocked eccentric annulus
  publication-title: Energies
  doi: 10.3390/en14030731
– volume: 53
  start-page: 045503
  year: 2021
  ident: B47
  article-title: Surface acoustic waves as control actuator for drop removal from solid surface
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/ac12af
– volume: 8
  start-page: 900316
  ident: B41
  article-title: An analytical approach to entropy production in MHD mixed convection micropolar fluid flow over an inclined porous stretching sheet
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.900316
– volume: 40
  start-page: 57
  year: 2012
  ident: B45
  article-title: Convective performance of CuO/water nanofluid in an electronic heat sink
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.01.033
– volume: 11
  start-page: 861
  year: 2018
  ident: B36
  article-title: Effects of gas cross-over through the membrane on water management in the cathode and anode sides of PEM fuel cell
  publication-title: J. Appl. Fluid Mech.
  doi: 10.29252/jafm.11.04.28559
– volume: 56
  start-page: 845
  year: 2022
  ident: B39
  article-title: Comparison of the parallel microchannel and Pin-Fin heat Sinks: an experimental study
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.02.503
– volume: 91
  start-page: 1391
  year: 2021
  ident: B25
  article-title: Numerical investigation of water droplet behavior in anode channel of a PEM fuel cell with partial blockage
  publication-title: Archive Appl. Mech.
  doi: 10.1007/s00419-020-01828-7
– volume: 13
  start-page: 100388
  year: 2019
  ident: B19
  article-title: Numerical investigation of heat transfer enhancement in plate-fin heat sinks: effect of flow direction and fillet profile
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2018.100388
– volume: 76
  start-page: 1125
  year: 2013
  ident: B7
  article-title: Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.09.008
– volume: 35
  start-page: 2022
  ident: B1
  article-title: Experimental investigation of flow control on a high-lift wing using modulated pulse jet vortex generator
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0001463
– volume: 32
  start-page: 1147
  ident: B46
  article-title: Phenomenological investigation of drop manipulation using surface acoustic waves
  publication-title: Microgravity Sci. Technol.
  doi: 10.1007/s12217-020-09839-3
– volume: 476
  start-page: 506
  year: 2019
  ident: B10
  article-title: Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2019.01.028
– volume: 33
  start-page: 591
  year: 2009
  ident: B33
  article-title: Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2008.12.003
– volume: 40
  start-page: 173
  year: 2018
  ident: B52
  article-title: Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1120-x
– volume: 105
  start-page: 211
  year: 2003
  ident: B24
  article-title: Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/s0924-4247(03)00103-1
– volume: 43
  start-page: 3701
  year: 2000
  ident: B56
  article-title: Conceptions for heat transfer correlation of nanofluids
  publication-title: Int. J. heat Mass Transf.
  doi: 10.1016/s0017-9310(99)00369-5
– volume: 36
  start-page: 2720
  year: 2015
  ident: B27
  article-title: Thermal conductivity of $$\mathrm{Fe}_{2}\mathrm{O}_{3}$$ Fe 2 O 3 and $$\mathrm{Fe}_{3}\mathrm{O}_{4}$$ Fe 3 O 4 magnetic nanofluids under the influence of magnetic field
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-015-1977-1
– volume: 49
  start-page: 103345
  year: 2023
  ident: B42
  article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103345
– volume: 387
  start-page: 251
  year: 2021
  ident: B58
  article-title: Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.04.03
– volume: 28
  start-page: 101445
  year: 2021
  ident: B16
  article-title: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101445
– volume: 52
  start-page: 3510
  year: 2009
  ident: B28
  article-title: Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.041
SSID ssj0001878981
Score 2.258704
Snippet Improving the performance of heat sinks is very important in the development of cooling systems. In this study, the use of a novel combination method [magnetic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms enhancement of heat transfer
ferrofluid
flow control
heat sink
impingement jet
magnetic field
Title Enhancement of heat transfer in heat sink under the effect of a magnetic field and an impingement jet
URI https://doaj.org/article/7574c432475047d1a24078f15945b866
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQLDAgnuJZeWBDgTiOY2cs0KpClAUqsUW2Y_Nsiqrw_7mzA3SChSGL5VjWPXLfOXefCTmBiMpMJl2SGV8nuRYiUcZD1irTzDiZSheKMce3xWiSXz-Ih4WrvrAmLNIDR8GdSyFzi7RxyEMua6YxBVEeonAujCoC2TbEvIVkKpyuKKlKxWKXDGRhJajJhZ8PGT9jEJQipvyJRAuE_SGyDDfIegcJaT9uZZMsuWaLrC0QBW4TN2ieUD14lEdnnuIXlLYBc7o5fW7iAKT9rxSbwuYUYB2NpRo4XdOpfmywXZGGijWqG3zo8xS7peKqL67dIZPh4P5ylHQXJCSWC9kmmRQGXKr0BfOA3DT3uqxLZzSACCGlEs6yQnGnlQFUJ2WqwXs108zVnHPL-C5ZbmaN2yPUcvBdxH7G1rkGr4a0Q6XGCuZtIb3fJ-xLWJXt2MPxEou3CrIIFHAVBFyhgKtOwPvk9Pud98id8evsC9TB90zkvQ4DYA1VZw3VX9Zw8B-LHJJV3Fg4OU6PyHI7_3DHAD1a0yMr_avxzV0vWNsnt_7S_w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+heat+transfer+in+heat+sink+under+the+effect+of+a+magnetic+field+and+an+impingement+jet&rft.jtitle=Frontiers+in+mechanical+engineering&rft.au=Azadi%2C+Shervin&rft.au=Abjadi%2C+Ali&rft.au=Vahdat+Azad%2C+Abazar&rft.au=Ahmadi+Danesh+Ashtiani%2C+Hossein&rft.date=2023-08-30&rft.issn=2297-3079&rft.eissn=2297-3079&rft.volume=9&rft_id=info:doi/10.3389%2Ffmech.2023.1266729&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmech_2023_1266729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-3079&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-3079&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-3079&client=summon