Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders

Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major rol...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Molecular basis of disease Vol. 1871; no. 1; p. 167524
Main Authors Verberk, Sanne G.S., Hahn, Nico, Heister, Daan, Haverkamp, Jorien, Snelder, Khya S., de Goede, Kyra E., Gorki, Friederieke S., Hendriks, Jerome J.A., Houtkooper, Riekelt H., Visser, Gepke, Sjouke, Barbara, Langeveld, Mirjam, Van den Bossche, Jan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages. [Display omitted] •Patients with long-chain fatty acid oxidation disorders (lcFAOD) show slightly elevated circulating IL-1β and IL-6 cytokine levels•Inflammatory responses to lipopolysaccharide (LPS) areunchanged in lcFAOD leukocytes•CD206 surface expression is elevated in monocytes and in IL-4-activated lcFAOD macrophages•lcFAOD macrophages display similar metabolic phenotypes compared to healthy control macrophages.
AbstractList Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.
Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages. [Display omitted] •Patients with long-chain fatty acid oxidation disorders (lcFAOD) show slightly elevated circulating IL-1β and IL-6 cytokine levels•Inflammatory responses to lipopolysaccharide (LPS) areunchanged in lcFAOD leukocytes•CD206 surface expression is elevated in monocytes and in IL-4-activated lcFAOD macrophages•lcFAOD macrophages display similar metabolic phenotypes compared to healthy control macrophages.
Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.
ArticleNumber 167524
Author Hahn, Nico
Haverkamp, Jorien
Snelder, Khya S.
Hendriks, Jerome J.A.
Heister, Daan
Langeveld, Mirjam
de Goede, Kyra E.
Van den Bossche, Jan
Houtkooper, Riekelt H.
Verberk, Sanne G.S.
Gorki, Friederieke S.
Visser, Gepke
Sjouke, Barbara
Author_xml – sequence: 1
  givenname: Sanne G.S.
  surname: Verberk
  fullname: Verberk, Sanne G.S.
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
– sequence: 2
  givenname: Nico
  surname: Hahn
  fullname: Hahn, Nico
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
– sequence: 3
  givenname: Daan
  surname: Heister
  fullname: Heister, Daan
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
– sequence: 4
  givenname: Jorien
  surname: Haverkamp
  fullname: Haverkamp, Jorien
  organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 5
  givenname: Khya S.
  surname: Snelder
  fullname: Snelder, Khya S.
  organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 6
  givenname: Kyra E.
  surname: de Goede
  fullname: de Goede, Kyra E.
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
– sequence: 7
  givenname: Friederieke S.
  surname: Gorki
  fullname: Gorki, Friederieke S.
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
– sequence: 8
  givenname: Jerome J.A.
  surname: Hendriks
  fullname: Hendriks, Jerome J.A.
  organization: Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
– sequence: 9
  givenname: Riekelt H.
  surname: Houtkooper
  fullname: Houtkooper, Riekelt H.
  organization: Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 10
  givenname: Gepke
  surname: Visser
  fullname: Visser, Gepke
  organization: Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
– sequence: 11
  givenname: Barbara
  surname: Sjouke
  fullname: Sjouke, Barbara
  organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 12
  givenname: Mirjam
  surname: Langeveld
  fullname: Langeveld, Mirjam
  organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 13
  givenname: Jan
  surname: Van den Bossche
  fullname: Van den Bossche, Jan
  email: j.vandenbossche@amsterdamumc.nl
  organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39307292$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaZy03yAEHXtZV_92JV0CJaRNIKWXFnoTWmk2lllLriQn9bevwqY5di4Dw-8NM--doZOYIiB0QcmaEjp82q7H0fpQ1owwsaaD7Jl4g1ZUSd2xgfw6QSuiWd8JwfUpOitlS1oNkrxDp1xzIplmKwTfUkzuWAHb6PHOupz2G_sAeJ_TFGYoOES8tzVArAU_hbppgw3kUMHjOcWHzm1sQyZb6xFbFzxOf4JvghRxuy5lD7m8R28nOxf48NLP0c8vNz-ub7v771_vrj_fd473snZMcu31RGFQEyg_ckIlt4T1UvhBMcsmpkbGbPtCS9CeD1TZoWdeTEIAtfwcfVz2tut_H6BUswvFwTzbCOlQDKdEcaUI4Q29fEEP4w682eews_lo_lnTALEAzZJSMkyvCCXmOQGzNUsC5jkBsyTQZFeLDNqfjwGyKa6Z58CHDK4an8L_F_wFEmeQZA
Cites_doi 10.3389/fimmu.2021.669920
10.1111/ene.16138
10.1152/ajpendo.00656.2013
10.1016/j.cmet.2006.05.011
10.1186/s12936-022-04325-0
10.1016/j.it.2017.03.001
10.1371/journal.ppat.1008929
10.3390/metabo10090372
10.1152/ajpendo.00408.2016
10.3389/fimmu.2017.00609
10.1016/j.immuni.2015.02.005
10.1016/j.celrep.2016.09.008
10.1161/ATVBAHA.117.309145
10.1002/jimd.12284
10.1177/20420188211065655
10.1038/s41598-021-98611-7
10.1371/journal.pone.0045429
10.1007/s10545-010-9090-x
10.1016/j.bbalip.2014.06.007
10.1371/journal.pone.0030659
10.1016/j.mad.2023.111792
10.1038/nri.2016.70
10.1016/j.cmet.2018.09.018
10.1016/j.yjmcc.2019.01.003
10.7150/thno.63751
10.1038/ni.3366
10.3390/ijms21072589
10.1007/s11154-018-9448-1
10.4049/jimmunol.1402469
10.1038/s41467-020-20141-z
10.1016/j.ymgme.2020.09.001
10.1038/s41591-020-0939-8
10.1155/2019/2984747
10.1038/s41467-017-00231-1
10.3390/nu16020257
10.1002/cyto.a.22104
10.1186/s12931-018-0777-0
10.1002/cti2.1304
10.4049/jimmunol.176.1.191
10.1002/jimd.12372
10.1084/jem.176.1.287
10.1016/S2213-2600(16)30048-0
10.1016/j.bcp.2021.114634
10.1038/nm.4153
10.1038/nature09663
10.14814/phy2.14037
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbadis.2024.167524
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-260X
ExternalDocumentID 39307292
10_1016_j_bbadis_2024_167524
S0925443924005180
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFNM
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACIEU
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AEXQZ
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WUQ
XJT
XPP
~G-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c357t-2739d9f1e68fe8db30173a02574d682a2f28b22a06797e9d3618a652d4f44e1a3
IEDL.DBID .~1
ISSN 0925-4439
1879-260X
IngestDate Tue Aug 05 10:51:55 EDT 2025
Mon Jul 21 06:06:16 EDT 2025
Tue Aug 05 12:00:38 EDT 2025
Sat Jul 19 17:11:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immunometabolism
Immunophenotyping
Inflammation
Fatty acid oxidation disorders
Macrophages
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-2739d9f1e68fe8db30173a02574d682a2f28b22a06797e9d3618a652d4f44e1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925443924005180
PMID 39307292
PQID 3108388003
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3108388003
pubmed_primary_39307292
crossref_primary_10_1016_j_bbadis_2024_167524
elsevier_sciencedirect_doi_10_1016_j_bbadis_2024_167524
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Molecular basis of disease
PublicationTitleAlternate Biochim Biophys Acta Mol Basis Dis
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Williams-Hall (bb0020) 2022; 13
Rutkowsky (bb0035) 2014; 306
Divakaruni (bb0190) 2018; 28
Vallejo (bb0025) 2021; 10
Gonzalez-Hurtado (bb0155) 2017; 312
Spiekerkoetter (bb0175) 2010; 33
Alivernini (bb0215) 2020; 26
Olivieri (bb0165) 2023; 211
Van den Bossche, van der Windt (bb0070) 2018; 28
Yuasa (bb0105) 2019; 2019
Nomura (bb0100) 2019; 127
Verberk (bb0135) 2022; 2
Nomura (bb0065) 2016; 17
Abeles (bb0115) 2012; 81
Jha (bb0040) 2015; 42
Verberk (bb0150) 2021; 12
Nawaz (bb0230) 2017; 8
Mahittikorn (bb0130) 2022; 21
Genoula (bb0140) 2020; 16
Namgaladze, Brune (bb0055) 2014; 1841
Gaston (bb0245) 2020; 43
Moon (bb0085) 2016; 22
Mosegaard (bb0185) 2023
Baardman (bb0145) 2020; 11
Rouyer (bb0160) 2024; 31
Stein (bb0205) 1992; 176
Thomas (bb0110) 2017; 37
Vats (bb0060) 2006; 4
McCoin (bb0030) 2019; 7
Tucci (bb0235) 2012; 7
O’Neill (bb0045) 2016; 16
Elizondo (bb0005) 2020; 131
Knottnerus (bb0010) 2018; 19
Raulien (bb0075) 2017; 8
Thompson (bb0125) 2012; 7
Grunert (bb0015) 2021; 44
Mitsi (bb0225) 2018; 19
Vogel (bb0210) 2022; 1867
Peters (bb0120) 2016; 4
Li (bb0180) 2022; 12
Zhou (bb0090) 2011; 469
Hohensinner (bb0095) 2021; 190
Knottnerus (bb0240) 2020; 21
Kosovski (bb0170) 2024; 16
Harber (bb0250) 2020; 10
Wright (bb0200) 2021; 11
Van den Bossche (bb0050) 2016; 17
Van den Bossche (bb0080) 2017; 38
Van den Bossche (bb0255) Nov 28, 2015
Jenmalm (bb0220) 2006; 176
Tan (bb0195) 2015; 194
Spiekerkoetter (10.1016/j.bbadis.2024.167524_bb0175) 2010; 33
Van den Bossche (10.1016/j.bbadis.2024.167524_bb0050) 2016; 17
Vallejo (10.1016/j.bbadis.2024.167524_bb0025) 2021; 10
Jha (10.1016/j.bbadis.2024.167524_bb0040) 2015; 42
O’Neill (10.1016/j.bbadis.2024.167524_bb0045) 2016; 16
Tucci (10.1016/j.bbadis.2024.167524_bb0235) 2012; 7
Vogel (10.1016/j.bbadis.2024.167524_bb0210) 2022; 1867
Nomura (10.1016/j.bbadis.2024.167524_bb0065) 2016; 17
Namgaladze (10.1016/j.bbadis.2024.167524_bb0055) 2014; 1841
Yuasa (10.1016/j.bbadis.2024.167524_bb0105) 2019; 2019
Divakaruni (10.1016/j.bbadis.2024.167524_bb0190) 2018; 28
Hohensinner (10.1016/j.bbadis.2024.167524_bb0095) 2021; 190
Kosovski (10.1016/j.bbadis.2024.167524_bb0170) 2024; 16
Baardman (10.1016/j.bbadis.2024.167524_bb0145) 2020; 11
Vats (10.1016/j.bbadis.2024.167524_bb0060) 2006; 4
Stein (10.1016/j.bbadis.2024.167524_bb0205) 1992; 176
Olivieri (10.1016/j.bbadis.2024.167524_bb0165) 2023; 211
Van den Bossche (10.1016/j.bbadis.2024.167524_bb0255) 2015
Verberk (10.1016/j.bbadis.2024.167524_bb0150) 2021; 12
Mosegaard (10.1016/j.bbadis.2024.167524_bb0185) 2023
Verberk (10.1016/j.bbadis.2024.167524_bb0135) 2022; 2
Wright (10.1016/j.bbadis.2024.167524_bb0200) 2021; 11
Gaston (10.1016/j.bbadis.2024.167524_bb0245) 2020; 43
McCoin (10.1016/j.bbadis.2024.167524_bb0030) 2019; 7
Nawaz (10.1016/j.bbadis.2024.167524_bb0230) 2017; 8
Elizondo (10.1016/j.bbadis.2024.167524_bb0005) 2020; 131
Gonzalez-Hurtado (10.1016/j.bbadis.2024.167524_bb0155) 2017; 312
Alivernini (10.1016/j.bbadis.2024.167524_bb0215) 2020; 26
Rutkowsky (10.1016/j.bbadis.2024.167524_bb0035) 2014; 306
Genoula (10.1016/j.bbadis.2024.167524_bb0140) 2020; 16
Harber (10.1016/j.bbadis.2024.167524_bb0250) 2020; 10
Abeles (10.1016/j.bbadis.2024.167524_bb0115) 2012; 81
Rouyer (10.1016/j.bbadis.2024.167524_bb0160) 2024; 31
Knottnerus (10.1016/j.bbadis.2024.167524_bb0010) 2018; 19
Raulien (10.1016/j.bbadis.2024.167524_bb0075) 2017; 8
Mahittikorn (10.1016/j.bbadis.2024.167524_bb0130) 2022; 21
Van den Bossche (10.1016/j.bbadis.2024.167524_bb0070) 2018; 28
Zhou (10.1016/j.bbadis.2024.167524_bb0090) 2011; 469
Grunert (10.1016/j.bbadis.2024.167524_bb0015) 2021; 44
Peters (10.1016/j.bbadis.2024.167524_bb0120) 2016; 4
Li (10.1016/j.bbadis.2024.167524_bb0180) 2022; 12
Thomas (10.1016/j.bbadis.2024.167524_bb0110) 2017; 37
Knottnerus (10.1016/j.bbadis.2024.167524_bb0240) 2020; 21
Williams-Hall (10.1016/j.bbadis.2024.167524_bb0020) 2022; 13
Nomura (10.1016/j.bbadis.2024.167524_bb0100) 2019; 127
Mitsi (10.1016/j.bbadis.2024.167524_bb0225) 2018; 19
Moon (10.1016/j.bbadis.2024.167524_bb0085) 2016; 22
Van den Bossche (10.1016/j.bbadis.2024.167524_bb0080) 2017; 38
Tan (10.1016/j.bbadis.2024.167524_bb0195) 2015; 194
Thompson (10.1016/j.bbadis.2024.167524_bb0125) 2012; 7
Jenmalm (10.1016/j.bbadis.2024.167524_bb0220) 2006; 176
References_xml – volume: 306
  start-page: E1378
  year: 2014
  end-page: E1387
  ident: bb0035
  article-title: Acylcarnitines activate proinflammatory signaling pathways
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 11
  start-page: 6296
  year: 2020
  ident: bb0145
  article-title: Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques
  publication-title: Nat. Commun.
– volume: 176
  start-page: 191
  year: 2006
  end-page: 199
  ident: bb0220
  article-title: Regulation of myeloid cell function through the CD200 receptor
  publication-title: J. Immunol.
– volume: 131
  start-page: 90
  year: 2020
  end-page: 97
  ident: bb0005
  article-title: Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD
  publication-title: Mol. Genet. Metab.
– volume: 42
  start-page: 419
  year: 2015
  end-page: 430
  ident: bb0040
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
– volume: 28
  start-page: 538
  year: 2018
  end-page: 540
  ident: bb0070
  article-title: Fatty acid oxidation in macrophages and T cells: time for reassessment?
  publication-title: Cell Metab.
– volume: 13
  year: 2022
  ident: bb0020
  article-title: Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders
  publication-title: Ther. Adv. Endocrinol. Metab.
– year: 2023
  ident: bb0185
  article-title: Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS
  publication-title: bioRxiv
– volume: 1841
  start-page: 1329
  year: 2014
  end-page: 1335
  ident: bb0055
  article-title: Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization
  publication-title: Biochim. Biophys. Acta
– volume: 37
  start-page: 1548
  year: 2017
  end-page: 1558
  ident: bb0110
  article-title: Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 10
  year: 2020
  ident: bb0250
  article-title: Succinate is an inflammation-induced Immunoregulatory metabolite in macrophages
  publication-title: Metabolites
– volume: 16
  year: 2024
  ident: bb0170
  article-title: Exploring the link between inflammatory biomarkers and Adipometrics in healthy young adults aged 20-35 years
  publication-title: Nutrients
– volume: 22
  start-page: 1002
  year: 2016
  end-page: 1012
  ident: bb0085
  article-title: NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages
  publication-title: Nat. Med.
– volume: 176
  start-page: 287
  year: 1992
  end-page: 292
  ident: bb0205
  article-title: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation
  publication-title: J. Exp. Med.
– volume: 38
  start-page: 395
  year: 2017
  end-page: 406
  ident: bb0080
  article-title: Macrophage Immunometabolism: where are we (going)?
  publication-title: Trends Immunol.
– volume: 33
  start-page: 527
  year: 2010
  end-page: 532
  ident: bb0175
  article-title: Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening
  publication-title: J. Inherit. Metab. Dis.
– volume: 21
  start-page: 308
  year: 2022
  ident: bb0130
  article-title: Elevation of serum interleukin-1beta levels as a potential indicator for malarial infection and severe malaria: a meta-analysis
  publication-title: Malar. J.
– volume: 10
  year: 2021
  ident: bb0025
  article-title: Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD)
  publication-title: Clin Transl Immunology
– volume: 26
  start-page: 1295
  year: 2020
  end-page: 1306
  ident: bb0215
  article-title: Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis
  publication-title: Nat. Med.
– volume: 11
  start-page: 19616
  year: 2021
  ident: bb0200
  article-title: The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease
  publication-title: Sci. Rep.
– volume: 19
  start-page: 93
  year: 2018
  end-page: 106
  ident: bb0010
  article-title: Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle
  publication-title: Rev. Endocr. Metab. Disord.
– volume: 127
  start-page: 270
  year: 2019
  end-page: 276
  ident: bb0100
  article-title: Macrophage fatty acid oxidation inhibits atherosclerosis progression
  publication-title: J. Mol. Cell. Cardiol.
– volume: 7
  year: 2012
  ident: bb0125
  article-title: Critical appraisal of four IL-6 immunoassays
  publication-title: PloS One
– volume: 2019
  start-page: 2984747
  year: 2019
  ident: bb0105
  article-title: Evaluation of metabolic defects in fatty acid oxidation using peripheral blood mononuclear cells loaded with deuterium-labeled fatty acids
  publication-title: Dis. Markers
– year: Nov 28, 2015
  ident: bb0255
  article-title: Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis
  publication-title: JoVE (Journal of Visualized Experiments)
– volume: 12
  year: 2021
  ident: bb0150
  article-title: Myeloid ATP citrate Lyase regulates macrophage inflammatory responses in vitro without altering inflammatory disease outcomes
  publication-title: Front. Immunol.
– volume: 8
  start-page: 609
  year: 2017
  ident: bb0075
  article-title: Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes
  publication-title: Front. Immunol.
– volume: 2
  year: 2022
  ident: bb0135
  article-title: An integrated toolbox to profile macrophage immunometabolism
  publication-title: Cell Rep Methods
– volume: 4
  start-page: 574
  year: 2016
  end-page: 584
  ident: bb0120
  article-title: Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts
  publication-title: Lancet Respir. Med.
– volume: 194
  start-page: 6082
  year: 2015
  end-page: 6089
  ident: bb0195
  article-title: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism
  publication-title: J. Immunol.
– volume: 81
  start-page: 823
  year: 2012
  end-page: 834
  ident: bb0115
  article-title: CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi) /CD16(neg) monocytes: expansion of CD14(hi) /CD16(pos) and contraction of CD14(lo) /CD16(pos) monocytes in acute liver failure
  publication-title: Cytometry A
– volume: 21
  year: 2020
  ident: bb0240
  article-title: Electrophysiological abnormalities in VLCAD deficient hiPSC-cardiomyocytes can be improved by lowering accumulation of fatty acid oxidation intermediates
  publication-title: Int. J. Mol. Sci.
– volume: 19
  start-page: 66
  year: 2018
  ident: bb0225
  article-title: Human alveolar macrophages predominately express combined classical M1 and M2 surface markers in steady state
  publication-title: Respir. Res.
– volume: 469
  start-page: 221
  year: 2011
  end-page: 225
  ident: bb0090
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
– volume: 16
  year: 2020
  ident: bb0140
  article-title: Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via HIF-1alpha activation
  publication-title: PLoS Pathog.
– volume: 31
  year: 2024
  ident: bb0160
  article-title: Long-term prognosis of fatty-acid oxidation disorders in adults: optimism despite the limited effective therapies available
  publication-title: Eur. J. Neurol.
– volume: 44
  start-page: 893
  year: 2021
  end-page: 902
  ident: bb0015
  article-title: The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein
  publication-title: J. Inherit. Metab. Dis.
– volume: 190
  year: 2021
  ident: bb0095
  article-title: Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation
  publication-title: Biochem. Pharmacol.
– volume: 12
  start-page: 976
  year: 2022
  end-page: 998
  ident: bb0180
  article-title: Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation
  publication-title: Theranostics
– volume: 17
  start-page: 216
  year: 2016
  end-page: 217
  ident: bb0065
  article-title: Fatty acid oxidation in macrophage polarization
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 286
  year: 2017
  ident: bb0230
  article-title: CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors
  publication-title: Nat. Commun.
– volume: 17
  start-page: 684
  year: 2016
  end-page: 696
  ident: bb0050
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
– volume: 312
  start-page: E381
  year: 2017
  end-page: E393
  ident: bb0155
  article-title: Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 43
  start-page: 1232
  year: 2020
  end-page: 1242
  ident: bb0245
  article-title: Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride
  publication-title: J. Inherit. Metab. Dis.
– volume: 7
  year: 2012
  ident: bb0235
  article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD−/−) mouse to compensate a defective fatty acid beta-oxidation
  publication-title: PloS One
– volume: 1867
  year: 2022
  ident: bb0210
  article-title: Lipid scavenging macrophages and inflammation
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
– volume: 4
  start-page: 13
  year: 2006
  end-page: 24
  ident: bb0060
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
– volume: 28
  year: 2018
  ident: bb0190
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab.
– volume: 7
  year: 2019
  ident: bb0030
  article-title: Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders
  publication-title: Physiol. Rep.
– volume: 16
  start-page: 553
  year: 2016
  end-page: 565
  ident: bb0045
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
– volume: 211
  year: 2023
  ident: bb0165
  article-title: Sex/gender-related differences in inflammaging
  publication-title: Mech. Ageing Dev.
– volume: 12
  year: 2021
  ident: 10.1016/j.bbadis.2024.167524_bb0150
  article-title: Myeloid ATP citrate Lyase regulates macrophage inflammatory responses in vitro without altering inflammatory disease outcomes
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.669920
– volume: 31
  year: 2024
  ident: 10.1016/j.bbadis.2024.167524_bb0160
  article-title: Long-term prognosis of fatty-acid oxidation disorders in adults: optimism despite the limited effective therapies available
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.16138
– volume: 306
  start-page: E1378
  year: 2014
  ident: 10.1016/j.bbadis.2024.167524_bb0035
  article-title: Acylcarnitines activate proinflammatory signaling pathways
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00656.2013
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.bbadis.2024.167524_bb0060
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 21
  start-page: 308
  year: 2022
  ident: 10.1016/j.bbadis.2024.167524_bb0130
  article-title: Elevation of serum interleukin-1beta levels as a potential indicator for malarial infection and severe malaria: a meta-analysis
  publication-title: Malar. J.
  doi: 10.1186/s12936-022-04325-0
– volume: 38
  start-page: 395
  year: 2017
  ident: 10.1016/j.bbadis.2024.167524_bb0080
  article-title: Macrophage Immunometabolism: where are we (going)?
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.03.001
– volume: 16
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0140
  article-title: Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via HIF-1alpha activation
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008929
– volume: 10
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0250
  article-title: Succinate is an inflammation-induced Immunoregulatory metabolite in macrophages
  publication-title: Metabolites
  doi: 10.3390/metabo10090372
– year: 2023
  ident: 10.1016/j.bbadis.2024.167524_bb0185
  article-title: Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS
  publication-title: bioRxiv
– volume: 312
  start-page: E381
  year: 2017
  ident: 10.1016/j.bbadis.2024.167524_bb0155
  article-title: Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00408.2016
– volume: 1867
  year: 2022
  ident: 10.1016/j.bbadis.2024.167524_bb0210
  article-title: Lipid scavenging macrophages and inflammation
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
– volume: 8
  start-page: 609
  year: 2017
  ident: 10.1016/j.bbadis.2024.167524_bb0075
  article-title: Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00609
– volume: 42
  start-page: 419
  year: 2015
  ident: 10.1016/j.bbadis.2024.167524_bb0040
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.005
– volume: 17
  start-page: 684
  year: 2016
  ident: 10.1016/j.bbadis.2024.167524_bb0050
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.008
– volume: 37
  start-page: 1548
  year: 2017
  ident: 10.1016/j.bbadis.2024.167524_bb0110
  article-title: Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.117.309145
– volume: 43
  start-page: 1232
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0245
  article-title: Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1002/jimd.12284
– volume: 13
  year: 2022
  ident: 10.1016/j.bbadis.2024.167524_bb0020
  article-title: Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders
  publication-title: Ther. Adv. Endocrinol. Metab.
  doi: 10.1177/20420188211065655
– volume: 11
  start-page: 19616
  year: 2021
  ident: 10.1016/j.bbadis.2024.167524_bb0200
  article-title: The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98611-7
– volume: 7
  year: 2012
  ident: 10.1016/j.bbadis.2024.167524_bb0235
  article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD−/−) mouse to compensate a defective fatty acid beta-oxidation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0045429
– volume: 33
  start-page: 527
  year: 2010
  ident: 10.1016/j.bbadis.2024.167524_bb0175
  article-title: Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-010-9090-x
– volume: 1841
  start-page: 1329
  year: 2014
  ident: 10.1016/j.bbadis.2024.167524_bb0055
  article-title: Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2014.06.007
– volume: 7
  year: 2012
  ident: 10.1016/j.bbadis.2024.167524_bb0125
  article-title: Critical appraisal of four IL-6 immunoassays
  publication-title: PloS One
  doi: 10.1371/journal.pone.0030659
– volume: 211
  year: 2023
  ident: 10.1016/j.bbadis.2024.167524_bb0165
  article-title: Sex/gender-related differences in inflammaging
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2023.111792
– issue: 105
  year: 2015
  ident: 10.1016/j.bbadis.2024.167524_bb0255
  article-title: Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis
  publication-title: JoVE (Journal of Visualized Experiments)
– volume: 16
  start-page: 553
  year: 2016
  ident: 10.1016/j.bbadis.2024.167524_bb0045
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
– volume: 28
  issue: 490–503
  year: 2018
  ident: 10.1016/j.bbadis.2024.167524_bb0190
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab.
– volume: 28
  start-page: 538
  year: 2018
  ident: 10.1016/j.bbadis.2024.167524_bb0070
  article-title: Fatty acid oxidation in macrophages and T cells: time for reassessment?
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.09.018
– volume: 127
  start-page: 270
  year: 2019
  ident: 10.1016/j.bbadis.2024.167524_bb0100
  article-title: Macrophage fatty acid oxidation inhibits atherosclerosis progression
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2019.01.003
– volume: 12
  start-page: 976
  year: 2022
  ident: 10.1016/j.bbadis.2024.167524_bb0180
  article-title: Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation
  publication-title: Theranostics
  doi: 10.7150/thno.63751
– volume: 17
  start-page: 216
  year: 2016
  ident: 10.1016/j.bbadis.2024.167524_bb0065
  article-title: Fatty acid oxidation in macrophage polarization
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3366
– volume: 21
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0240
  article-title: Electrophysiological abnormalities in VLCAD deficient hiPSC-cardiomyocytes can be improved by lowering accumulation of fatty acid oxidation intermediates
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21072589
– volume: 19
  start-page: 93
  year: 2018
  ident: 10.1016/j.bbadis.2024.167524_bb0010
  article-title: Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-018-9448-1
– volume: 194
  start-page: 6082
  year: 2015
  ident: 10.1016/j.bbadis.2024.167524_bb0195
  article-title: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402469
– volume: 11
  start-page: 6296
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0145
  article-title: Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20141-z
– volume: 131
  start-page: 90
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0005
  article-title: Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2020.09.001
– volume: 26
  start-page: 1295
  year: 2020
  ident: 10.1016/j.bbadis.2024.167524_bb0215
  article-title: Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0939-8
– volume: 2019
  start-page: 2984747
  year: 2019
  ident: 10.1016/j.bbadis.2024.167524_bb0105
  article-title: Evaluation of metabolic defects in fatty acid oxidation using peripheral blood mononuclear cells loaded with deuterium-labeled fatty acids
  publication-title: Dis. Markers
  doi: 10.1155/2019/2984747
– volume: 8
  start-page: 286
  year: 2017
  ident: 10.1016/j.bbadis.2024.167524_bb0230
  article-title: CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00231-1
– volume: 16
  year: 2024
  ident: 10.1016/j.bbadis.2024.167524_bb0170
  article-title: Exploring the link between inflammatory biomarkers and Adipometrics in healthy young adults aged 20-35 years
  publication-title: Nutrients
  doi: 10.3390/nu16020257
– volume: 81
  start-page: 823
  year: 2012
  ident: 10.1016/j.bbadis.2024.167524_bb0115
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22104
– volume: 19
  start-page: 66
  year: 2018
  ident: 10.1016/j.bbadis.2024.167524_bb0225
  article-title: Human alveolar macrophages predominately express combined classical M1 and M2 surface markers in steady state
  publication-title: Respir. Res.
  doi: 10.1186/s12931-018-0777-0
– volume: 10
  year: 2021
  ident: 10.1016/j.bbadis.2024.167524_bb0025
  article-title: Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD)
  publication-title: Clin Transl Immunology
  doi: 10.1002/cti2.1304
– volume: 176
  start-page: 191
  year: 2006
  ident: 10.1016/j.bbadis.2024.167524_bb0220
  article-title: Regulation of myeloid cell function through the CD200 receptor
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.1.191
– volume: 44
  start-page: 893
  year: 2021
  ident: 10.1016/j.bbadis.2024.167524_bb0015
  article-title: The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1002/jimd.12372
– volume: 176
  start-page: 287
  year: 1992
  ident: 10.1016/j.bbadis.2024.167524_bb0205
  article-title: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.176.1.287
– volume: 4
  start-page: 574
  year: 2016
  ident: 10.1016/j.bbadis.2024.167524_bb0120
  article-title: Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(16)30048-0
– volume: 2
  year: 2022
  ident: 10.1016/j.bbadis.2024.167524_bb0135
  article-title: An integrated toolbox to profile macrophage immunometabolism
  publication-title: Cell Rep Methods
– volume: 190
  year: 2021
  ident: 10.1016/j.bbadis.2024.167524_bb0095
  article-title: Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2021.114634
– volume: 22
  start-page: 1002
  year: 2016
  ident: 10.1016/j.bbadis.2024.167524_bb0085
  article-title: NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages
  publication-title: Nat. Med.
  doi: 10.1038/nm.4153
– volume: 469
  start-page: 221
  year: 2011
  ident: 10.1016/j.bbadis.2024.167524_bb0090
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
  doi: 10.1038/nature09663
– volume: 7
  year: 2019
  ident: 10.1016/j.bbadis.2024.167524_bb0030
  article-title: Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.14037
SSID ssj0000670
Score 2.4418538
Snippet Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 167524
SubjectTerms Acyl-CoA Dehydrogenase, Long-Chain - genetics
Acyl-CoA Dehydrogenase, Long-Chain - metabolism
Adolescent
Adult
Case-Control Studies
Child
Child, Preschool
Fatty acid oxidation disorders
Fatty Acids - metabolism
Female
Humans
Immunometabolism
Immunophenotyping
Inflammation
Interleukin-4 - blood
Interleukin-4 - genetics
Interleukin-4 - metabolism
Lipid Metabolism, Inborn Errors - blood
Lipid Metabolism, Inborn Errors - genetics
Lipid Metabolism, Inborn Errors - metabolism
Lipid Metabolism, Inborn Errors - pathology
Macrophage Activation - genetics
Macrophages
Macrophages - immunology
Macrophages - metabolism
Male
Middle Aged
Monocytes - immunology
Monocytes - metabolism
Oxidation-Reduction
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Young Adult
Title Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders
URI https://dx.doi.org/10.1016/j.bbadis.2024.167524
https://www.ncbi.nlm.nih.gov/pubmed/39307292
https://www.proquest.com/docview/3108388003
Volume 1871
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WlNJeSrtN203boEKuztqyLFnHsDRsX6HkAbkJ2ZISh9Zesl7oXvrbO-NHaQ4h0JNByFh8Go2-Gc8D4AA5uUQbzUWlEhINlCyNrJWUyRVLp-NgQ5ch9-1ELi_E58vscgKLMReGwioH3d_r9E5bDyPzAc35qqrmZ7Gm8lp4vwuSrJzsdiEUSfnh7-Rfbdz5WXByRLPH9LkuxqsorKuoaDcXhwlSZy7uu57uo5_dNXT8HJ4N_JEd9Ut8ARNfT-Fx31FyO4Uni7GB20vweF6bctt6ZmvHflpq1nWN6oMNfbrXrKrZUFd1zcghiwOUDogklP1o6quovLY4Jdi23TJbVo41v6q-BxNzQ9XO9S5cHH88XyyjoatCVKaZaikXRzsdEi_z4HNX4AlXqUXqo4STObc88Lzg3JKHSXntUpnkVmbciSCET2z6CnbqpvZvgCU84PFFi4drL2Ssi7JwPlOxcNpmSoUZRCOYZtUXzzBjVNmN6cE3BL7pwZ-BGhE3d4TAoH5_4M0P4wYZRJl-etjaN5u1QfqaU8GbOJ3B637n_q4l1SkVTud7__3dt_CUU0PgzifzDnba241_jyylLfY7MdyHR0eL06_f6fnpy_LkD7RC5uE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3ChpJeSpt-ZPupQq_u2rIsWcewJGyaZC9NIDchW1Lj0tih60D333fGlktzCIVehYTFSBq9GWveA_iEmFxijOaSWgmJAUqRJ9ZKquRKpdNpsGGokDtfy9Wl-HJVXO3AcqqFoWeV0fePPn3w1rFlEa25uG2axddUE70W3u-CdlaJcfsusVMVM9g9PDldrf92yEOqBfsnNGCqoBueeVWVdQ3xdnPxOUP0zMVDN9RDCHS4iY6fwpMIIdnhOMtnsOPbfXg0ikpu92FvOWm4PQePR7art71ntnXsxpJe1zV6EBalujesaVmkVt0wysliA1UEIg5lP7r2W1JfW-wSbN9vma0bx7pfzSjDxFwk7ty8gMvjo4vlKonCCkmdF6qnchztdMi8LIMvXYWHXOUW0Y8STpbc8sDLinNLSSbltctlVlpZcCeCED6z-UuYtV3rD4BlPOAJxqCHay9kqqu6cr5QqXDaFkqFOSSTMc3tyJ9hpodl381ofEPGN6Px56Ami5t7-8Cgi__HyI_TAhm0Mv33sK3v7jYGEWxJnDdpPodX48r9mUuuc-JO56__-7sfYG91cX5mzk7Wp2_gMSd94CFF8xZm_c87_w5BS1-9j5vyN2lZ5_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monocyte+and+macrophage+profiles+in+patients+with+inherited+long-chain+fatty+acid+oxidation+disorders&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Verberk%2C+Sanne+G+S&rft.au=Hahn%2C+Nico&rft.au=Heister%2C+Daan&rft.au=Haverkamp%2C+Jorien&rft.date=2025-01-01&rft.issn=1879-260X&rft.eissn=1879-260X&rft.volume=1871&rft.issue=1&rft.spage=167524&rft_id=info:doi/10.1016%2Fj.bbadis.2024.167524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon