Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders
Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major rol...
Saved in:
Published in | Biochimica et biophysica acta. Molecular basis of disease Vol. 1871; no. 1; p. 167524 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.
[Display omitted]
•Patients with long-chain fatty acid oxidation disorders (lcFAOD) show slightly elevated circulating IL-1β and IL-6 cytokine levels•Inflammatory responses to lipopolysaccharide (LPS) areunchanged in lcFAOD leukocytes•CD206 surface expression is elevated in monocytes and in IL-4-activated lcFAOD macrophages•lcFAOD macrophages display similar metabolic phenotypes compared to healthy control macrophages. |
---|---|
AbstractList | Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages. Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages. [Display omitted] •Patients with long-chain fatty acid oxidation disorders (lcFAOD) show slightly elevated circulating IL-1β and IL-6 cytokine levels•Inflammatory responses to lipopolysaccharide (LPS) areunchanged in lcFAOD leukocytes•CD206 surface expression is elevated in monocytes and in IL-4-activated lcFAOD macrophages•lcFAOD macrophages display similar metabolic phenotypes compared to healthy control macrophages. Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages. |
ArticleNumber | 167524 |
Author | Hahn, Nico Haverkamp, Jorien Snelder, Khya S. Hendriks, Jerome J.A. Heister, Daan Langeveld, Mirjam de Goede, Kyra E. Van den Bossche, Jan Houtkooper, Riekelt H. Verberk, Sanne G.S. Gorki, Friederieke S. Visser, Gepke Sjouke, Barbara |
Author_xml | – sequence: 1 givenname: Sanne G.S. surname: Verberk fullname: Verberk, Sanne G.S. organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands – sequence: 2 givenname: Nico surname: Hahn fullname: Hahn, Nico organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands – sequence: 3 givenname: Daan surname: Heister fullname: Heister, Daan organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands – sequence: 4 givenname: Jorien surname: Haverkamp fullname: Haverkamp, Jorien organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 5 givenname: Khya S. surname: Snelder fullname: Snelder, Khya S. organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 6 givenname: Kyra E. surname: de Goede fullname: de Goede, Kyra E. organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands – sequence: 7 givenname: Friederieke S. surname: Gorki fullname: Gorki, Friederieke S. organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands – sequence: 8 givenname: Jerome J.A. surname: Hendriks fullname: Hendriks, Jerome J.A. organization: Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium – sequence: 9 givenname: Riekelt H. surname: Houtkooper fullname: Houtkooper, Riekelt H. organization: Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 10 givenname: Gepke surname: Visser fullname: Visser, Gepke organization: Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands – sequence: 11 givenname: Barbara surname: Sjouke fullname: Sjouke, Barbara organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 12 givenname: Mirjam surname: Langeveld fullname: Langeveld, Mirjam organization: Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 13 givenname: Jan surname: Van den Bossche fullname: Van den Bossche, Jan email: j.vandenbossche@amsterdamumc.nl organization: Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39307292$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rGzEQxUVJaZy03yAEHXtZV_92JV0CJaRNIKWXFnoTWmk2lllLriQn9bevwqY5di4Dw-8NM--doZOYIiB0QcmaEjp82q7H0fpQ1owwsaaD7Jl4g1ZUSd2xgfw6QSuiWd8JwfUpOitlS1oNkrxDp1xzIplmKwTfUkzuWAHb6PHOupz2G_sAeJ_TFGYoOES8tzVArAU_hbppgw3kUMHjOcWHzm1sQyZb6xFbFzxOf4JvghRxuy5lD7m8R28nOxf48NLP0c8vNz-ub7v771_vrj_fd473snZMcu31RGFQEyg_ckIlt4T1UvhBMcsmpkbGbPtCS9CeD1TZoWdeTEIAtfwcfVz2tut_H6BUswvFwTzbCOlQDKdEcaUI4Q29fEEP4w682eews_lo_lnTALEAzZJSMkyvCCXmOQGzNUsC5jkBsyTQZFeLDNqfjwGyKa6Z58CHDK4an8L_F_wFEmeQZA |
Cites_doi | 10.3389/fimmu.2021.669920 10.1111/ene.16138 10.1152/ajpendo.00656.2013 10.1016/j.cmet.2006.05.011 10.1186/s12936-022-04325-0 10.1016/j.it.2017.03.001 10.1371/journal.ppat.1008929 10.3390/metabo10090372 10.1152/ajpendo.00408.2016 10.3389/fimmu.2017.00609 10.1016/j.immuni.2015.02.005 10.1016/j.celrep.2016.09.008 10.1161/ATVBAHA.117.309145 10.1002/jimd.12284 10.1177/20420188211065655 10.1038/s41598-021-98611-7 10.1371/journal.pone.0045429 10.1007/s10545-010-9090-x 10.1016/j.bbalip.2014.06.007 10.1371/journal.pone.0030659 10.1016/j.mad.2023.111792 10.1038/nri.2016.70 10.1016/j.cmet.2018.09.018 10.1016/j.yjmcc.2019.01.003 10.7150/thno.63751 10.1038/ni.3366 10.3390/ijms21072589 10.1007/s11154-018-9448-1 10.4049/jimmunol.1402469 10.1038/s41467-020-20141-z 10.1016/j.ymgme.2020.09.001 10.1038/s41591-020-0939-8 10.1155/2019/2984747 10.1038/s41467-017-00231-1 10.3390/nu16020257 10.1002/cyto.a.22104 10.1186/s12931-018-0777-0 10.1002/cti2.1304 10.4049/jimmunol.176.1.191 10.1002/jimd.12372 10.1084/jem.176.1.287 10.1016/S2213-2600(16)30048-0 10.1016/j.bcp.2021.114634 10.1038/nm.4153 10.1038/nature09663 10.14814/phy2.14037 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbadis.2024.167524 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-260X |
ExternalDocumentID | 39307292 10_1016_j_bbadis_2024_167524 S0925443924005180 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFNM ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACIEU ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AEXQZ AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE IXB J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WUQ XJT XPP ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c357t-2739d9f1e68fe8db30173a02574d682a2f28b22a06797e9d3618a652d4f44e1a3 |
IEDL.DBID | .~1 |
ISSN | 0925-4439 1879-260X |
IngestDate | Tue Aug 05 10:51:55 EDT 2025 Mon Jul 21 06:06:16 EDT 2025 Tue Aug 05 12:00:38 EDT 2025 Sat Jul 19 17:11:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Immunometabolism Immunophenotyping Inflammation Fatty acid oxidation disorders Macrophages |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-2739d9f1e68fe8db30173a02574d682a2f28b22a06797e9d3618a652d4f44e1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925443924005180 |
PMID | 39307292 |
PQID | 3108388003 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3108388003 pubmed_primary_39307292 crossref_primary_10_1016_j_bbadis_2024_167524 elsevier_sciencedirect_doi_10_1016_j_bbadis_2024_167524 |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Molecular basis of disease |
PublicationTitleAlternate | Biochim Biophys Acta Mol Basis Dis |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Williams-Hall (bb0020) 2022; 13 Rutkowsky (bb0035) 2014; 306 Divakaruni (bb0190) 2018; 28 Vallejo (bb0025) 2021; 10 Gonzalez-Hurtado (bb0155) 2017; 312 Spiekerkoetter (bb0175) 2010; 33 Alivernini (bb0215) 2020; 26 Olivieri (bb0165) 2023; 211 Van den Bossche, van der Windt (bb0070) 2018; 28 Yuasa (bb0105) 2019; 2019 Nomura (bb0100) 2019; 127 Verberk (bb0135) 2022; 2 Nomura (bb0065) 2016; 17 Abeles (bb0115) 2012; 81 Jha (bb0040) 2015; 42 Verberk (bb0150) 2021; 12 Nawaz (bb0230) 2017; 8 Mahittikorn (bb0130) 2022; 21 Genoula (bb0140) 2020; 16 Namgaladze, Brune (bb0055) 2014; 1841 Gaston (bb0245) 2020; 43 Moon (bb0085) 2016; 22 Mosegaard (bb0185) 2023 Baardman (bb0145) 2020; 11 Rouyer (bb0160) 2024; 31 Stein (bb0205) 1992; 176 Thomas (bb0110) 2017; 37 Vats (bb0060) 2006; 4 McCoin (bb0030) 2019; 7 Tucci (bb0235) 2012; 7 O’Neill (bb0045) 2016; 16 Elizondo (bb0005) 2020; 131 Knottnerus (bb0010) 2018; 19 Raulien (bb0075) 2017; 8 Thompson (bb0125) 2012; 7 Grunert (bb0015) 2021; 44 Mitsi (bb0225) 2018; 19 Vogel (bb0210) 2022; 1867 Peters (bb0120) 2016; 4 Li (bb0180) 2022; 12 Zhou (bb0090) 2011; 469 Hohensinner (bb0095) 2021; 190 Knottnerus (bb0240) 2020; 21 Kosovski (bb0170) 2024; 16 Harber (bb0250) 2020; 10 Wright (bb0200) 2021; 11 Van den Bossche (bb0050) 2016; 17 Van den Bossche (bb0080) 2017; 38 Van den Bossche (bb0255) Nov 28, 2015 Jenmalm (bb0220) 2006; 176 Tan (bb0195) 2015; 194 Spiekerkoetter (10.1016/j.bbadis.2024.167524_bb0175) 2010; 33 Van den Bossche (10.1016/j.bbadis.2024.167524_bb0050) 2016; 17 Vallejo (10.1016/j.bbadis.2024.167524_bb0025) 2021; 10 Jha (10.1016/j.bbadis.2024.167524_bb0040) 2015; 42 O’Neill (10.1016/j.bbadis.2024.167524_bb0045) 2016; 16 Tucci (10.1016/j.bbadis.2024.167524_bb0235) 2012; 7 Vogel (10.1016/j.bbadis.2024.167524_bb0210) 2022; 1867 Nomura (10.1016/j.bbadis.2024.167524_bb0065) 2016; 17 Namgaladze (10.1016/j.bbadis.2024.167524_bb0055) 2014; 1841 Yuasa (10.1016/j.bbadis.2024.167524_bb0105) 2019; 2019 Divakaruni (10.1016/j.bbadis.2024.167524_bb0190) 2018; 28 Hohensinner (10.1016/j.bbadis.2024.167524_bb0095) 2021; 190 Kosovski (10.1016/j.bbadis.2024.167524_bb0170) 2024; 16 Baardman (10.1016/j.bbadis.2024.167524_bb0145) 2020; 11 Vats (10.1016/j.bbadis.2024.167524_bb0060) 2006; 4 Stein (10.1016/j.bbadis.2024.167524_bb0205) 1992; 176 Olivieri (10.1016/j.bbadis.2024.167524_bb0165) 2023; 211 Van den Bossche (10.1016/j.bbadis.2024.167524_bb0255) 2015 Verberk (10.1016/j.bbadis.2024.167524_bb0150) 2021; 12 Mosegaard (10.1016/j.bbadis.2024.167524_bb0185) 2023 Verberk (10.1016/j.bbadis.2024.167524_bb0135) 2022; 2 Wright (10.1016/j.bbadis.2024.167524_bb0200) 2021; 11 Gaston (10.1016/j.bbadis.2024.167524_bb0245) 2020; 43 McCoin (10.1016/j.bbadis.2024.167524_bb0030) 2019; 7 Nawaz (10.1016/j.bbadis.2024.167524_bb0230) 2017; 8 Elizondo (10.1016/j.bbadis.2024.167524_bb0005) 2020; 131 Gonzalez-Hurtado (10.1016/j.bbadis.2024.167524_bb0155) 2017; 312 Alivernini (10.1016/j.bbadis.2024.167524_bb0215) 2020; 26 Rutkowsky (10.1016/j.bbadis.2024.167524_bb0035) 2014; 306 Genoula (10.1016/j.bbadis.2024.167524_bb0140) 2020; 16 Harber (10.1016/j.bbadis.2024.167524_bb0250) 2020; 10 Abeles (10.1016/j.bbadis.2024.167524_bb0115) 2012; 81 Rouyer (10.1016/j.bbadis.2024.167524_bb0160) 2024; 31 Knottnerus (10.1016/j.bbadis.2024.167524_bb0010) 2018; 19 Raulien (10.1016/j.bbadis.2024.167524_bb0075) 2017; 8 Mahittikorn (10.1016/j.bbadis.2024.167524_bb0130) 2022; 21 Van den Bossche (10.1016/j.bbadis.2024.167524_bb0070) 2018; 28 Zhou (10.1016/j.bbadis.2024.167524_bb0090) 2011; 469 Grunert (10.1016/j.bbadis.2024.167524_bb0015) 2021; 44 Peters (10.1016/j.bbadis.2024.167524_bb0120) 2016; 4 Li (10.1016/j.bbadis.2024.167524_bb0180) 2022; 12 Thomas (10.1016/j.bbadis.2024.167524_bb0110) 2017; 37 Knottnerus (10.1016/j.bbadis.2024.167524_bb0240) 2020; 21 Williams-Hall (10.1016/j.bbadis.2024.167524_bb0020) 2022; 13 Nomura (10.1016/j.bbadis.2024.167524_bb0100) 2019; 127 Mitsi (10.1016/j.bbadis.2024.167524_bb0225) 2018; 19 Moon (10.1016/j.bbadis.2024.167524_bb0085) 2016; 22 Van den Bossche (10.1016/j.bbadis.2024.167524_bb0080) 2017; 38 Tan (10.1016/j.bbadis.2024.167524_bb0195) 2015; 194 Thompson (10.1016/j.bbadis.2024.167524_bb0125) 2012; 7 Jenmalm (10.1016/j.bbadis.2024.167524_bb0220) 2006; 176 |
References_xml | – volume: 306 start-page: E1378 year: 2014 end-page: E1387 ident: bb0035 article-title: Acylcarnitines activate proinflammatory signaling pathways publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 11 start-page: 6296 year: 2020 ident: bb0145 article-title: Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques publication-title: Nat. Commun. – volume: 176 start-page: 191 year: 2006 end-page: 199 ident: bb0220 article-title: Regulation of myeloid cell function through the CD200 receptor publication-title: J. Immunol. – volume: 131 start-page: 90 year: 2020 end-page: 97 ident: bb0005 article-title: Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD publication-title: Mol. Genet. Metab. – volume: 42 start-page: 419 year: 2015 end-page: 430 ident: bb0040 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity – volume: 28 start-page: 538 year: 2018 end-page: 540 ident: bb0070 article-title: Fatty acid oxidation in macrophages and T cells: time for reassessment? publication-title: Cell Metab. – volume: 13 year: 2022 ident: bb0020 article-title: Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders publication-title: Ther. Adv. Endocrinol. Metab. – year: 2023 ident: bb0185 article-title: Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS publication-title: bioRxiv – volume: 1841 start-page: 1329 year: 2014 end-page: 1335 ident: bb0055 article-title: Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization publication-title: Biochim. Biophys. Acta – volume: 37 start-page: 1548 year: 2017 end-page: 1558 ident: bb0110 article-title: Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 10 year: 2020 ident: bb0250 article-title: Succinate is an inflammation-induced Immunoregulatory metabolite in macrophages publication-title: Metabolites – volume: 16 year: 2024 ident: bb0170 article-title: Exploring the link between inflammatory biomarkers and Adipometrics in healthy young adults aged 20-35 years publication-title: Nutrients – volume: 22 start-page: 1002 year: 2016 end-page: 1012 ident: bb0085 article-title: NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages publication-title: Nat. Med. – volume: 176 start-page: 287 year: 1992 end-page: 292 ident: bb0205 article-title: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation publication-title: J. Exp. Med. – volume: 38 start-page: 395 year: 2017 end-page: 406 ident: bb0080 article-title: Macrophage Immunometabolism: where are we (going)? publication-title: Trends Immunol. – volume: 33 start-page: 527 year: 2010 end-page: 532 ident: bb0175 article-title: Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening publication-title: J. Inherit. Metab. Dis. – volume: 21 start-page: 308 year: 2022 ident: bb0130 article-title: Elevation of serum interleukin-1beta levels as a potential indicator for malarial infection and severe malaria: a meta-analysis publication-title: Malar. J. – volume: 10 year: 2021 ident: bb0025 article-title: Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD) publication-title: Clin Transl Immunology – volume: 26 start-page: 1295 year: 2020 end-page: 1306 ident: bb0215 article-title: Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis publication-title: Nat. Med. – volume: 11 start-page: 19616 year: 2021 ident: bb0200 article-title: The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease publication-title: Sci. Rep. – volume: 19 start-page: 93 year: 2018 end-page: 106 ident: bb0010 article-title: Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle publication-title: Rev. Endocr. Metab. Disord. – volume: 127 start-page: 270 year: 2019 end-page: 276 ident: bb0100 article-title: Macrophage fatty acid oxidation inhibits atherosclerosis progression publication-title: J. Mol. Cell. Cardiol. – volume: 7 year: 2012 ident: bb0125 article-title: Critical appraisal of four IL-6 immunoassays publication-title: PloS One – volume: 2019 start-page: 2984747 year: 2019 ident: bb0105 article-title: Evaluation of metabolic defects in fatty acid oxidation using peripheral blood mononuclear cells loaded with deuterium-labeled fatty acids publication-title: Dis. Markers – year: Nov 28, 2015 ident: bb0255 article-title: Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis publication-title: JoVE (Journal of Visualized Experiments) – volume: 12 year: 2021 ident: bb0150 article-title: Myeloid ATP citrate Lyase regulates macrophage inflammatory responses in vitro without altering inflammatory disease outcomes publication-title: Front. Immunol. – volume: 8 start-page: 609 year: 2017 ident: bb0075 article-title: Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes publication-title: Front. Immunol. – volume: 2 year: 2022 ident: bb0135 article-title: An integrated toolbox to profile macrophage immunometabolism publication-title: Cell Rep Methods – volume: 4 start-page: 574 year: 2016 end-page: 584 ident: bb0120 article-title: Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts publication-title: Lancet Respir. Med. – volume: 194 start-page: 6082 year: 2015 end-page: 6089 ident: bb0195 article-title: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism publication-title: J. Immunol. – volume: 81 start-page: 823 year: 2012 end-page: 834 ident: bb0115 article-title: CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi) /CD16(neg) monocytes: expansion of CD14(hi) /CD16(pos) and contraction of CD14(lo) /CD16(pos) monocytes in acute liver failure publication-title: Cytometry A – volume: 21 year: 2020 ident: bb0240 article-title: Electrophysiological abnormalities in VLCAD deficient hiPSC-cardiomyocytes can be improved by lowering accumulation of fatty acid oxidation intermediates publication-title: Int. J. Mol. Sci. – volume: 19 start-page: 66 year: 2018 ident: bb0225 article-title: Human alveolar macrophages predominately express combined classical M1 and M2 surface markers in steady state publication-title: Respir. Res. – volume: 469 start-page: 221 year: 2011 end-page: 225 ident: bb0090 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature – volume: 16 year: 2020 ident: bb0140 article-title: Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via HIF-1alpha activation publication-title: PLoS Pathog. – volume: 31 year: 2024 ident: bb0160 article-title: Long-term prognosis of fatty-acid oxidation disorders in adults: optimism despite the limited effective therapies available publication-title: Eur. J. Neurol. – volume: 44 start-page: 893 year: 2021 end-page: 902 ident: bb0015 article-title: The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein publication-title: J. Inherit. Metab. Dis. – volume: 190 year: 2021 ident: bb0095 article-title: Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation publication-title: Biochem. Pharmacol. – volume: 12 start-page: 976 year: 2022 end-page: 998 ident: bb0180 article-title: Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation publication-title: Theranostics – volume: 17 start-page: 216 year: 2016 end-page: 217 ident: bb0065 article-title: Fatty acid oxidation in macrophage polarization publication-title: Nat. Immunol. – volume: 8 start-page: 286 year: 2017 ident: bb0230 article-title: CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors publication-title: Nat. Commun. – volume: 17 start-page: 684 year: 2016 end-page: 696 ident: bb0050 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. – volume: 312 start-page: E381 year: 2017 end-page: E393 ident: bb0155 article-title: Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 43 start-page: 1232 year: 2020 end-page: 1242 ident: bb0245 article-title: Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride publication-title: J. Inherit. Metab. Dis. – volume: 7 year: 2012 ident: bb0235 article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD−/−) mouse to compensate a defective fatty acid beta-oxidation publication-title: PloS One – volume: 1867 year: 2022 ident: bb0210 article-title: Lipid scavenging macrophages and inflammation publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 4 start-page: 13 year: 2006 end-page: 24 ident: bb0060 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. – volume: 28 year: 2018 ident: bb0190 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metab. – volume: 7 year: 2019 ident: bb0030 article-title: Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders publication-title: Physiol. Rep. – volume: 16 start-page: 553 year: 2016 end-page: 565 ident: bb0045 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. – volume: 211 year: 2023 ident: bb0165 article-title: Sex/gender-related differences in inflammaging publication-title: Mech. Ageing Dev. – volume: 12 year: 2021 ident: 10.1016/j.bbadis.2024.167524_bb0150 article-title: Myeloid ATP citrate Lyase regulates macrophage inflammatory responses in vitro without altering inflammatory disease outcomes publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.669920 – volume: 31 year: 2024 ident: 10.1016/j.bbadis.2024.167524_bb0160 article-title: Long-term prognosis of fatty-acid oxidation disorders in adults: optimism despite the limited effective therapies available publication-title: Eur. J. Neurol. doi: 10.1111/ene.16138 – volume: 306 start-page: E1378 year: 2014 ident: 10.1016/j.bbadis.2024.167524_bb0035 article-title: Acylcarnitines activate proinflammatory signaling pathways publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00656.2013 – volume: 4 start-page: 13 year: 2006 ident: 10.1016/j.bbadis.2024.167524_bb0060 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.011 – volume: 21 start-page: 308 year: 2022 ident: 10.1016/j.bbadis.2024.167524_bb0130 article-title: Elevation of serum interleukin-1beta levels as a potential indicator for malarial infection and severe malaria: a meta-analysis publication-title: Malar. J. doi: 10.1186/s12936-022-04325-0 – volume: 38 start-page: 395 year: 2017 ident: 10.1016/j.bbadis.2024.167524_bb0080 article-title: Macrophage Immunometabolism: where are we (going)? publication-title: Trends Immunol. doi: 10.1016/j.it.2017.03.001 – volume: 16 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0140 article-title: Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but mycobacterium tuberculosis counteracts this process via HIF-1alpha activation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008929 – volume: 10 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0250 article-title: Succinate is an inflammation-induced Immunoregulatory metabolite in macrophages publication-title: Metabolites doi: 10.3390/metabo10090372 – year: 2023 ident: 10.1016/j.bbadis.2024.167524_bb0185 article-title: Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS publication-title: bioRxiv – volume: 312 start-page: E381 year: 2017 ident: 10.1016/j.bbadis.2024.167524_bb0155 article-title: Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00408.2016 – volume: 1867 year: 2022 ident: 10.1016/j.bbadis.2024.167524_bb0210 article-title: Lipid scavenging macrophages and inflammation publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 8 start-page: 609 year: 2017 ident: 10.1016/j.bbadis.2024.167524_bb0075 article-title: Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00609 – volume: 42 start-page: 419 year: 2015 ident: 10.1016/j.bbadis.2024.167524_bb0040 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity doi: 10.1016/j.immuni.2015.02.005 – volume: 17 start-page: 684 year: 2016 ident: 10.1016/j.bbadis.2024.167524_bb0050 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.008 – volume: 37 start-page: 1548 year: 2017 ident: 10.1016/j.bbadis.2024.167524_bb0110 article-title: Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309145 – volume: 43 start-page: 1232 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0245 article-title: Cardiac tissue citric acid cycle intermediates in exercised very long-chain acyl-CoA dehydrogenase-deficient mice fed triheptanoin or medium-chain triglyceride publication-title: J. Inherit. Metab. Dis. doi: 10.1002/jimd.12284 – volume: 13 year: 2022 ident: 10.1016/j.bbadis.2024.167524_bb0020 article-title: Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders publication-title: Ther. Adv. Endocrinol. Metab. doi: 10.1177/20420188211065655 – volume: 11 start-page: 19616 year: 2021 ident: 10.1016/j.bbadis.2024.167524_bb0200 article-title: The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease publication-title: Sci. Rep. doi: 10.1038/s41598-021-98611-7 – volume: 7 year: 2012 ident: 10.1016/j.bbadis.2024.167524_bb0235 article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD−/−) mouse to compensate a defective fatty acid beta-oxidation publication-title: PloS One doi: 10.1371/journal.pone.0045429 – volume: 33 start-page: 527 year: 2010 ident: 10.1016/j.bbadis.2024.167524_bb0175 article-title: Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-010-9090-x – volume: 1841 start-page: 1329 year: 2014 ident: 10.1016/j.bbadis.2024.167524_bb0055 article-title: Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2014.06.007 – volume: 7 year: 2012 ident: 10.1016/j.bbadis.2024.167524_bb0125 article-title: Critical appraisal of four IL-6 immunoassays publication-title: PloS One doi: 10.1371/journal.pone.0030659 – volume: 211 year: 2023 ident: 10.1016/j.bbadis.2024.167524_bb0165 article-title: Sex/gender-related differences in inflammaging publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2023.111792 – issue: 105 year: 2015 ident: 10.1016/j.bbadis.2024.167524_bb0255 article-title: Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis publication-title: JoVE (Journal of Visualized Experiments) – volume: 16 start-page: 553 year: 2016 ident: 10.1016/j.bbadis.2024.167524_bb0045 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.70 – volume: 28 issue: 490–503 year: 2018 ident: 10.1016/j.bbadis.2024.167524_bb0190 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metab. – volume: 28 start-page: 538 year: 2018 ident: 10.1016/j.bbadis.2024.167524_bb0070 article-title: Fatty acid oxidation in macrophages and T cells: time for reassessment? publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.09.018 – volume: 127 start-page: 270 year: 2019 ident: 10.1016/j.bbadis.2024.167524_bb0100 article-title: Macrophage fatty acid oxidation inhibits atherosclerosis progression publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2019.01.003 – volume: 12 start-page: 976 year: 2022 ident: 10.1016/j.bbadis.2024.167524_bb0180 article-title: Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation publication-title: Theranostics doi: 10.7150/thno.63751 – volume: 17 start-page: 216 year: 2016 ident: 10.1016/j.bbadis.2024.167524_bb0065 article-title: Fatty acid oxidation in macrophage polarization publication-title: Nat. Immunol. doi: 10.1038/ni.3366 – volume: 21 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0240 article-title: Electrophysiological abnormalities in VLCAD deficient hiPSC-cardiomyocytes can be improved by lowering accumulation of fatty acid oxidation intermediates publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072589 – volume: 19 start-page: 93 year: 2018 ident: 10.1016/j.bbadis.2024.167524_bb0010 article-title: Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-018-9448-1 – volume: 194 start-page: 6082 year: 2015 ident: 10.1016/j.bbadis.2024.167524_bb0195 article-title: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism publication-title: J. Immunol. doi: 10.4049/jimmunol.1402469 – volume: 11 start-page: 6296 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0145 article-title: Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques publication-title: Nat. Commun. doi: 10.1038/s41467-020-20141-z – volume: 131 start-page: 90 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0005 article-title: Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2020.09.001 – volume: 26 start-page: 1295 year: 2020 ident: 10.1016/j.bbadis.2024.167524_bb0215 article-title: Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis publication-title: Nat. Med. doi: 10.1038/s41591-020-0939-8 – volume: 2019 start-page: 2984747 year: 2019 ident: 10.1016/j.bbadis.2024.167524_bb0105 article-title: Evaluation of metabolic defects in fatty acid oxidation using peripheral blood mononuclear cells loaded with deuterium-labeled fatty acids publication-title: Dis. Markers doi: 10.1155/2019/2984747 – volume: 8 start-page: 286 year: 2017 ident: 10.1016/j.bbadis.2024.167524_bb0230 article-title: CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors publication-title: Nat. Commun. doi: 10.1038/s41467-017-00231-1 – volume: 16 year: 2024 ident: 10.1016/j.bbadis.2024.167524_bb0170 article-title: Exploring the link between inflammatory biomarkers and Adipometrics in healthy young adults aged 20-35 years publication-title: Nutrients doi: 10.3390/nu16020257 – volume: 81 start-page: 823 year: 2012 ident: 10.1016/j.bbadis.2024.167524_bb0115 publication-title: Cytometry A doi: 10.1002/cyto.a.22104 – volume: 19 start-page: 66 year: 2018 ident: 10.1016/j.bbadis.2024.167524_bb0225 article-title: Human alveolar macrophages predominately express combined classical M1 and M2 surface markers in steady state publication-title: Respir. Res. doi: 10.1186/s12931-018-0777-0 – volume: 10 year: 2021 ident: 10.1016/j.bbadis.2024.167524_bb0025 article-title: Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD) publication-title: Clin Transl Immunology doi: 10.1002/cti2.1304 – volume: 176 start-page: 191 year: 2006 ident: 10.1016/j.bbadis.2024.167524_bb0220 article-title: Regulation of myeloid cell function through the CD200 receptor publication-title: J. Immunol. doi: 10.4049/jimmunol.176.1.191 – volume: 44 start-page: 893 year: 2021 ident: 10.1016/j.bbadis.2024.167524_bb0015 article-title: The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein publication-title: J. Inherit. Metab. Dis. doi: 10.1002/jimd.12372 – volume: 176 start-page: 287 year: 1992 ident: 10.1016/j.bbadis.2024.167524_bb0205 article-title: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation publication-title: J. Exp. Med. doi: 10.1084/jem.176.1.287 – volume: 4 start-page: 574 year: 2016 ident: 10.1016/j.bbadis.2024.167524_bb0120 article-title: Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(16)30048-0 – volume: 2 year: 2022 ident: 10.1016/j.bbadis.2024.167524_bb0135 article-title: An integrated toolbox to profile macrophage immunometabolism publication-title: Cell Rep Methods – volume: 190 year: 2021 ident: 10.1016/j.bbadis.2024.167524_bb0095 article-title: Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2021.114634 – volume: 22 start-page: 1002 year: 2016 ident: 10.1016/j.bbadis.2024.167524_bb0085 article-title: NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages publication-title: Nat. Med. doi: 10.1038/nm.4153 – volume: 469 start-page: 221 year: 2011 ident: 10.1016/j.bbadis.2024.167524_bb0090 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 7 year: 2019 ident: 10.1016/j.bbadis.2024.167524_bb0030 article-title: Blood cytokine patterns suggest a modest inflammation phenotype in subjects with long-chain fatty acid oxidation disorders publication-title: Physiol. Rep. doi: 10.14814/phy2.14037 |
SSID | ssj0000670 |
Score | 2.4418538 |
Snippet | Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 167524 |
SubjectTerms | Acyl-CoA Dehydrogenase, Long-Chain - genetics Acyl-CoA Dehydrogenase, Long-Chain - metabolism Adolescent Adult Case-Control Studies Child Child, Preschool Fatty acid oxidation disorders Fatty Acids - metabolism Female Humans Immunometabolism Immunophenotyping Inflammation Interleukin-4 - blood Interleukin-4 - genetics Interleukin-4 - metabolism Lipid Metabolism, Inborn Errors - blood Lipid Metabolism, Inborn Errors - genetics Lipid Metabolism, Inborn Errors - metabolism Lipid Metabolism, Inborn Errors - pathology Macrophage Activation - genetics Macrophages Macrophages - immunology Macrophages - metabolism Male Middle Aged Monocytes - immunology Monocytes - metabolism Oxidation-Reduction Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Young Adult |
Title | Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders |
URI | https://dx.doi.org/10.1016/j.bbadis.2024.167524 https://www.ncbi.nlm.nih.gov/pubmed/39307292 https://www.proquest.com/docview/3108388003 |
Volume | 1871 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6WlNJeSrtN203boEKuztqyLFnHsDRsX6HkAbkJ2ZISh9Zesl7oXvrbO-NHaQ4h0JNByFh8Go2-Gc8D4AA5uUQbzUWlEhINlCyNrJWUyRVLp-NgQ5ch9-1ELi_E58vscgKLMReGwioH3d_r9E5bDyPzAc35qqrmZ7Gm8lp4vwuSrJzsdiEUSfnh7-Rfbdz5WXByRLPH9LkuxqsorKuoaDcXhwlSZy7uu57uo5_dNXT8HJ4N_JEd9Ut8ARNfT-Fx31FyO4Uni7GB20vweF6bctt6ZmvHflpq1nWN6oMNfbrXrKrZUFd1zcghiwOUDogklP1o6quovLY4Jdi23TJbVo41v6q-BxNzQ9XO9S5cHH88XyyjoatCVKaZaikXRzsdEi_z4HNX4AlXqUXqo4STObc88Lzg3JKHSXntUpnkVmbciSCET2z6CnbqpvZvgCU84PFFi4drL2Ssi7JwPlOxcNpmSoUZRCOYZtUXzzBjVNmN6cE3BL7pwZ-BGhE3d4TAoH5_4M0P4wYZRJl-etjaN5u1QfqaU8GbOJ3B637n_q4l1SkVTud7__3dt_CUU0PgzifzDnba241_jyylLfY7MdyHR0eL06_f6fnpy_LkD7RC5uE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3ChpJeSpt-ZPupQq_u2rIsWcewJGyaZC9NIDchW1Lj0tih60D333fGlktzCIVehYTFSBq9GWveA_iEmFxijOaSWgmJAUqRJ9ZKquRKpdNpsGGokDtfy9Wl-HJVXO3AcqqFoWeV0fePPn3w1rFlEa25uG2axddUE70W3u-CdlaJcfsusVMVM9g9PDldrf92yEOqBfsnNGCqoBueeVWVdQ3xdnPxOUP0zMVDN9RDCHS4iY6fwpMIIdnhOMtnsOPbfXg0ikpu92FvOWm4PQePR7art71ntnXsxpJe1zV6EBalujesaVmkVt0wysliA1UEIg5lP7r2W1JfW-wSbN9vma0bx7pfzSjDxFwk7ty8gMvjo4vlKonCCkmdF6qnchztdMi8LIMvXYWHXOUW0Y8STpbc8sDLinNLSSbltctlVlpZcCeCED6z-UuYtV3rD4BlPOAJxqCHay9kqqu6cr5QqXDaFkqFOSSTMc3tyJ9hpodl381ofEPGN6Px56Ami5t7-8Cgi__HyI_TAhm0Mv33sK3v7jYGEWxJnDdpPodX48r9mUuuc-JO56__-7sfYG91cX5mzk7Wp2_gMSd94CFF8xZm_c87_w5BS1-9j5vyN2lZ5_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monocyte+and+macrophage+profiles+in+patients+with+inherited+long-chain+fatty+acid+oxidation+disorders&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Verberk%2C+Sanne+G+S&rft.au=Hahn%2C+Nico&rft.au=Heister%2C+Daan&rft.au=Haverkamp%2C+Jorien&rft.date=2025-01-01&rft.issn=1879-260X&rft.eissn=1879-260X&rft.volume=1871&rft.issue=1&rft.spage=167524&rft_id=info:doi/10.1016%2Fj.bbadis.2024.167524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon |