Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load

This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of environmental and civil engineering Vol. 25; no. 3; pp. 429 - 451
Main Authors Jebur, Ameer A., Atherton, William, Al Khaddar, Rafid M., Loffill, Ed
Format Journal Article
LanguageEnglish
Published Taylor & Francis 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile aspect ratios of 12, 17, and 25. An optimised second-order Levenberg-Marquardt (LM) training algorithm has been used in this process. The piles were driven in three sand densities; dense, medium, and loose. A statistical analysis test was conducted to explore the relative importance and the statistical contribution (Beta and Sig) values of the independent variables on the model output. Pile effective length, pile flexural rigidity, applied load, sand-pile friction angle and pile aspect ratio have been identified to be the most effective parameters on model output. To demonstrate the effectiveness of the proposed algorithm, a graphical comparison was performed between the implemented algorithm and the most conventional pile capacity design approaches. The proficiency metric indicators demonstrated an outstanding agreement between the measured and predicted pile-load settlement, thus yielding a correlation coefficient (R) and root mean square error (RMSE) of 0.99, 0.043 respectively, with a relatively insignificant mean square error level (MSE) of 0.0019.
AbstractList This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile aspect ratios of 12, 17, and 25. An optimised second-order Levenberg-Marquardt (LM) training algorithm has been used in this process. The piles were driven in three sand densities; dense, medium, and loose. A statistical analysis test was conducted to explore the relative importance and the statistical contribution (Beta and Sig) values of the independent variables on the model output. Pile effective length, pile flexural rigidity, applied load, sand-pile friction angle and pile aspect ratio have been identified to be the most effective parameters on model output. To demonstrate the effectiveness of the proposed algorithm, a graphical comparison was performed between the implemented algorithm and the most conventional pile capacity design approaches. The proficiency metric indicators demonstrated an outstanding agreement between the measured and predicted pile-load settlement, thus yielding a correlation coefficient (R) and root mean square error (RMSE) of 0.99, 0.043 respectively, with a relatively insignificant mean square error level (MSE) of 0.0019.
Author Loffill, Ed
Atherton, William
Jebur, Ameer A.
Al Khaddar, Rafid M.
Author_xml – sequence: 1
  givenname: Ameer A.
  surname: Jebur
  fullname: Jebur, Ameer A.
  organization: Department of Civil Engineering, Liverpool John Moores University
– sequence: 2
  givenname: William
  surname: Atherton
  fullname: Atherton, William
  organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre
– sequence: 3
  givenname: Rafid M.
  surname: Al Khaddar
  fullname: Al Khaddar, Rafid M.
  organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre
– sequence: 4
  givenname: Ed
  surname: Loffill
  fullname: Loffill, Ed
  organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre
BookMark eNp9kEtLxTAUhIMoeH38BCFLXfSa0zR97LyILxDduC9pcqLRNClJRFz6z22vunU2A8PMLL4DsuuDR0JOgK2Btewcurpqoe3WJYN2DYJDWXc7ZFUC1EVTQrVLVkunWEr75DilVzaLc6h5tyJfm5itscpKRz2-x63ljxDf6Onm4eGMymmKQaoXakKkY9DonPXPNBg6WYc0Yc4OR_R5icKEvkCvUdOUEd22k2h6H15R5TnNgaowThFTssFTF6Q-IntGuoTHv35Inq6vni5vi_vHm7vLzX2huGhyAQq0Ypo3tWgEryrTDNjJpuKgqsFgXZfCyAEMKFajHkwjmDCDFm2ph05wfkjEz62KIaWIpp-iHWX87IH1C8n-j2S_kOx_Sc67i5-d9TOBUc5onO6z_HQhmii9sqnn_198A5Sifsc
CitedBy_id crossref_primary_10_1016_j_measurement_2019_03_043
crossref_primary_10_3390_math12111701
crossref_primary_10_1007_s10706_023_02619_x
crossref_primary_10_1016_j_measurement_2019_04_081
crossref_primary_10_1016_j_measurement_2024_114563
crossref_primary_10_3390_buildings13051228
crossref_primary_10_1007_s41939_021_00114_5
crossref_primary_10_1007_s00500_020_05435_0
crossref_primary_10_1080_19648189_2020_1795725
crossref_primary_10_1016_j_engstruct_2024_118093
crossref_primary_10_1007_s11709_021_0744_6
crossref_primary_10_1007_s13369_020_04683_4
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
DBID AAYXX
CITATION
DOI 10.1080/19648189.2018.1531269
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2116-7214
EndPage 451
ExternalDocumentID 10_1080_19648189_2018_1531269
1531269
Genre Original Articles
GroupedDBID .7F
.QJ
0BK
0R~
30N
4.4
5GY
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFO
ACGFS
ACTIO
ADCVX
ADGTB
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
DU5
EBS
E~A
E~B
FUNRP
FVPDL
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TTHFI
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
H13
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c357t-1c1dc0d376575344f7be9a7431c4bfe6625fab1f1c06edbf7505fbd582db9533
ISSN 1964-8189
IngestDate Fri Aug 23 00:46:45 EDT 2024
Tue Jun 13 19:26:17 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-1c1dc0d376575344f7be9a7431c4bfe6625fab1f1c06edbf7505fbd582db9533
OpenAccessLink https://researchonline.ljmu.ac.uk/id/eprint/10206/3/Artificial%20neural%20network%20%28ANN%29%20approach%20for%20modelling%20of%20pile%20settlement%20of%20open-ended%20steel%20piles%20subjected%20to%20compression%20load.pdf
PageCount 23
ParticipantIDs informaworld_taylorfrancis_310_1080_19648189_2018_1531269
crossref_primary_10_1080_19648189_2018_1531269
PublicationCentury 2000
PublicationDate 2021-02-23
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-23
  day: 23
PublicationDecade 2020
PublicationTitle European journal of environmental and civil engineering
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
SSID ssj0000331639
Score 2.3215795
Snippet This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 429
SubjectTerms Artificial neural network
L-M algorithm
pile capacity
sandy soil
steel open-ended pile
Title Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load
URI https://www.tandfonline.com/doi/abs/10.1080/19648189.2018.1531269
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKcoED4imWl3zgAIpc4ubpY4UWrYDtqUh7i-LYFpVKi7Yph73tf-QHMWM7jqtdIR6XtJrEcZX5Op6ZfDMm5LUyMp0pWTNZF4LluSmYUEIyXRt87VPr3G7fdrYoT7_kH8-L88nkZ8Ra2vdy2l3eWFfyL1oFGegVq2T_QrPhpiCA76BfOIKG4fhHOp5fWKYPJr2xL6X9sKxu9BvniwWG_EPTcMsntPverAeiMxiEZKexifHACMC9tJhNiiegfb221-yS3V5iugak4KkiCd2RZzfJetsebPR5kNv3fm5USuf7EnSrH6s1yEMnxEDj0aBia62-aeTuTwMc0U31RH-fIQqn1smnr2A-PVG8NSuVnIWBn7FFhnuzcqLiDMeM24rxLGByeW2zkcheizJn4HM4q6utDELakkFgm8dG3lVXezBnkcXOfcLFLf656357bV1xREycDSdDRmA9hbWCz0oxLqSB3ujP3CK3Z9h-EAuL0kXI_KVZBk6wsHQH_-uH0rI6fXfjHAdO00FL3cgZWt4n93wUQ-cOkg_IRG8ekrtRb8tH5GoEJ3XgpB6c9A1A8y0dgElhGhqASbeGIujoCEwUjcCkFpj2mh0NwKT9lkbApAjMx2T54WT5_pT5_T5YlxVVz3jHVZcqWPIghsjAblRSixZd3C6XRpcQqptWcsO7tNRKGnB2CyNVUYOxQZb0E3K02W70U0JFIauq4Di8zcEBhqiIG4GNjrgwqquOyXR4ns1319Wl4b5Z7qCABhXQeAUcExE_9aa3mDQOjk3227HP_mPsc3Jn_Ee8IEf9xV6_BC-4l68sqH4Bge2wwg
link.rule.ids 315,783,787,27937,27938,60219,61008
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHhhgcImbp8cKURVoMxWpW1TH9kKVVDRd2Pjn3DkJSpFg6RTJyUWxffGdz999R8itMtLpKhkxGfmCeZ7xmVBCMh0ZPPaJtGfLt43iYPDmvUz8SSMXBmGVuIc2JVGEXavx58ZgdA2Je0ASKTA0mGfCow78s7wbiE2yFYDBQs12nfgnzuK4Lrgcwh4uBx5DsTqR5683rZioFQLThunp75O0_ugScfLeWRayk37-4nNcr1cHZK_yTGmvVKVDsqGzI7Lb4Cs8Jl94s6ScoEiEaS8WRk7venF8T2uGcgqdobbIDma709zQOaw-dKGRMRnjkdiEhbuYjcBTUDU9s88s6GIpMTYErUVOEfFeInUzOsun6oSM-0_jxwGrajiw1PXDgvGUq9RRsIyBX-iCLoRSiym6LaknjQ5g-2WmkhueOoFW0oAD4xup_AgUCJGvp6SV5Zk-I1T4Mgx9juJTD5wa8HS5EUhew4VRadgmnXrWknnJ1JHwigC1HtoEhzaphrZNRHNuk8KGSExZzyRx_5U9X0P2hmwPxqNhMnyOXy_IThdBMpgj716SVvGx1Ffg5RTy2qrxN-vD8KU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MAAg0PcPD1WQFVeEUOR2KI4theqpiLpwsY_585JUEGCpVMkJ45i-2J_Pn_3HSHnyki3p2TMZBwI5vsmYEIJyXRs8Ngn1r5N3_aUhMMX__41aNmEZUOrxD20qYUi7FyNP_dUmZYRd4UaUrDOYJgJjx34ZXkvFMtkJUShGozicJNvN4vreYA4hD1bDn2G1do4nr_e9GOF-qFfOrfyDDaJbL-5Jpy8ObNKOvnHLznHhRq1RTYaXEr7tSFtkyU92SHrc2qFu-QTb9aCExRlMO3FksjpRT9JLmmrT06hLdSm2MFYd1oYOoW5h5Ya9ZLRG4lFmLaLWf87BUPTY_tMScuZRM8QlFYFRb57zdOd0HGRqT0yGtyOroesyeDAci-IKsZzrnJXwSQGqNADS4ikFhmCltyXRoew-TKZ5IbnbqiVNABfAiNVEIP5IO91n3QmxUQfECoCGUUBx-qZD5AGcC43AqVruDAqj7rEaQctndY6HSlv5E_brk2xa9Oma7tEzA9tWlkHiamzmaTev3UPF6h7Rlafbwbp413ycETWesiQwQB575h0qveZPgGIU8lTa8RfGF3vUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+%28ANN%29+approach+for+modelling+of+pile+settlement+of+open-ended+steel+piles+subjected+to+compression+load&rft.jtitle=European+journal+of+environmental+and+civil+engineering&rft.au=Jebur%2C+Ameer+A.&rft.au=Atherton%2C+William&rft.au=Al+Khaddar%2C+Rafid+M.&rft.au=Loffill%2C+Ed&rft.date=2021-02-23&rft.pub=Taylor+%26+Francis&rft.issn=1964-8189&rft.eissn=2116-7214&rft.volume=25&rft.issue=3&rft.spage=429&rft.epage=451&rft_id=info:doi/10.1080%2F19648189.2018.1531269&rft.externalDocID=1531269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1964-8189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1964-8189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1964-8189&client=summon