Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load
This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile a...
Saved in:
Published in | European journal of environmental and civil engineering Vol. 25; no. 3; pp. 429 - 451 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
23.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile aspect ratios of 12, 17, and 25. An optimised second-order Levenberg-Marquardt (LM) training algorithm has been used in this process. The piles were driven in three sand densities; dense, medium, and loose. A statistical analysis test was conducted to explore the relative importance and the statistical contribution (Beta and Sig) values of the independent variables on the model output. Pile effective length, pile flexural rigidity, applied load, sand-pile friction angle and pile aspect ratio have been identified to be the most effective parameters on model output. To demonstrate the effectiveness of the proposed algorithm, a graphical comparison was performed between the implemented algorithm and the most conventional pile capacity design approaches. The proficiency metric indicators demonstrated an outstanding agreement between the measured and predicted pile-load settlement, thus yielding a correlation coefficient (R) and root mean square error (RMSE) of 0.99, 0.043 respectively, with a relatively insignificant mean square error level (MSE) of 0.0019. |
---|---|
AbstractList | This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial neural network (ANN) method. To achieve the planned aim, experimental pile load test were carried out on model open-ended steel piles, with pile aspect ratios of 12, 17, and 25. An optimised second-order Levenberg-Marquardt (LM) training algorithm has been used in this process. The piles were driven in three sand densities; dense, medium, and loose. A statistical analysis test was conducted to explore the relative importance and the statistical contribution (Beta and Sig) values of the independent variables on the model output. Pile effective length, pile flexural rigidity, applied load, sand-pile friction angle and pile aspect ratio have been identified to be the most effective parameters on model output. To demonstrate the effectiveness of the proposed algorithm, a graphical comparison was performed between the implemented algorithm and the most conventional pile capacity design approaches. The proficiency metric indicators demonstrated an outstanding agreement between the measured and predicted pile-load settlement, thus yielding a correlation coefficient (R) and root mean square error (RMSE) of 0.99, 0.043 respectively, with a relatively insignificant mean square error level (MSE) of 0.0019. |
Author | Loffill, Ed Atherton, William Jebur, Ameer A. Al Khaddar, Rafid M. |
Author_xml | – sequence: 1 givenname: Ameer A. surname: Jebur fullname: Jebur, Ameer A. organization: Department of Civil Engineering, Liverpool John Moores University – sequence: 2 givenname: William surname: Atherton fullname: Atherton, William organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre – sequence: 3 givenname: Rafid M. surname: Al Khaddar fullname: Al Khaddar, Rafid M. organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre – sequence: 4 givenname: Ed surname: Loffill fullname: Loffill, Ed organization: Department of Civil Engineering, Liverpool John Moores University, Peter Jost Centre |
BookMark | eNp9kEtLxTAUhIMoeH38BCFLXfSa0zR97LyILxDduC9pcqLRNClJRFz6z22vunU2A8PMLL4DsuuDR0JOgK2Btewcurpqoe3WJYN2DYJDWXc7ZFUC1EVTQrVLVkunWEr75DilVzaLc6h5tyJfm5itscpKRz2-x63ljxDf6Onm4eGMymmKQaoXakKkY9DonPXPNBg6WYc0Yc4OR_R5icKEvkCvUdOUEd22k2h6H15R5TnNgaowThFTssFTF6Q-IntGuoTHv35Inq6vni5vi_vHm7vLzX2huGhyAQq0Ypo3tWgEryrTDNjJpuKgqsFgXZfCyAEMKFajHkwjmDCDFm2ph05wfkjEz62KIaWIpp-iHWX87IH1C8n-j2S_kOx_Sc67i5-d9TOBUc5onO6z_HQhmii9sqnn_198A5Sifsc |
CitedBy_id | crossref_primary_10_1016_j_measurement_2019_03_043 crossref_primary_10_3390_math12111701 crossref_primary_10_1007_s10706_023_02619_x crossref_primary_10_1016_j_measurement_2019_04_081 crossref_primary_10_1016_j_measurement_2024_114563 crossref_primary_10_3390_buildings13051228 crossref_primary_10_1007_s41939_021_00114_5 crossref_primary_10_1007_s00500_020_05435_0 crossref_primary_10_1080_19648189_2020_1795725 crossref_primary_10_1016_j_engstruct_2024_118093 crossref_primary_10_1007_s11709_021_0744_6 crossref_primary_10_1007_s13369_020_04683_4 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
DBID | AAYXX CITATION |
DOI | 10.1080/19648189.2018.1531269 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2116-7214 |
EndPage | 451 |
ExternalDocumentID | 10_1080_19648189_2018_1531269 1531269 |
Genre | Original Articles |
GroupedDBID | .7F .QJ 0BK 0R~ 30N 4.4 5GY AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ACGFO ACGFS ACTIO ADCVX ADGTB AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG DGEBU DKSSO DU5 EBS E~A E~B FUNRP FVPDL GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TTHFI UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW AWYRJ CITATION H13 TBQAZ TDBHL TUROJ |
ID | FETCH-LOGICAL-c357t-1c1dc0d376575344f7be9a7431c4bfe6625fab1f1c06edbf7505fbd582db9533 |
ISSN | 1964-8189 |
IngestDate | Fri Aug 23 00:46:45 EDT 2024 Tue Jun 13 19:26:17 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-1c1dc0d376575344f7be9a7431c4bfe6625fab1f1c06edbf7505fbd582db9533 |
OpenAccessLink | https://researchonline.ljmu.ac.uk/id/eprint/10206/3/Artificial%20neural%20network%20%28ANN%29%20approach%20for%20modelling%20of%20pile%20settlement%20of%20open-ended%20steel%20piles%20subjected%20to%20compression%20load.pdf |
PageCount | 23 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_19648189_2018_1531269 crossref_primary_10_1080_19648189_2018_1531269 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-23 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | European journal of environmental and civil engineering |
PublicationYear | 2021 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
SSID | ssj0000331639 |
Score | 2.3215795 |
Snippet | This study was devoted to examine pile bearing capacity and to provide a reliable model to simulate pile load-settlement behaviour using a new artificial... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 429 |
SubjectTerms | Artificial neural network L-M algorithm pile capacity sandy soil steel open-ended pile |
Title | Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load |
URI | https://www.tandfonline.com/doi/abs/10.1080/19648189.2018.1531269 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKcoED4imWl3zgAIpc4ubpY4UWrYDtqUh7i-LYFpVKi7Yph73tf-QHMWM7jqtdIR6XtJrEcZX5Op6ZfDMm5LUyMp0pWTNZF4LluSmYUEIyXRt87VPr3G7fdrYoT7_kH8-L88nkZ8Ra2vdy2l3eWFfyL1oFGegVq2T_QrPhpiCA76BfOIKG4fhHOp5fWKYPJr2xL6X9sKxu9BvniwWG_EPTcMsntPverAeiMxiEZKexifHACMC9tJhNiiegfb221-yS3V5iugak4KkiCd2RZzfJetsebPR5kNv3fm5USuf7EnSrH6s1yEMnxEDj0aBia62-aeTuTwMc0U31RH-fIQqn1smnr2A-PVG8NSuVnIWBn7FFhnuzcqLiDMeM24rxLGByeW2zkcheizJn4HM4q6utDELakkFgm8dG3lVXezBnkcXOfcLFLf656357bV1xREycDSdDRmA9hbWCz0oxLqSB3ujP3CK3Z9h-EAuL0kXI_KVZBk6wsHQH_-uH0rI6fXfjHAdO00FL3cgZWt4n93wUQ-cOkg_IRG8ekrtRb8tH5GoEJ3XgpB6c9A1A8y0dgElhGhqASbeGIujoCEwUjcCkFpj2mh0NwKT9lkbApAjMx2T54WT5_pT5_T5YlxVVz3jHVZcqWPIghsjAblRSixZd3C6XRpcQqptWcsO7tNRKGnB2CyNVUYOxQZb0E3K02W70U0JFIauq4Di8zcEBhqiIG4GNjrgwqquOyXR4ns1319Wl4b5Z7qCABhXQeAUcExE_9aa3mDQOjk3227HP_mPsc3Jn_Ee8IEf9xV6_BC-4l68sqH4Bge2wwg |
link.rule.ids | 315,783,787,27937,27938,60219,61008 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHhhgcImbp8cKURVoMxWpW1TH9kKVVDRd2Pjn3DkJSpFg6RTJyUWxffGdz999R8itMtLpKhkxGfmCeZ7xmVBCMh0ZPPaJtGfLt43iYPDmvUz8SSMXBmGVuIc2JVGEXavx58ZgdA2Je0ASKTA0mGfCow78s7wbiE2yFYDBQs12nfgnzuK4Lrgcwh4uBx5DsTqR5683rZioFQLThunp75O0_ugScfLeWRayk37-4nNcr1cHZK_yTGmvVKVDsqGzI7Lb4Cs8Jl94s6ScoEiEaS8WRk7venF8T2uGcgqdobbIDma709zQOaw-dKGRMRnjkdiEhbuYjcBTUDU9s88s6GIpMTYErUVOEfFeInUzOsun6oSM-0_jxwGrajiw1PXDgvGUq9RRsIyBX-iCLoRSiym6LaknjQ5g-2WmkhueOoFW0oAD4xup_AgUCJGvp6SV5Zk-I1T4Mgx9juJTD5wa8HS5EUhew4VRadgmnXrWknnJ1JHwigC1HtoEhzaphrZNRHNuk8KGSExZzyRx_5U9X0P2hmwPxqNhMnyOXy_IThdBMpgj716SVvGx1Ffg5RTy2qrxN-vD8KU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MAAg0PcPD1WQFVeEUOR2KI4theqpiLpwsY_585JUEGCpVMkJ45i-2J_Pn_3HSHnyki3p2TMZBwI5vsmYEIJyXRs8Ngn1r5N3_aUhMMX__41aNmEZUOrxD20qYUi7FyNP_dUmZYRd4UaUrDOYJgJjx34ZXkvFMtkJUShGozicJNvN4vreYA4hD1bDn2G1do4nr_e9GOF-qFfOrfyDDaJbL-5Jpy8ObNKOvnHLznHhRq1RTYaXEr7tSFtkyU92SHrc2qFu-QTb9aCExRlMO3FksjpRT9JLmmrT06hLdSm2MFYd1oYOoW5h5Ya9ZLRG4lFmLaLWf87BUPTY_tMScuZRM8QlFYFRb57zdOd0HGRqT0yGtyOroesyeDAci-IKsZzrnJXwSQGqNADS4ikFhmCltyXRoew-TKZ5IbnbqiVNABfAiNVEIP5IO91n3QmxUQfECoCGUUBx-qZD5AGcC43AqVruDAqj7rEaQctndY6HSlv5E_brk2xa9Oma7tEzA9tWlkHiamzmaTev3UPF6h7Rlafbwbp413ycETWesiQwQB575h0qveZPgGIU8lTa8RfGF3vUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+%28ANN%29+approach+for+modelling+of+pile+settlement+of+open-ended+steel+piles+subjected+to+compression+load&rft.jtitle=European+journal+of+environmental+and+civil+engineering&rft.au=Jebur%2C+Ameer+A.&rft.au=Atherton%2C+William&rft.au=Al+Khaddar%2C+Rafid+M.&rft.au=Loffill%2C+Ed&rft.date=2021-02-23&rft.pub=Taylor+%26+Francis&rft.issn=1964-8189&rft.eissn=2116-7214&rft.volume=25&rft.issue=3&rft.spage=429&rft.epage=451&rft_id=info:doi/10.1080%2F19648189.2018.1531269&rft.externalDocID=1531269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1964-8189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1964-8189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1964-8189&client=summon |