The Xenes Generations: A Taxonomy of Epitaxial Single‐Element 2D Materials
Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of...
Saved in:
Published in | Physica status solidi. PSS-RRL. Rapid research letters Vol. 14; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-6254 1862-6270 |
DOI | 10.1002/pssr.201900439 |
Cover
Loading…
Abstract | Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized.
The novel class of monoelemental two‐dimensional materials termed Xenes is reviewed and classified into two generations. The attention is turned on the epitaxial methodologies for their synthesis and on several key points, such as scalability, quality, and stability, which enable the Xenes exploitation in a wealth of technological applications including the integration into ultrascaled functional devices. |
---|---|
AbstractList | Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized. Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized. The novel class of monoelemental two‐dimensional materials termed Xenes is reviewed and classified into two generations. The attention is turned on the epitaxial methodologies for their synthesis and on several key points, such as scalability, quality, and stability, which enable the Xenes exploitation in a wealth of technological applications including the integration into ultrascaled functional devices. |
Author | Grazianetti, Carlo Martella, Christian Molle, Alessandro |
Author_xml | – sequence: 1 givenname: Carlo orcidid: 0000-0003-0060-9804 surname: Grazianetti fullname: Grazianetti, Carlo organization: CNR-IMM, Agrate Brianza Unit – sequence: 2 givenname: Christian orcidid: 0000-0003-1811-165X surname: Martella fullname: Martella, Christian organization: CNR-IMM, Agrate Brianza Unit – sequence: 3 givenname: Alessandro orcidid: 0000-0002-3860-4120 surname: Molle fullname: Molle, Alessandro email: alessandro.molle@mdm.imm.cnr.it organization: CNR-IMM, Agrate Brianza Unit |
BookMark | eNqFkM9KAzEQh4NUsK1ePQc8b50km_3jrdRahYpiK3gL2d2sbtkma7LF9uYj-Iw-iSmVCoJ4mRnIfPklXw91tNEKoVMCAwJAzxvn7IACSQFClh6gLkkiGkQ0hs5-5uER6jm3AOBpHLIums5fFH5SWjk88dXKtjLaXeAhnsu10Wa5wabE46Zq5bqSNZ5V-rlWn-8f41otlW4xvcS3slXWH7pjdFj6pk6-ex89Xo3no-tgeje5GQ2nQc54nAZllpaUQZZEcZaGkEv__CzJeJapPIcoARLGpGSSlQWPmIppVCRFQQqWQxIBSNZHZ7t7G2teV8q1YmFWVvtIQRmnwHkSM7812G3l1ng1qhSNrZbSbgQBsTUmtsbE3pgHwl9A7r-9FdJaWdV_Y-kOe6tqtfknRNzPZg8_7Bf9gYMw |
CitedBy_id | crossref_primary_10_1038_s41524_021_00695_2 crossref_primary_10_3390_nano12091410 crossref_primary_10_1007_s12274_023_5418_3 crossref_primary_10_1103_PhysRevB_104_245421 crossref_primary_10_1002_pssr_202100217 crossref_primary_10_1002_adfm_202005471 crossref_primary_10_1021_acs_jpcc_2c03608 crossref_primary_10_1039_D1MH00939G crossref_primary_10_1002_adma_202211419 crossref_primary_10_1088_1361_6528_ac5df5 crossref_primary_10_3390_nano12132221 crossref_primary_10_3390_surfaces3020012 crossref_primary_10_1002_adfm_202108495 crossref_primary_10_1002_adma_202201082 crossref_primary_10_1039_D4CP04763J crossref_primary_10_1021_acs_jpcc_1c10177 crossref_primary_10_1021_acs_jpclett_4c01195 crossref_primary_10_1021_acsanm_0c03221 crossref_primary_10_1021_acs_jpcc_1c08353 crossref_primary_10_1021_acsnano_2c07361 crossref_primary_10_1039_D2CP01759H crossref_primary_10_1103_PhysRevB_103_165410 crossref_primary_10_3390_ma14154170 crossref_primary_10_1021_acsami_2c06293 crossref_primary_10_1063_1_5135984 crossref_primary_10_1103_PhysRevResearch_3_033138 crossref_primary_10_1002_pssr_202000041 crossref_primary_10_3390_nano13081353 crossref_primary_10_3390_c10020036 crossref_primary_10_1002_adma_202305546 crossref_primary_10_1103_PhysRevMaterials_4_124003 crossref_primary_10_1016_j_est_2025_115521 crossref_primary_10_1021_acsnano_2c12144 crossref_primary_10_3390_ma15041610 crossref_primary_10_1116_6_0002641 crossref_primary_10_3390_molecules28145390 crossref_primary_10_1016_j_omx_2021_100088 crossref_primary_10_1021_acsaem_1c01259 crossref_primary_10_1007_s11182_022_02495_7 crossref_primary_10_1103_PhysRevB_106_L201406 crossref_primary_10_1002_adfm_202004546 crossref_primary_10_1103_PhysRevB_110_035425 crossref_primary_10_1080_23746149_2024_2338285 |
Cites_doi | 10.1021/acsnano.8b08909 10.1038/ncomms13352 10.1021/acsnano.8b02374 10.1021/acs.nanolett.8b01305 10.1038/s41570-016-0014 10.1201/b19623-16 10.1103/PhysRevB.97.035122 10.1002/wcms.1300 10.1002/adma.201901017 10.1021/acs.nanolett.7b01717 10.1038/s41563-018-0203-5 10.1002/aenm.201700447 10.1002/admi.201500619 10.1088/0953-8984/26/44/442001 10.1103/PhysRevLett.95.226801 10.1126/sciadv.1701373 10.1039/C8CP04069A 10.1021/acs.nanolett.7b01029 10.1126/science.aad1080 10.1088/0953-8984/26/18/185001 10.1103/PhysRevB.85.075423 10.1038/s41563-018-0134-1 10.1038/nphys4091 10.1002/adma.201806130 10.1103/PhysRevB.50.14916 10.1021/acs.nanolett.6b01459 10.1038/srep20714 10.1002/adfm.201606603 10.1038/s41565-018-0317-6 10.1038/ncomms14184 10.1021/nn501226z 10.1021/acs.nanolett.6b03349 10.1103/PhysRevB.92.165427 10.1002/adma.201902606 10.1039/C6NR04573A 10.1002/adma.201606046 10.1088/2053-1583/1/2/021003 10.1143/APEX.5.045802 10.1002/adma.201804650 10.1002/adfm.201300354 10.1021/acs.nanolett.6b04065 10.1002/adfm.201807004 10.1021/jp505602c 10.1103/PhysRevMaterials.1.061002 10.1088/2053-1583/3/1/012001 10.1088/0953-8984/28/4/045002 10.1021/acs.nanolett.8b00429 10.1103/PhysRevMaterials.2.024003 10.1021/acsnano.7b04786 10.1038/nmat4384 10.1103/PhysRevLett.108.245501 10.1002/adma.201304783 10.1088/2053-1583/3/4/045005 10.1038/nmat4802 10.1002/adfm.201705833 10.1038/s41567-017-0031-6 10.1021/acsnano.8b07006 10.1088/2053-1583/aaba3a 10.1021/acs.jpcc.9b04343 10.1021/acs.nanolett.9b01796 10.1002/adma.201400909 10.1088/1367-2630/16/9/095002 10.1021/acsnano.6b06198 10.1126/science.1218948 10.1038/nnano.2015.10 10.1103/PhysRevLett.118.146402 10.1088/2053-1583/3/2/025034 10.1038/s41928-018-0117-x 10.1126/science.aai8142 10.1021/acsnano.8b03424 10.1021/jp405642g 10.1002/adom.201700301 10.1038/srep44400 10.1038/nnano.2014.35 10.1021/acsnano.5b04722 10.1103/PhysRevB.91.085423 10.1038/s41563-018-0110-9 10.1103/PhysRevLett.108.155501 10.1021/nl304347w 10.1103/PhysRevMaterials.1.054004 10.1038/ncomms12585 10.1038/nnano.2014.325 10.1038/s41467-018-04012-2 10.1021/acs.nanolett.7b02111 10.1021/acsnano.8b01467 10.1063/1.4939281 10.1038/nphys4174 10.1038/nchem.2491 10.1002/adma.201605407 10.1039/C9NR06037E 10.1002/adma.201900353 10.1002/adma.201403077 10.1088/2053-1583/ab33ba 10.1002/anie.201609591 10.1103/PhysRevLett.111.136804 10.1021/acs.jpcc.7b03129 10.1021/acs.nanolett.5b00085 10.1103/PhysRevLett.112.176802 10.1021/acsnano.8b02953 10.3762/bjnano.8.196 10.1088/0953-8984/27/25/255005 10.1103/PhysRevLett.102.236804 10.1088/2053-1583/aa9ea0 10.1021/nn5028104 10.1021/acs.nanolett.7b00297 10.1021/acsnano.8b09339 10.1021/acs.jpclett.6b01284 10.1038/ncomms10657 10.1103/PhysRevLett.118.096401 10.1002/adma.201605299 10.1088/0953-8984/27/20/203201 10.1002/adma.201202100 10.1021/acsnano.7b00762 10.1002/adma.201670209 10.1039/C5NR05006E 10.1021/acs.nanolett.8b03169 10.1063/1.4861857 10.1103/PhysRevLett.116.256804 10.1002/smll.201804066 10.1038/s41928-018-0058-4 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/pssr.201900439 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6270 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssr_201900439 PSSR201900439 |
Genre | article |
GrantInformation_xml | – fundername: European Research Council funderid: 772261 “XFab” |
GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 52U 8-1 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2W PQQKQ ROL SUPJJ WBKPD WGJPS WIH WIK WOHZO WXSBR WYISQ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3579-fb9f230b867b940ca100b8b5bbecc06801471f3a3fd563e726d8dd1d3c08600a3 |
ISSN | 1862-6254 |
IngestDate | Sun Jul 13 05:18:39 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 02:15:12 EDT 2025 Wed Jan 22 16:37:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3579-fb9f230b867b940ca100b8b5bbecc06801471f3a3fd563e726d8dd1d3c08600a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1811-165X 0000-0002-3860-4120 0000-0003-0060-9804 |
OpenAccessLink | https://zenodo.org/record/4061957 |
PQID | 2352055873 |
PQPubID | 1036348 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2352055873 crossref_primary_10_1002_pssr_201900439 crossref_citationtrail_10_1002_pssr_201900439 wiley_primary_10_1002_pssr_201900439_PSSR201900439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. PSS-RRL. Rapid research letters |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 8 2017; 1 2013; 23 2019; 13 2019; 14 2014; 26 2019; 19 2017; 357 2019; 123 2017; 118 2014; 1 2018; 9 2018; 2 2018; 5 2018; 4 2018; 1 2013; 13 2016; 119 2013; 117 2014; 16 2013; 111 2018; 30 2016; 116 2015; 91 2017; 121 2014; 9 2012; 24 2014; 8 2012; 336 2014; 118 2015; 15 2018; 29 2015; 14 2018; 28 2019; 6 2019; 31 2017; 27 2015; 10 2016; 10 2017; 29 2015; 9 2016; 16 2015; 7 2018; 20 2012; 108 2014; 112 2016; 55 2015; 350 2018; 18 2016; 6 2016; 7 2018; 17 2015; 27 2016; 3 2017; 17 2017; 16 2015 2015; 92 162 2017; 11 2017; 13 2005; 95 2019 2009; 102 2016 2018; 12 2016; 28 1994; 50 2012; 5 2018; 97 2016; 8 2014; 104 2018; 14 2012; 85 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Cinquanta E. (e_1_2_10_107_2) 2015 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 12 start-page: 4754 year: 2018 publication-title: ACS Nano – volume: 91 start-page: 085423 year: 2015 publication-title: Phys. Rev. B – volume: 26 start-page: 442001 year: 2014 publication-title: J. Phys.: Condens. Matter – volume: 118 start-page: 096401 year: 2017 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 16229 year: 2016 publication-title: Nanoscale – volume: 5 start-page: 035009 year: 2018 publication-title: 2D Mater. – volume: 16 start-page: 095002 year: 2014 publication-title: New J. Phys – volume: 18 start-page: 2133 year: 2018 publication-title: Nano Lett – volume: 14 start-page: 344 year: 2018 publication-title: Nat. Phys. – volume: 5 start-page: 045802 year: 2012 publication-title: Appl. Phys. Express – volume: 4 start-page: e1701373 year: 2018 publication-title: Sci. Adv. – volume: 102 start-page: 236804 year: 2009 publication-title: Phys. Rev. Lett. – volume: 97 start-page: 035122 year: 2018 publication-title: Phys. Rev. B – volume: 357 start-page: 287 year: 2017 publication-title: Science – volume: 118 start-page: 23049 year: 2014 publication-title: J. Phys. Chem. C – volume: 85 start-page: 075423 year: 2012 publication-title: Phys. Rev. B – volume: 20 start-page: 24250 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 31 start-page: 1900353 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 563 year: 2016 publication-title: Nat. Chem. – volume: 7 start-page: e1300 year: 2017 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 26 start-page: 2096 year: 2014 publication-title: Adv. Mater. – volume: 29 start-page: 1807004 year: 2018 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 4340 year: 2013 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 677 year: 2017 publication-title: Nat. Phys. – volume: 119 start-page: 015302 year: 2016 publication-title: J. Appl. Phys. – volume: 7 start-page: 44400 year: 2017 publication-title: Sci. Rep. – volume: 13 start-page: 4133 year: 2019 publication-title: ACS Nano – volume: 31 start-page: 1901017 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 11192 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 372 year: 2014 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 045002 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 12 start-page: 5059 year: 2018 publication-title: ACS Nano – volume: 16 start-page: 6622 year: 2016 publication-title: Nano Lett – volume: 5 start-page: 1700301 year: 2017 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 10657 year: 2016 publication-title: Nat. Commun. – volume: 118 start-page: 146402 year: 2017 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 683 year: 2017 publication-title: Nat. Phys. – volume: 8 start-page: 1952 year: 2017 publication-title: Beilstein J. Nanotechnol – year: 2019 – volume: 92 162 start-page: 165427 year: 2015 2015 publication-title: Phys. Rev. B – volume: 3 start-page: 025034 year: 2016 publication-title: 2D Mater – volume: 17 start-page: 783 year: 2018 publication-title: Nat. Mater. – volume: 11 start-page: 3376 year: 2017 publication-title: ACS Nano – volume: 12 start-page: 11632 year: 2018 publication-title: ACS Nano – volume: 14 start-page: 1804066 year: 2018 publication-title: Small – volume: 3 start-page: 012001 year: 2016 publication-title: 2D Mater – volume: 19 start-page: 5340 year: 2019 publication-title: Nano Lett – volume: 8 start-page: 7497 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 6515 year: 2016 publication-title: Adv. Mater. – volume: 16 start-page: 4903 year: 2016 publication-title: Nano Lett – volume: 7 start-page: 13352 year: 2016 publication-title: Nat. Commun. – volume: 1 start-page: 0014 year: 2017 publication-title: Nat. Rev. Chem. – year: 2016 – volume: 7 start-page: 12585 year: 2016 publication-title: Nat. Commun. – volume: 27 start-page: 1606603 year: 2017 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 442 year: 2018 publication-title: Nat. Electron. – volume: 14 start-page: 44 year: 2019 publication-title: Nat. Nanotechnol. – volume: 350 start-page: 1513 year: 2015 publication-title: Science – volume: 17 start-page: 681 year: 2018 publication-title: Nat. Mater. – volume: 24 start-page: 5088 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1606046 year: 2017 publication-title: Adv. Mater. – volume: 117 start-page: 16719 year: 2013 publication-title: J. Phys. Chem. C – volume: 1 start-page: 061002 year: 2017 publication-title: Phys. Rev. Mater. – volume: 336 start-page: 1143 year: 2012 publication-title: Science – volume: 14 start-page: 1020 year: 2015 publication-title: Nat. Mater. – volume: 31 start-page: 1902606 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 7253 year: 2018 publication-title: ACS Nano – volume: 104 start-page: 021602 year: 2014 publication-title: Appl. Phys. Lett. – volume: 116 start-page: 256804 year: 2016 publication-title: Phys. Rev. Lett. – volume: 112 start-page: 176802 year: 2014 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 6100 year: 2018 publication-title: ACS Nano – volume: 28 start-page: 1705833 year: 2018 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 1081 year: 2018 publication-title: Nat. Mater. – volume: 9 start-page: 1672 year: 2018 publication-title: Nat. Commun. – volume: 111 start-page: 136804 year: 2013 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 6672 year: 2018 publication-title: Nano Lett – volume: 3 start-page: 1500619 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 6 start-page: 045028 year: 2019 publication-title: 2D Mater – volume: 95 start-page: 226801 year: 2005 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 14184 year: 2017 publication-title: Nat. Commun. – volume: 108 start-page: 155501 year: 2012 publication-title: Phys. Rev. Lett. – volume: 29 start-page: 1605407 year: 2017 publication-title: Adv. Mater. – volume: 31 start-page: 1806130 year: 2019 publication-title: Adv. Mater. – volume: 13 start-page: 3816 year: 2019 publication-title: ACS Nano – volume: 10 start-page: 202 year: 2015 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 4820 year: 2014 publication-title: Adv. Mater. – volume: 17 start-page: 3434 year: 2017 publication-title: Nano Lett – volume: 13 start-page: 685 year: 2013 publication-title: Nano Lett – volume: 55 start-page: 14470 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1804650 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 4033 year: 2014 publication-title: ACS Nano – volume: 121 start-page: 13035 year: 2017 publication-title: J. Phys. Chem. C – volume: 6 start-page: 20714 year: 2016 publication-title: Sci. Rep. – volume: 2 start-page: 024003 year: 2018 publication-title: Phys. Rev. Mater. – volume: 5 start-page: 025002 year: 2018 publication-title: 2D Mater – volume: 27 start-page: 856 year: 2015 publication-title: Adv. Mater. – volume: 18 start-page: 7124 year: 2018 publication-title: Nano Lett – volume: 3 start-page: 045005 year: 2016 publication-title: 2D Mater – volume: 17 start-page: 299 year: 2017 publication-title: Nano Lett – volume: 1 start-page: 054004 year: 2017 publication-title: Phys. Rev. Mater. – volume: 11 start-page: 10222 year: 2017 publication-title: ACS Nano – volume: 17 start-page: 4970 year: 2017 publication-title: Nano Lett – volume: 50 start-page: 14916 year: 1994 publication-title: Phys. Rev. B – volume: 17 start-page: 3965 year: 2017 publication-title: Nano Lett – volume: 27 start-page: 255005 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 108 start-page: 245501 year: 2012 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 3246 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 227 year: 2015 publication-title: Nat. Nanotechnol. – volume: 123 start-page: 17019 year: 2019 publication-title: J. Phys. Chem. C – volume: 1 start-page: 228 year: 2018 publication-title: Nat. Electron. – volume: 27 start-page: 203201 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 1 start-page: 021003 year: 2014 publication-title: 2D Mater – volume: 7 start-page: 19152 year: 2015 publication-title: Nanoscale – volume: 17 start-page: 4619 year: 2017 publication-title: Nano Lett – volume: 29 start-page: 1605299 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 11163 year: 2016 publication-title: ACS Nano – volume: 26 start-page: 185001 year: 2014 publication-title: J. Phys.: Condens. Matter – volume: 7 start-page: 1700447 year: 2017 publication-title: Adv. Energy Mater. – volume: 16 start-page: 163 year: 2017 publication-title: Nat. Mater. – volume: 15 start-page: 2510 year: 2015 publication-title: Nano Lett – ident: e_1_2_10_68_1 doi: 10.1021/acsnano.8b08909 – ident: e_1_2_10_86_1 doi: 10.1038/ncomms13352 – ident: e_1_2_10_85_1 doi: 10.1021/acsnano.8b02374 – ident: e_1_2_10_73_1 doi: 10.1021/acs.nanolett.8b01305 – ident: e_1_2_10_104_1 doi: 10.1038/s41570-016-0014 – ident: e_1_2_10_7_1 doi: 10.1201/b19623-16 – ident: e_1_2_10_52_1 doi: 10.1103/PhysRevB.97.035122 – ident: e_1_2_10_101_1 doi: 10.1002/wcms.1300 – ident: e_1_2_10_15_1 doi: 10.1002/adma.201901017 – ident: e_1_2_10_97_1 doi: 10.1021/acs.nanolett.7b01717 – ident: e_1_2_10_53_1 doi: 10.1038/s41563-018-0203-5 – ident: e_1_2_10_93_1 doi: 10.1002/aenm.201700447 – ident: e_1_2_10_36_1 doi: 10.1002/admi.201500619 – ident: e_1_2_10_45_1 doi: 10.1088/0953-8984/26/44/442001 – ident: e_1_2_10_96_1 doi: 10.1103/PhysRevLett.95.226801 – ident: e_1_2_10_64_1 doi: 10.1126/sciadv.1701373 – ident: e_1_2_10_121_1 doi: 10.1039/C8CP04069A – ident: e_1_2_10_100_1 doi: 10.1021/acs.nanolett.7b01029 – ident: e_1_2_10_59_1 doi: 10.1126/science.aad1080 – ident: e_1_2_10_110_1 doi: 10.1088/0953-8984/26/18/185001 – ident: e_1_2_10_108_1 doi: 10.1103/PhysRevB.85.075423 – ident: e_1_2_10_112_1 doi: 10.1038/s41563-018-0134-1 – ident: e_1_2_10_119_1 doi: 10.1038/nphys4091 – ident: e_1_2_10_87_1 doi: 10.1002/adma.201806130 – ident: e_1_2_10_5_1 doi: 10.1103/PhysRevB.50.14916 – ident: e_1_2_10_60_1 doi: 10.1021/acs.nanolett.6b01459 – ident: e_1_2_10_49_1 doi: 10.1038/srep20714 – ident: e_1_2_10_32_1 doi: 10.1002/adfm.201606603 – ident: e_1_2_10_70_1 doi: 10.1038/s41565-018-0317-6 – ident: e_1_2_10_117_1 doi: 10.1038/ncomms14184 – ident: e_1_2_10_57_1 doi: 10.1021/nn501226z – ident: e_1_2_10_11_1 doi: 10.1021/acs.nanolett.6b03349 – ident: e_1_2_10_107_1 doi: 10.1103/PhysRevB.92.165427 – ident: e_1_2_10_83_1 doi: 10.1002/adma.201902606 – ident: e_1_2_10_34_1 doi: 10.1039/C6NR04573A – ident: e_1_2_10_42_1 doi: 10.1002/adma.201606046 – ident: e_1_2_10_19_1 doi: 10.1088/2053-1583/1/2/021003 – ident: e_1_2_10_16_1 doi: 10.1143/APEX.5.045802 – volume-title: Ultrafast Phenomena XIX year: 2015 ident: e_1_2_10_107_2 – ident: e_1_2_10_35_1 doi: 10.1002/adma.201804650 – ident: e_1_2_10_114_1 doi: 10.1002/adfm.201300354 – ident: e_1_2_10_31_1 doi: 10.1021/acs.nanolett.6b04065 – ident: e_1_2_10_65_1 doi: 10.1002/adfm.201807004 – ident: e_1_2_10_27_1 doi: 10.1021/jp505602c – ident: e_1_2_10_76_1 doi: 10.1103/PhysRevMaterials.1.061002 – ident: e_1_2_10_103_1 doi: 10.1088/2053-1583/3/1/012001 – ident: e_1_2_10_46_1 doi: 10.1088/0953-8984/28/4/045002 – ident: e_1_2_10_82_1 doi: 10.1021/acs.nanolett.8b00429 – ident: e_1_2_10_43_1 doi: 10.1103/PhysRevMaterials.2.024003 – ident: e_1_2_10_62_1 doi: 10.1021/acsnano.7b04786 – ident: e_1_2_10_14_1 doi: 10.1038/nmat4384 – ident: e_1_2_10_18_1 doi: 10.1103/PhysRevLett.108.245501 – ident: e_1_2_10_25_1 doi: 10.1002/adma.201304783 – ident: e_1_2_10_40_1 doi: 10.1088/2053-1583/3/4/045005 – ident: e_1_2_10_8_1 doi: 10.1038/nmat4802 – ident: e_1_2_10_98_1 doi: 10.1002/adfm.201705833 – ident: e_1_2_10_120_1 doi: 10.1038/s41567-017-0031-6 – ident: e_1_2_10_44_1 doi: 10.1021/acsnano.8b07006 – ident: e_1_2_10_71_1 doi: 10.1088/2053-1583/aaba3a – ident: e_1_2_10_24_1 doi: 10.1021/acs.jpcc.9b04343 – ident: e_1_2_10_115_1 doi: 10.1021/acs.nanolett.9b01796 – ident: e_1_2_10_41_1 doi: 10.1002/adma.201400909 – ident: e_1_2_10_13_1 doi: 10.1088/1367-2630/16/9/095002 – ident: e_1_2_10_26_1 doi: 10.1021/acsnano.6b06198 – ident: e_1_2_10_111_1 doi: 10.1126/science.1218948 – ident: e_1_2_10_2_1 doi: 10.1038/nnano.2015.10 – ident: e_1_2_10_55_1 doi: 10.1103/PhysRevLett.118.146402 – ident: e_1_2_10_113_1 doi: 10.1088/2053-1583/3/2/025034 – ident: e_1_2_10_12_1 doi: 10.1038/s41928-018-0117-x – ident: e_1_2_10_63_1 doi: 10.1126/science.aai8142 – ident: e_1_2_10_10_1 doi: 10.1021/acsnano.8b03424 – ident: e_1_2_10_116_1 doi: 10.1021/jp405642g – ident: e_1_2_10_90_1 doi: 10.1002/adom.201700301 – ident: e_1_2_10_23_1 doi: 10.1038/srep44400 – ident: e_1_2_10_56_1 doi: 10.1038/nnano.2014.35 – ident: e_1_2_10_109_1 doi: 10.1021/acsnano.5b04722 – ident: e_1_2_10_94_1 doi: 10.1103/PhysRevB.91.085423 – ident: e_1_2_10_91_1 doi: 10.1038/s41563-018-0110-9 – ident: e_1_2_10_3_1 doi: 10.1103/PhysRevLett.108.155501 – ident: e_1_2_10_22_1 doi: 10.1021/nl304347w – ident: e_1_2_10_54_1 doi: 10.1103/PhysRevMaterials.1.054004 – ident: e_1_2_10_92_1 doi: 10.1038/ncomms12585 – ident: e_1_2_10_4_1 doi: 10.1038/nnano.2014.325 – ident: e_1_2_10_33_1 doi: 10.1038/s41467-018-04012-2 – ident: e_1_2_10_81_1 doi: 10.1021/acs.nanolett.7b02111 – ident: e_1_2_10_38_1 doi: 10.1021/acsnano.8b01467 – ident: e_1_2_10_80_1 doi: 10.1063/1.4939281 – ident: e_1_2_10_118_1 doi: 10.1038/nphys4174 – ident: e_1_2_10_66_1 doi: 10.1038/nchem.2491 – ident: e_1_2_10_61_1 doi: 10.1002/adma.201605407 – ident: e_1_2_10_77_1 doi: 10.1039/C9NR06037E – ident: e_1_2_10_102_1 doi: 10.1002/adma.201900353 – ident: e_1_2_10_29_1 doi: 10.1002/adma.201403077 – ident: e_1_2_10_84_1 doi: 10.1088/2053-1583/ab33ba – ident: e_1_2_10_79_1 doi: 10.1002/anie.201609591 – ident: e_1_2_10_50_1 doi: 10.1103/PhysRevLett.111.136804 – ident: e_1_2_10_88_1 doi: 10.1021/acs.jpcc.7b03129 – ident: e_1_2_10_39_1 doi: 10.1021/acs.nanolett.5b00085 – ident: e_1_2_10_72_1 doi: 10.1103/PhysRevLett.112.176802 – ident: e_1_2_10_74_1 doi: 10.1021/acsnano.8b02953 – ident: e_1_2_10_37_1 doi: 10.3762/bjnano.8.196 – ident: e_1_2_10_106_1 doi: 10.1088/0953-8984/27/25/255005 – ident: e_1_2_10_6_1 doi: 10.1103/PhysRevLett.102.236804 – ident: e_1_2_10_51_1 doi: 10.1088/2053-1583/aa9ea0 – ident: e_1_2_10_58_1 doi: 10.1021/nn5028104 – ident: e_1_2_10_89_1 doi: 10.1021/acs.nanolett.7b00297 – ident: e_1_2_10_69_1 doi: 10.1021/acsnano.8b09339 – ident: e_1_2_10_48_1 doi: 10.1021/acs.jpclett.6b01284 – ident: e_1_2_10_30_1 doi: 10.1038/ncomms10657 – ident: e_1_2_10_67_1 doi: 10.1103/PhysRevLett.118.096401 – ident: e_1_2_10_9_1 doi: 10.1002/adma.201605299 – ident: e_1_2_10_105_1 doi: 10.1088/0953-8984/27/20/203201 – ident: e_1_2_10_17_1 doi: 10.1002/adma.201202100 – ident: e_1_2_10_21_1 doi: 10.1021/acsnano.7b00762 – ident: e_1_2_10_78_1 doi: 10.1002/adma.201670209 – ident: e_1_2_10_95_1 doi: 10.1039/C5NR05006E – ident: e_1_2_10_28_1 doi: 10.1021/acs.nanolett.8b03169 – ident: e_1_2_10_20_1 doi: 10.1063/1.4861857 – ident: e_1_2_10_47_1 doi: 10.1103/PhysRevLett.116.256804 – ident: e_1_2_10_75_1 doi: 10.1002/smll.201804066 – ident: e_1_2_10_99_1 doi: 10.1038/s41928-018-0058-4 |
SSID | ssj0059743 |
Score | 2.4289424 |
SecondaryResourceType | review_article |
Snippet | Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D materials Allotropy atomically thin Borophene Condensed matter physics epitaxy Graphene Nanotechnology Organic chemistry Periodic table post-graphene Taxonomy Two dimensional materials Xenes |
Title | The Xenes Generations: A Taxonomy of Epitaxial Single‐Element 2D Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201900439 https://www.proquest.com/docview/2352055873 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpLoVeSp807bboUOjBKHUkP3sLzbZLScqSZCE3I9kSBEISYgeWPfUnFPoP-0s6smTZoe-9GKPIdjTzSfPQzAih10kggkgxRUTCfBLQPCepUpJEUkqac5YIVUf5fo4uroJPy3DZ633rRC0dKjHIb36ZV3IbrkIb8FVnyf4HZ91LoQHugb9wBQ7D9Z95vNSLla0eXX_J5Jov-HWdrlBHDuqTQa61a3wOgmotXYDDuYkd9-jYm_LK_OOutnppmKj9DdWh9GAwq2I18C7nczKbTQbejO9WOvvFuk7WdWqQU9I_7vkNgA8aVza0ZL1tHeB7nb7C2_oGHZhOtTPDZt-UJdclFbrOCbBEfRfoYdZTMJgImFjGZyC7bea8ELcIBx2w0Y44dsLqp7Xe1I7dgSqhI_RSvaeZtlKt2cl3PcM_961FOtBv5n6_g05pHOu9_9PReDqZNwJem2B13kYztqYWqE_fHn_hWNdpDZiuGVTrMYsH6L41QPDIoOkh6snNI3TXcLp8jCaAKVxjCncw9Q6PcIMovFXYIQobRH3_8tViCdMxdlh6gq4-nC_eXxB74gbJWRinRIlUgU0qkigWaeDnHAYlEhEKPdP1KS1D0GUU40wVYcRkTKMiKYphwXKwjH2fs6foZLPdyGcID8NE7yiHRcCCQKaMUzGkSsD0LRSYEX4fkYY2WW7L0etTUdaZKaRNM03LzNGyj964_jtTiOW3Pc8aUmd2spYZBUPDD8MkZn1Ea_L_5S3ZERae3-ahF-heOyfO0Em1P8iXoMJW4pWF1A-5RpVz |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Xenes+Generations%3A+A+Taxonomy+of+Epitaxial+Single%E2%80%90Element+2D+Materials&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Grazianetti%2C+Carlo&rft.au=Martella%2C+Christian&rft.au=Molle%2C+Alessandro&rft.date=2020-02-01&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=14&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssr.201900439&rft.externalDBID=10.1002%252Fpssr.201900439&rft.externalDocID=PSSR201900439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon |