The Xenes Generations: A Taxonomy of Epitaxial Single‐Element 2D Materials

Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. PSS-RRL. Rapid research letters Vol. 14; no. 2
Main Authors Grazianetti, Carlo, Martella, Christian, Molle, Alessandro
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text
ISSN1862-6254
1862-6270
DOI10.1002/pssr.201900439

Cover

Loading…
Abstract Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized. The novel class of monoelemental two‐dimensional materials termed Xenes is reviewed and classified into two generations. The attention is turned on the epitaxial methodologies for their synthesis and on several key points, such as scalability, quality, and stability, which enable the Xenes exploitation in a wealth of technological applications including the integration into ultrascaled functional devices.
AbstractList Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized.
Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes with no analogous bulk layered allotropes. The booming rush to discover first novel and unprecedented materials flows into two generations of Xenes: the first one strictly relates to carbon being made of elements of the IV/14 column/group of the periodic table, and the second one includes elements of the adjacent columns. From borophene to tellurene, with rare exceptions, the physics and chemistry of the elements are rewritten and herein reviewed in terms of their fundamental and peculiar properties. Particular attention is paid to the epitaxial methodologies and configurational details, aiming at determining key points for nanotechnology applications of the Xenes afforded by scalability, quality, and stability aspects. Finally, the ongoing efforts to devise and realize applications based on the Xenes are summarized. The novel class of monoelemental two‐dimensional materials termed Xenes is reviewed and classified into two generations. The attention is turned on the epitaxial methodologies for their synthesis and on several key points, such as scalability, quality, and stability, which enable the Xenes exploitation in a wealth of technological applications including the integration into ultrascaled functional devices.
Author Grazianetti, Carlo
Martella, Christian
Molle, Alessandro
Author_xml – sequence: 1
  givenname: Carlo
  orcidid: 0000-0003-0060-9804
  surname: Grazianetti
  fullname: Grazianetti, Carlo
  organization: CNR-IMM, Agrate Brianza Unit
– sequence: 2
  givenname: Christian
  orcidid: 0000-0003-1811-165X
  surname: Martella
  fullname: Martella, Christian
  organization: CNR-IMM, Agrate Brianza Unit
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0002-3860-4120
  surname: Molle
  fullname: Molle, Alessandro
  email: alessandro.molle@mdm.imm.cnr.it
  organization: CNR-IMM, Agrate Brianza Unit
BookMark eNqFkM9KAzEQh4NUsK1ePQc8b50km_3jrdRahYpiK3gL2d2sbtkma7LF9uYj-Iw-iSmVCoJ4mRnIfPklXw91tNEKoVMCAwJAzxvn7IACSQFClh6gLkkiGkQ0hs5-5uER6jm3AOBpHLIums5fFH5SWjk88dXKtjLaXeAhnsu10Wa5wabE46Zq5bqSNZ5V-rlWn-8f41otlW4xvcS3slXWH7pjdFj6pk6-ex89Xo3no-tgeje5GQ2nQc54nAZllpaUQZZEcZaGkEv__CzJeJapPIcoARLGpGSSlQWPmIppVCRFQQqWQxIBSNZHZ7t7G2teV8q1YmFWVvtIQRmnwHkSM7812G3l1ng1qhSNrZbSbgQBsTUmtsbE3pgHwl9A7r-9FdJaWdV_Y-kOe6tqtfknRNzPZg8_7Bf9gYMw
CitedBy_id crossref_primary_10_1038_s41524_021_00695_2
crossref_primary_10_3390_nano12091410
crossref_primary_10_1007_s12274_023_5418_3
crossref_primary_10_1103_PhysRevB_104_245421
crossref_primary_10_1002_pssr_202100217
crossref_primary_10_1002_adfm_202005471
crossref_primary_10_1021_acs_jpcc_2c03608
crossref_primary_10_1039_D1MH00939G
crossref_primary_10_1002_adma_202211419
crossref_primary_10_1088_1361_6528_ac5df5
crossref_primary_10_3390_nano12132221
crossref_primary_10_3390_surfaces3020012
crossref_primary_10_1002_adfm_202108495
crossref_primary_10_1002_adma_202201082
crossref_primary_10_1039_D4CP04763J
crossref_primary_10_1021_acs_jpcc_1c10177
crossref_primary_10_1021_acs_jpclett_4c01195
crossref_primary_10_1021_acsanm_0c03221
crossref_primary_10_1021_acs_jpcc_1c08353
crossref_primary_10_1021_acsnano_2c07361
crossref_primary_10_1039_D2CP01759H
crossref_primary_10_1103_PhysRevB_103_165410
crossref_primary_10_3390_ma14154170
crossref_primary_10_1021_acsami_2c06293
crossref_primary_10_1063_1_5135984
crossref_primary_10_1103_PhysRevResearch_3_033138
crossref_primary_10_1002_pssr_202000041
crossref_primary_10_3390_nano13081353
crossref_primary_10_3390_c10020036
crossref_primary_10_1002_adma_202305546
crossref_primary_10_1103_PhysRevMaterials_4_124003
crossref_primary_10_1016_j_est_2025_115521
crossref_primary_10_1021_acsnano_2c12144
crossref_primary_10_3390_ma15041610
crossref_primary_10_1116_6_0002641
crossref_primary_10_3390_molecules28145390
crossref_primary_10_1016_j_omx_2021_100088
crossref_primary_10_1021_acsaem_1c01259
crossref_primary_10_1007_s11182_022_02495_7
crossref_primary_10_1103_PhysRevB_106_L201406
crossref_primary_10_1002_adfm_202004546
crossref_primary_10_1103_PhysRevB_110_035425
crossref_primary_10_1080_23746149_2024_2338285
Cites_doi 10.1021/acsnano.8b08909
10.1038/ncomms13352
10.1021/acsnano.8b02374
10.1021/acs.nanolett.8b01305
10.1038/s41570-016-0014
10.1201/b19623-16
10.1103/PhysRevB.97.035122
10.1002/wcms.1300
10.1002/adma.201901017
10.1021/acs.nanolett.7b01717
10.1038/s41563-018-0203-5
10.1002/aenm.201700447
10.1002/admi.201500619
10.1088/0953-8984/26/44/442001
10.1103/PhysRevLett.95.226801
10.1126/sciadv.1701373
10.1039/C8CP04069A
10.1021/acs.nanolett.7b01029
10.1126/science.aad1080
10.1088/0953-8984/26/18/185001
10.1103/PhysRevB.85.075423
10.1038/s41563-018-0134-1
10.1038/nphys4091
10.1002/adma.201806130
10.1103/PhysRevB.50.14916
10.1021/acs.nanolett.6b01459
10.1038/srep20714
10.1002/adfm.201606603
10.1038/s41565-018-0317-6
10.1038/ncomms14184
10.1021/nn501226z
10.1021/acs.nanolett.6b03349
10.1103/PhysRevB.92.165427
10.1002/adma.201902606
10.1039/C6NR04573A
10.1002/adma.201606046
10.1088/2053-1583/1/2/021003
10.1143/APEX.5.045802
10.1002/adma.201804650
10.1002/adfm.201300354
10.1021/acs.nanolett.6b04065
10.1002/adfm.201807004
10.1021/jp505602c
10.1103/PhysRevMaterials.1.061002
10.1088/2053-1583/3/1/012001
10.1088/0953-8984/28/4/045002
10.1021/acs.nanolett.8b00429
10.1103/PhysRevMaterials.2.024003
10.1021/acsnano.7b04786
10.1038/nmat4384
10.1103/PhysRevLett.108.245501
10.1002/adma.201304783
10.1088/2053-1583/3/4/045005
10.1038/nmat4802
10.1002/adfm.201705833
10.1038/s41567-017-0031-6
10.1021/acsnano.8b07006
10.1088/2053-1583/aaba3a
10.1021/acs.jpcc.9b04343
10.1021/acs.nanolett.9b01796
10.1002/adma.201400909
10.1088/1367-2630/16/9/095002
10.1021/acsnano.6b06198
10.1126/science.1218948
10.1038/nnano.2015.10
10.1103/PhysRevLett.118.146402
10.1088/2053-1583/3/2/025034
10.1038/s41928-018-0117-x
10.1126/science.aai8142
10.1021/acsnano.8b03424
10.1021/jp405642g
10.1002/adom.201700301
10.1038/srep44400
10.1038/nnano.2014.35
10.1021/acsnano.5b04722
10.1103/PhysRevB.91.085423
10.1038/s41563-018-0110-9
10.1103/PhysRevLett.108.155501
10.1021/nl304347w
10.1103/PhysRevMaterials.1.054004
10.1038/ncomms12585
10.1038/nnano.2014.325
10.1038/s41467-018-04012-2
10.1021/acs.nanolett.7b02111
10.1021/acsnano.8b01467
10.1063/1.4939281
10.1038/nphys4174
10.1038/nchem.2491
10.1002/adma.201605407
10.1039/C9NR06037E
10.1002/adma.201900353
10.1002/adma.201403077
10.1088/2053-1583/ab33ba
10.1002/anie.201609591
10.1103/PhysRevLett.111.136804
10.1021/acs.jpcc.7b03129
10.1021/acs.nanolett.5b00085
10.1103/PhysRevLett.112.176802
10.1021/acsnano.8b02953
10.3762/bjnano.8.196
10.1088/0953-8984/27/25/255005
10.1103/PhysRevLett.102.236804
10.1088/2053-1583/aa9ea0
10.1021/nn5028104
10.1021/acs.nanolett.7b00297
10.1021/acsnano.8b09339
10.1021/acs.jpclett.6b01284
10.1038/ncomms10657
10.1103/PhysRevLett.118.096401
10.1002/adma.201605299
10.1088/0953-8984/27/20/203201
10.1002/adma.201202100
10.1021/acsnano.7b00762
10.1002/adma.201670209
10.1039/C5NR05006E
10.1021/acs.nanolett.8b03169
10.1063/1.4861857
10.1103/PhysRevLett.116.256804
10.1002/smll.201804066
10.1038/s41928-018-0058-4
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/pssr.201900439
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6270
EndPage n/a
ExternalDocumentID 10_1002_pssr_201900439
PSSR201900439
Genre article
GrantInformation_xml – fundername: European Research Council
  funderid: 772261 “XFab”
GroupedDBID 05W
0R~
123
1OC
31~
33P
3SF
4.4
52U
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WGJPS
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3579-fb9f230b867b940ca100b8b5bbecc06801471f3a3fd563e726d8dd1d3c08600a3
ISSN 1862-6254
IngestDate Sun Jul 13 05:18:39 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 02:15:12 EDT 2025
Wed Jan 22 16:37:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3579-fb9f230b867b940ca100b8b5bbecc06801471f3a3fd563e726d8dd1d3c08600a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1811-165X
0000-0002-3860-4120
0000-0003-0060-9804
OpenAccessLink https://zenodo.org/record/4061957
PQID 2352055873
PQPubID 1036348
PageCount 11
ParticipantIDs proquest_journals_2352055873
crossref_primary_10_1002_pssr_201900439
crossref_citationtrail_10_1002_pssr_201900439
wiley_primary_10_1002_pssr_201900439_PSSR201900439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. PSS-RRL. Rapid research letters
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 8
2017; 1
2013; 23
2019; 13
2019; 14
2014; 26
2019; 19
2017; 357
2019; 123
2017; 118
2014; 1
2018; 9
2018; 2
2018; 5
2018; 4
2018; 1
2013; 13
2016; 119
2013; 117
2014; 16
2013; 111
2018; 30
2016; 116
2015; 91
2017; 121
2014; 9
2012; 24
2014; 8
2012; 336
2014; 118
2015; 15
2018; 29
2015; 14
2018; 28
2019; 6
2019; 31
2017; 27
2015; 10
2016; 10
2017; 29
2015; 9
2016; 16
2015; 7
2018; 20
2012; 108
2014; 112
2016; 55
2015; 350
2018; 18
2016; 6
2016; 7
2018; 17
2015; 27
2016; 3
2017; 17
2017; 16
2015 2015; 92 162
2017; 11
2017; 13
2005; 95
2019
2009; 102
2016
2018; 12
2016; 28
1994; 50
2012; 5
2018; 97
2016; 8
2014; 104
2018; 14
2012; 85
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
Cinquanta E. (e_1_2_10_107_2) 2015
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 12
  start-page: 4754
  year: 2018
  publication-title: ACS Nano
– volume: 91
  start-page: 085423
  year: 2015
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 442001
  year: 2014
  publication-title: J. Phys.: Condens. Matter
– volume: 118
  start-page: 096401
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 16229
  year: 2016
  publication-title: Nanoscale
– volume: 5
  start-page: 035009
  year: 2018
  publication-title: 2D Mater.
– volume: 16
  start-page: 095002
  year: 2014
  publication-title: New J. Phys
– volume: 18
  start-page: 2133
  year: 2018
  publication-title: Nano Lett
– volume: 14
  start-page: 344
  year: 2018
  publication-title: Nat. Phys.
– volume: 5
  start-page: 045802
  year: 2012
  publication-title: Appl. Phys. Express
– volume: 4
  start-page: e1701373
  year: 2018
  publication-title: Sci. Adv.
– volume: 102
  start-page: 236804
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 035122
  year: 2018
  publication-title: Phys. Rev. B
– volume: 357
  start-page: 287
  year: 2017
  publication-title: Science
– volume: 118
  start-page: 23049
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 85
  start-page: 075423
  year: 2012
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 24250
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: 1900353
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 563
  year: 2016
  publication-title: Nat. Chem.
– volume: 7
  start-page: e1300
  year: 2017
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 26
  start-page: 2096
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1807004
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 4340
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 677
  year: 2017
  publication-title: Nat. Phys.
– volume: 119
  start-page: 015302
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 44400
  year: 2017
  publication-title: Sci. Rep.
– volume: 13
  start-page: 4133
  year: 2019
  publication-title: ACS Nano
– volume: 31
  start-page: 1901017
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 11192
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 372
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 045002
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 5059
  year: 2018
  publication-title: ACS Nano
– volume: 16
  start-page: 6622
  year: 2016
  publication-title: Nano Lett
– volume: 5
  start-page: 1700301
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 10657
  year: 2016
  publication-title: Nat. Commun.
– volume: 118
  start-page: 146402
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 683
  year: 2017
  publication-title: Nat. Phys.
– volume: 8
  start-page: 1952
  year: 2017
  publication-title: Beilstein J. Nanotechnol
– year: 2019
– volume: 92 162
  start-page: 165427
  year: 2015 2015
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 025034
  year: 2016
  publication-title: 2D Mater
– volume: 17
  start-page: 783
  year: 2018
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3376
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 11632
  year: 2018
  publication-title: ACS Nano
– volume: 14
  start-page: 1804066
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 012001
  year: 2016
  publication-title: 2D Mater
– volume: 19
  start-page: 5340
  year: 2019
  publication-title: Nano Lett
– volume: 8
  start-page: 7497
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 6515
  year: 2016
  publication-title: Adv. Mater.
– volume: 16
  start-page: 4903
  year: 2016
  publication-title: Nano Lett
– volume: 7
  start-page: 13352
  year: 2016
  publication-title: Nat. Commun.
– volume: 1
  start-page: 0014
  year: 2017
  publication-title: Nat. Rev. Chem.
– year: 2016
– volume: 7
  start-page: 12585
  year: 2016
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1606603
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 442
  year: 2018
  publication-title: Nat. Electron.
– volume: 14
  start-page: 44
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 350
  start-page: 1513
  year: 2015
  publication-title: Science
– volume: 17
  start-page: 681
  year: 2018
  publication-title: Nat. Mater.
– volume: 24
  start-page: 5088
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606046
  year: 2017
  publication-title: Adv. Mater.
– volume: 117
  start-page: 16719
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 061002
  year: 2017
  publication-title: Phys. Rev. Mater.
– volume: 336
  start-page: 1143
  year: 2012
  publication-title: Science
– volume: 14
  start-page: 1020
  year: 2015
  publication-title: Nat. Mater.
– volume: 31
  start-page: 1902606
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 7253
  year: 2018
  publication-title: ACS Nano
– volume: 104
  start-page: 021602
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 256804
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 176802
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 6100
  year: 2018
  publication-title: ACS Nano
– volume: 28
  start-page: 1705833
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 1081
  year: 2018
  publication-title: Nat. Mater.
– volume: 9
  start-page: 1672
  year: 2018
  publication-title: Nat. Commun.
– volume: 111
  start-page: 136804
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 6672
  year: 2018
  publication-title: Nano Lett
– volume: 3
  start-page: 1500619
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 6
  start-page: 045028
  year: 2019
  publication-title: 2D Mater
– volume: 95
  start-page: 226801
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 14184
  year: 2017
  publication-title: Nat. Commun.
– volume: 108
  start-page: 155501
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 1605407
  year: 2017
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1806130
  year: 2019
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3816
  year: 2019
  publication-title: ACS Nano
– volume: 10
  start-page: 202
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 4820
  year: 2014
  publication-title: Adv. Mater.
– volume: 17
  start-page: 3434
  year: 2017
  publication-title: Nano Lett
– volume: 13
  start-page: 685
  year: 2013
  publication-title: Nano Lett
– volume: 55
  start-page: 14470
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 1804650
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4033
  year: 2014
  publication-title: ACS Nano
– volume: 121
  start-page: 13035
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 20714
  year: 2016
  publication-title: Sci. Rep.
– volume: 2
  start-page: 024003
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 5
  start-page: 025002
  year: 2018
  publication-title: 2D Mater
– volume: 27
  start-page: 856
  year: 2015
  publication-title: Adv. Mater.
– volume: 18
  start-page: 7124
  year: 2018
  publication-title: Nano Lett
– volume: 3
  start-page: 045005
  year: 2016
  publication-title: 2D Mater
– volume: 17
  start-page: 299
  year: 2017
  publication-title: Nano Lett
– volume: 1
  start-page: 054004
  year: 2017
  publication-title: Phys. Rev. Mater.
– volume: 11
  start-page: 10222
  year: 2017
  publication-title: ACS Nano
– volume: 17
  start-page: 4970
  year: 2017
  publication-title: Nano Lett
– volume: 50
  start-page: 14916
  year: 1994
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 3965
  year: 2017
  publication-title: Nano Lett
– volume: 27
  start-page: 255005
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 108
  start-page: 245501
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 3246
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 227
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 123
  start-page: 17019
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 228
  year: 2018
  publication-title: Nat. Electron.
– volume: 27
  start-page: 203201
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 1
  start-page: 021003
  year: 2014
  publication-title: 2D Mater
– volume: 7
  start-page: 19152
  year: 2015
  publication-title: Nanoscale
– volume: 17
  start-page: 4619
  year: 2017
  publication-title: Nano Lett
– volume: 29
  start-page: 1605299
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 11163
  year: 2016
  publication-title: ACS Nano
– volume: 26
  start-page: 185001
  year: 2014
  publication-title: J. Phys.: Condens. Matter
– volume: 7
  start-page: 1700447
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 163
  year: 2017
  publication-title: Nat. Mater.
– volume: 15
  start-page: 2510
  year: 2015
  publication-title: Nano Lett
– ident: e_1_2_10_68_1
  doi: 10.1021/acsnano.8b08909
– ident: e_1_2_10_86_1
  doi: 10.1038/ncomms13352
– ident: e_1_2_10_85_1
  doi: 10.1021/acsnano.8b02374
– ident: e_1_2_10_73_1
  doi: 10.1021/acs.nanolett.8b01305
– ident: e_1_2_10_104_1
  doi: 10.1038/s41570-016-0014
– ident: e_1_2_10_7_1
  doi: 10.1201/b19623-16
– ident: e_1_2_10_52_1
  doi: 10.1103/PhysRevB.97.035122
– ident: e_1_2_10_101_1
  doi: 10.1002/wcms.1300
– ident: e_1_2_10_15_1
  doi: 10.1002/adma.201901017
– ident: e_1_2_10_97_1
  doi: 10.1021/acs.nanolett.7b01717
– ident: e_1_2_10_53_1
  doi: 10.1038/s41563-018-0203-5
– ident: e_1_2_10_93_1
  doi: 10.1002/aenm.201700447
– ident: e_1_2_10_36_1
  doi: 10.1002/admi.201500619
– ident: e_1_2_10_45_1
  doi: 10.1088/0953-8984/26/44/442001
– ident: e_1_2_10_96_1
  doi: 10.1103/PhysRevLett.95.226801
– ident: e_1_2_10_64_1
  doi: 10.1126/sciadv.1701373
– ident: e_1_2_10_121_1
  doi: 10.1039/C8CP04069A
– ident: e_1_2_10_100_1
  doi: 10.1021/acs.nanolett.7b01029
– ident: e_1_2_10_59_1
  doi: 10.1126/science.aad1080
– ident: e_1_2_10_110_1
  doi: 10.1088/0953-8984/26/18/185001
– ident: e_1_2_10_108_1
  doi: 10.1103/PhysRevB.85.075423
– ident: e_1_2_10_112_1
  doi: 10.1038/s41563-018-0134-1
– ident: e_1_2_10_119_1
  doi: 10.1038/nphys4091
– ident: e_1_2_10_87_1
  doi: 10.1002/adma.201806130
– ident: e_1_2_10_5_1
  doi: 10.1103/PhysRevB.50.14916
– ident: e_1_2_10_60_1
  doi: 10.1021/acs.nanolett.6b01459
– ident: e_1_2_10_49_1
  doi: 10.1038/srep20714
– ident: e_1_2_10_32_1
  doi: 10.1002/adfm.201606603
– ident: e_1_2_10_70_1
  doi: 10.1038/s41565-018-0317-6
– ident: e_1_2_10_117_1
  doi: 10.1038/ncomms14184
– ident: e_1_2_10_57_1
  doi: 10.1021/nn501226z
– ident: e_1_2_10_11_1
  doi: 10.1021/acs.nanolett.6b03349
– ident: e_1_2_10_107_1
  doi: 10.1103/PhysRevB.92.165427
– ident: e_1_2_10_83_1
  doi: 10.1002/adma.201902606
– ident: e_1_2_10_34_1
  doi: 10.1039/C6NR04573A
– ident: e_1_2_10_42_1
  doi: 10.1002/adma.201606046
– ident: e_1_2_10_19_1
  doi: 10.1088/2053-1583/1/2/021003
– ident: e_1_2_10_16_1
  doi: 10.1143/APEX.5.045802
– volume-title: Ultrafast Phenomena XIX
  year: 2015
  ident: e_1_2_10_107_2
– ident: e_1_2_10_35_1
  doi: 10.1002/adma.201804650
– ident: e_1_2_10_114_1
  doi: 10.1002/adfm.201300354
– ident: e_1_2_10_31_1
  doi: 10.1021/acs.nanolett.6b04065
– ident: e_1_2_10_65_1
  doi: 10.1002/adfm.201807004
– ident: e_1_2_10_27_1
  doi: 10.1021/jp505602c
– ident: e_1_2_10_76_1
  doi: 10.1103/PhysRevMaterials.1.061002
– ident: e_1_2_10_103_1
  doi: 10.1088/2053-1583/3/1/012001
– ident: e_1_2_10_46_1
  doi: 10.1088/0953-8984/28/4/045002
– ident: e_1_2_10_82_1
  doi: 10.1021/acs.nanolett.8b00429
– ident: e_1_2_10_43_1
  doi: 10.1103/PhysRevMaterials.2.024003
– ident: e_1_2_10_62_1
  doi: 10.1021/acsnano.7b04786
– ident: e_1_2_10_14_1
  doi: 10.1038/nmat4384
– ident: e_1_2_10_18_1
  doi: 10.1103/PhysRevLett.108.245501
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.201304783
– ident: e_1_2_10_40_1
  doi: 10.1088/2053-1583/3/4/045005
– ident: e_1_2_10_8_1
  doi: 10.1038/nmat4802
– ident: e_1_2_10_98_1
  doi: 10.1002/adfm.201705833
– ident: e_1_2_10_120_1
  doi: 10.1038/s41567-017-0031-6
– ident: e_1_2_10_44_1
  doi: 10.1021/acsnano.8b07006
– ident: e_1_2_10_71_1
  doi: 10.1088/2053-1583/aaba3a
– ident: e_1_2_10_24_1
  doi: 10.1021/acs.jpcc.9b04343
– ident: e_1_2_10_115_1
  doi: 10.1021/acs.nanolett.9b01796
– ident: e_1_2_10_41_1
  doi: 10.1002/adma.201400909
– ident: e_1_2_10_13_1
  doi: 10.1088/1367-2630/16/9/095002
– ident: e_1_2_10_26_1
  doi: 10.1021/acsnano.6b06198
– ident: e_1_2_10_111_1
  doi: 10.1126/science.1218948
– ident: e_1_2_10_2_1
  doi: 10.1038/nnano.2015.10
– ident: e_1_2_10_55_1
  doi: 10.1103/PhysRevLett.118.146402
– ident: e_1_2_10_113_1
  doi: 10.1088/2053-1583/3/2/025034
– ident: e_1_2_10_12_1
  doi: 10.1038/s41928-018-0117-x
– ident: e_1_2_10_63_1
  doi: 10.1126/science.aai8142
– ident: e_1_2_10_10_1
  doi: 10.1021/acsnano.8b03424
– ident: e_1_2_10_116_1
  doi: 10.1021/jp405642g
– ident: e_1_2_10_90_1
  doi: 10.1002/adom.201700301
– ident: e_1_2_10_23_1
  doi: 10.1038/srep44400
– ident: e_1_2_10_56_1
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_10_109_1
  doi: 10.1021/acsnano.5b04722
– ident: e_1_2_10_94_1
  doi: 10.1103/PhysRevB.91.085423
– ident: e_1_2_10_91_1
  doi: 10.1038/s41563-018-0110-9
– ident: e_1_2_10_3_1
  doi: 10.1103/PhysRevLett.108.155501
– ident: e_1_2_10_22_1
  doi: 10.1021/nl304347w
– ident: e_1_2_10_54_1
  doi: 10.1103/PhysRevMaterials.1.054004
– ident: e_1_2_10_92_1
  doi: 10.1038/ncomms12585
– ident: e_1_2_10_4_1
  doi: 10.1038/nnano.2014.325
– ident: e_1_2_10_33_1
  doi: 10.1038/s41467-018-04012-2
– ident: e_1_2_10_81_1
  doi: 10.1021/acs.nanolett.7b02111
– ident: e_1_2_10_38_1
  doi: 10.1021/acsnano.8b01467
– ident: e_1_2_10_80_1
  doi: 10.1063/1.4939281
– ident: e_1_2_10_118_1
  doi: 10.1038/nphys4174
– ident: e_1_2_10_66_1
  doi: 10.1038/nchem.2491
– ident: e_1_2_10_61_1
  doi: 10.1002/adma.201605407
– ident: e_1_2_10_77_1
  doi: 10.1039/C9NR06037E
– ident: e_1_2_10_102_1
  doi: 10.1002/adma.201900353
– ident: e_1_2_10_29_1
  doi: 10.1002/adma.201403077
– ident: e_1_2_10_84_1
  doi: 10.1088/2053-1583/ab33ba
– ident: e_1_2_10_79_1
  doi: 10.1002/anie.201609591
– ident: e_1_2_10_50_1
  doi: 10.1103/PhysRevLett.111.136804
– ident: e_1_2_10_88_1
  doi: 10.1021/acs.jpcc.7b03129
– ident: e_1_2_10_39_1
  doi: 10.1021/acs.nanolett.5b00085
– ident: e_1_2_10_72_1
  doi: 10.1103/PhysRevLett.112.176802
– ident: e_1_2_10_74_1
  doi: 10.1021/acsnano.8b02953
– ident: e_1_2_10_37_1
  doi: 10.3762/bjnano.8.196
– ident: e_1_2_10_106_1
  doi: 10.1088/0953-8984/27/25/255005
– ident: e_1_2_10_6_1
  doi: 10.1103/PhysRevLett.102.236804
– ident: e_1_2_10_51_1
  doi: 10.1088/2053-1583/aa9ea0
– ident: e_1_2_10_58_1
  doi: 10.1021/nn5028104
– ident: e_1_2_10_89_1
  doi: 10.1021/acs.nanolett.7b00297
– ident: e_1_2_10_69_1
  doi: 10.1021/acsnano.8b09339
– ident: e_1_2_10_48_1
  doi: 10.1021/acs.jpclett.6b01284
– ident: e_1_2_10_30_1
  doi: 10.1038/ncomms10657
– ident: e_1_2_10_67_1
  doi: 10.1103/PhysRevLett.118.096401
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.201605299
– ident: e_1_2_10_105_1
  doi: 10.1088/0953-8984/27/20/203201
– ident: e_1_2_10_17_1
  doi: 10.1002/adma.201202100
– ident: e_1_2_10_21_1
  doi: 10.1021/acsnano.7b00762
– ident: e_1_2_10_78_1
  doi: 10.1002/adma.201670209
– ident: e_1_2_10_95_1
  doi: 10.1039/C5NR05006E
– ident: e_1_2_10_28_1
  doi: 10.1021/acs.nanolett.8b03169
– ident: e_1_2_10_20_1
  doi: 10.1063/1.4861857
– ident: e_1_2_10_47_1
  doi: 10.1103/PhysRevLett.116.256804
– ident: e_1_2_10_75_1
  doi: 10.1002/smll.201804066
– ident: e_1_2_10_99_1
  doi: 10.1038/s41928-018-0058-4
SSID ssj0059743
Score 2.4289424
SecondaryResourceType review_article
Snippet Isolation of graphene is today a milestone in condensed matter physics that paves the way to a new entire class of 2D synthetic materials referred to as Xenes...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D materials
Allotropy
atomically thin
Borophene
Condensed matter physics
epitaxy
Graphene
Nanotechnology
Organic chemistry
Periodic table
post-graphene
Taxonomy
Two dimensional materials
Xenes
Title The Xenes Generations: A Taxonomy of Epitaxial Single‐Element 2D Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201900439
https://www.proquest.com/docview/2352055873
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpLoVeSp807bboUOjBKHUkP3sLzbZLScqSZCE3I9kSBEISYgeWPfUnFPoP-0s6smTZoe-9GKPIdjTzSfPQzAih10kggkgxRUTCfBLQPCepUpJEUkqac5YIVUf5fo4uroJPy3DZ633rRC0dKjHIb36ZV3IbrkIb8FVnyf4HZ91LoQHugb9wBQ7D9Z95vNSLla0eXX_J5Jov-HWdrlBHDuqTQa61a3wOgmotXYDDuYkd9-jYm_LK_OOutnppmKj9DdWh9GAwq2I18C7nczKbTQbejO9WOvvFuk7WdWqQU9I_7vkNgA8aVza0ZL1tHeB7nb7C2_oGHZhOtTPDZt-UJdclFbrOCbBEfRfoYdZTMJgImFjGZyC7bea8ELcIBx2w0Y44dsLqp7Xe1I7dgSqhI_RSvaeZtlKt2cl3PcM_961FOtBv5n6_g05pHOu9_9PReDqZNwJem2B13kYztqYWqE_fHn_hWNdpDZiuGVTrMYsH6L41QPDIoOkh6snNI3TXcLp8jCaAKVxjCncw9Q6PcIMovFXYIQobRH3_8tViCdMxdlh6gq4-nC_eXxB74gbJWRinRIlUgU0qkigWaeDnHAYlEhEKPdP1KS1D0GUU40wVYcRkTKMiKYphwXKwjH2fs6foZLPdyGcID8NE7yiHRcCCQKaMUzGkSsD0LRSYEX4fkYY2WW7L0etTUdaZKaRNM03LzNGyj964_jtTiOW3Pc8aUmd2spYZBUPDD8MkZn1Ea_L_5S3ZERae3-ahF-heOyfO0Em1P8iXoMJW4pWF1A-5RpVz
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Xenes+Generations%3A+A+Taxonomy+of+Epitaxial+Single%E2%80%90Element+2D+Materials&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Grazianetti%2C+Carlo&rft.au=Martella%2C+Christian&rft.au=Molle%2C+Alessandro&rft.date=2020-02-01&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=14&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssr.201900439&rft.externalDBID=10.1002%252Fpssr.201900439&rft.externalDocID=PSSR201900439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon