Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States
Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new build...
Saved in:
Published in | Laser & photonics reviews Vol. 19; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.
Using a novel strongly nonlinear optical system, including saturable absorber MOF‐253@Au and a polarization controller, the work reveals a new buildup and switching scenario for soliton molecules (SMs), which includes a long‐duration stage dominated by the emergence of transient NLPs modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. |
---|---|
AbstractList | Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.
Using a novel strongly nonlinear optical system, including saturable absorber MOF‐253@Au and a polarization controller, the work reveals a new buildup and switching scenario for soliton molecules (SMs), which includes a long‐duration stage dominated by the emergence of transient NLPs modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems. |
Author | Wang, Xue‐Peng Ju, Zhen‐Tao Dai, Chao‐Qing Malomed, Boris A. Si, Zhi‐Zeng Ren, Long‐Fei |
Author_xml | – sequence: 1 givenname: Zhi‐Zeng surname: Si fullname: Si, Zhi‐Zeng organization: Zhejiang A&F University – sequence: 2 givenname: Zhen‐Tao surname: Ju fullname: Ju, Zhen‐Tao organization: Zhejiang A&F University – sequence: 3 givenname: Long‐Fei surname: Ren fullname: Ren, Long‐Fei organization: Zhejiang A&F University – sequence: 4 givenname: Xue‐Peng surname: Wang fullname: Wang, Xue‐Peng organization: Zhejiang A&F University – sequence: 5 givenname: Boris A. surname: Malomed fullname: Malomed, Boris A. organization: Universidad de Tarapacá – sequence: 6 givenname: Chao‐Qing surname: Dai fullname: Dai, Chao‐Qing email: dcq424@126.com organization: Zhejiang A&F University |
BookMark | eNqFkMtOAjEUhhuDiYBuXTdxDbbTuXSWSryQDEIE15PS6UixtGM7E4IrHsFn9EksYjAxMZ7NOUnPd_7064CWNloAcI5RHyMUXKrK2H6AghBhhNMj0MY0Jj1K07R1mCk6AR3nlghFvuI22E6MYla-sVoa_bF9H-qi4aKA141URVNBpgs4XcuaL6R-hiPBF0xLt3KwNBZOjZK10XBklOCNEg4OzKoyzvOmhA9GOuFPZvJl1yaNcgLOLNNO7sLgtGa1cKfguGT-5ey7d8HT7c1scN_LxnfDwVXW4yRK0l4hytj_iyFGCS1LMS_iMGBhgANCEBWCEzyPEE1KHgeCRCRJMQ69ihThIgx5SrrgYn-3sua1Ea7Ol6ax2kfmBEdJQnFMQr_V329xa5yzoswrK1fMbnKM8p3lfGc5P1j2QPgL4LL-kllbJtXfWLrH1lKJzT8heTYZP_6wn_r7mMk |
CitedBy_id | crossref_primary_10_1021_acsami_4c18533 crossref_primary_10_1007_s11071_024_10760_2 crossref_primary_10_1016_j_cej_2024_159024 crossref_primary_10_1016_j_physleta_2024_130060 crossref_primary_10_1007_s11082_024_07757_x crossref_primary_10_1117_1_AP_7_1_016005 crossref_primary_10_3934_math_2025202 crossref_primary_10_1016_j_chaos_2025_116258 crossref_primary_10_1007_s11071_024_10850_1 crossref_primary_10_1016_j_chaos_2025_116218 crossref_primary_10_1016_j_cjph_2024_10_012 crossref_primary_10_1016_j_chaos_2024_115967 crossref_primary_10_1007_s12346_025_01240_y |
Cites_doi | 10.1002/lpor.202200298 10.1002/lpor.202300471 10.1364/OPTICA.445704 10.1103/PhysRevLett.128.213902 10.1364/OL.20.000163 10.1063/5.0134119 10.1364/OL.443319 10.1364/PRJ.500126 10.1038/s41467-020-15720-z 10.1063/1.858409 10.1103/PhysRevLett.121.023905 10.1038/s41377-024-01423-3 10.3788/COL202220.081402 10.1103/PhysRevA.64.033814 10.1364/OPTICA.493601 10.1002/lpor.201800009 10.1038/s41467-021-25861-4 10.1063/1.5091811 10.1126/sciadv.adk2290 10.1016/j.yofte.2014.07.004 10.1038/s41377-024-01451-z 10.1038/s41377-022-00998-z 10.1038/s41586-023-06915-7 10.1038/s41377-023-01170-x 10.1103/PhysRevA.107.053512 10.1103/PhysRevLett.131.263802 10.1103/PhysRevLett.130.153801 10.1364/OE.399946 10.1016/j.chaos.2023.113438 10.1364/OL.35.002403 10.1038/s41467-019-13265-4 10.1109/JLT.2022.3162699 10.1063/5.0196407 10.1007/s11433-023-2365-7 10.1364/OL.37.003849 10.1016/j.chaos.2018.11.004 10.1038/s42005-022-01068-x 10.1002/lpor.202000132 10.1002/lpor.202200763 10.1103/PhysRevA.106.053509 10.1364/OE.432957 10.1364/OPTICA.394706 10.1126/sciadv.adl2125 10.1038/nphys1740 10.1038/s42005-023-01313-x 10.1364/OL.482946 10.1002/lpor.202200731 10.1126/science.aal5326 10.1103/PhysRevA.96.043620 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202401019 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202401019 LPOR202401019 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12261131495; 12475008 – fundername: Scientific Research and Development Fund of Zhejiang A&F University funderid: 2021FR0009 |
GroupedDBID | 05W 0R~ 1OC 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 LW6 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3579-def6010a0a838ffebd642a42123308eec31b5087fc62e35379114240901d44c93 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Tue Jul 22 22:52:30 EDT 2025 Tue Jul 01 04:54:02 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Jan 22 09:30:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3579-def6010a0a838ffebd642a42123308eec31b5087fc62e35379114240901d44c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202401019 |
PQID | 3157781634 |
PQPubID | 1016358 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3157781634 crossref_primary_10_1002_lpor_202401019 crossref_citationtrail_10_1002_lpor_202401019 wiley_primary_10_1002_lpor_202401019_LPOR202401019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2021; 46 2018; 121 2023; 11 2019; 6 2010; 35 2023; 12 2023; 17 2023; 6 2019; 10 2024; 625 2023; 8 2021; 29 2024; 10 2022; 20 2020; 11 2024; 13 2012; 37 2023; 107 2017; 356 2024; 18 2001; 64 2014; 20 1995; 20 2020; 7 2021; 15 2017; 96 2023; 171 2021; 12 2018; 117 2023; 131 2023; 130 2023; 48 2022; 5 2022; 40 2024; 9 2022; 9 2020; 28 2024; 67 2022; 11 2018; 12 2022; 128 2022; 106 2010; 6 1992; 4 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Malomed B. A. (e_1_2_8_24_1) e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 2402 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2019 publication-title: Appl. Phys. Rev. – volume: 37 start-page: 3849 year: 2012 publication-title: Opt. Lett. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 35 start-page: 2403 year: 2010 publication-title: Opt. Lett. – start-page: 288 – volume: 64 year: 2001 publication-title: Phys. Rev. A – volume: 20 start-page: 575 year: 2014 publication-title: Opt. Fiber Technol. – volume: 6 start-page: 191 year: 2023 publication-title: Commun. Phys. – volume: 40 start-page: 4391 year: 2022 publication-title: J. Lightwave Technol. – volume: 10 start-page: 1280 year: 2023 publication-title: Optica – volume: 11 start-page: 2011 year: 2023 publication-title: Photonics Res. – volume: 20 start-page: 163 year: 1995 publication-title: Opt. Lett. – volume: 130 year: 2023 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 296 year: 2022 publication-title: Light: Sci. Appl. – volume: 107 year: 2023 publication-title: Phys. Rev. A – volume: 4 start-page: 1329 year: 1992 publication-title: Phys. Fluids A – volume: 8 year: 2023 publication-title: APL Photonics – volume: 48 start-page: 779 year: 2023 publication-title: Opt. Lett. – volume: 13 start-page: 81 year: 2024 publication-title: Light: Sci. Appl. – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 9 year: 2024 publication-title: APL Photonics – volume: 10 start-page: 5663 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 123 year: 2023 publication-title: Light: Sci. Appl. – volume: 6 start-page: 790 year: 2010 publication-title: Nat. Phys. – volume: 28 year: 2020 publication-title: Opt. Express – volume: 67 year: 2024 publication-title: Sci. China Phys., Mech. Astron. – volume: 13 start-page: 101 year: 2024 publication-title: Light: Sci. Appl. – volume: 46 start-page: 5695 year: 2021 publication-title: Opt. Lett. – volume: 106 year: 2022 publication-title: Phys. Rev. A – volume: 117 start-page: 264 year: 2018 publication-title: Chaos, Solitons Fractals – volume: 5 start-page: 302 year: 2022 publication-title: Commun. Phys. – volume: 12 start-page: 5567 year: 2021 publication-title: Nat. Commun. – volume: 18 year: 2024 publication-title: Laser Photonics Rev. – volume: 356 start-page: 50 year: 2017 publication-title: Science – volume: 12 year: 2018 publication-title: Laser Photonics Rev. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 10 year: 2024 publication-title: Sci. Adv. – volume: 7 start-page: 965 year: 2020 publication-title: Optica – volume: 131 year: 2023 publication-title: Phys. Rev. Lett. – volume: 29 year: 2021 publication-title: Opt. Express – volume: 20 year: 2022 publication-title: Chin. Opt. Lett. – volume: 625 start-page: 685 year: 2024 publication-title: Nature – volume: 171 year: 2023 publication-title: Chaos, Solitons Fractals – volume: 9 start-page: 240 year: 2022 publication-title: Optica – ident: e_1_2_8_15_1 doi: 10.1002/lpor.202200298 – ident: e_1_2_8_16_1 doi: 10.1002/lpor.202300471 – ident: e_1_2_8_28_1 doi: 10.1364/OPTICA.445704 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevLett.128.213902 – ident: e_1_2_8_19_1 doi: 10.1364/OL.20.000163 – ident: e_1_2_8_33_1 doi: 10.1063/5.0134119 – ident: e_1_2_8_41_1 doi: 10.1364/OL.443319 – ident: e_1_2_8_10_1 doi: 10.1364/PRJ.500126 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-020-15720-z – ident: e_1_2_8_3_1 doi: 10.1063/1.858409 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.121.023905 – ident: e_1_2_8_44_1 doi: 10.1038/s41377-024-01423-3 – ident: e_1_2_8_22_1 doi: 10.3788/COL202220.081402 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevA.64.033814 – ident: e_1_2_8_7_1 doi: 10.1364/OPTICA.493601 – ident: e_1_2_8_21_1 doi: 10.1002/lpor.201800009 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-021-25861-4 – ident: e_1_2_8_27_1 doi: 10.1063/1.5091811 – ident: e_1_2_8_8_1 doi: 10.1126/sciadv.adk2290 – ident: e_1_2_8_47_1 doi: 10.1016/j.yofte.2014.07.004 – ident: e_1_2_8_35_1 doi: 10.1038/s41377-024-01451-z – ident: e_1_2_8_46_1 doi: 10.1038/s41377-022-00998-z – ident: e_1_2_8_2_1 doi: 10.1038/s41586-023-06915-7 – ident: e_1_2_8_31_1 doi: 10.1038/s41377-023-01170-x – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevA.107.053512 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.131.263802 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.130.153801 – ident: e_1_2_8_23_1 doi: 10.1364/OE.399946 – ident: e_1_2_8_12_1 doi: 10.1016/j.chaos.2023.113438 – ident: e_1_2_8_20_1 doi: 10.1364/OL.35.002403 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-019-13265-4 – ident: e_1_2_8_40_1 doi: 10.1109/JLT.2022.3162699 – ident: e_1_2_8_32_1 doi: 10.1063/5.0196407 – ident: e_1_2_8_13_1 doi: 10.1007/s11433-023-2365-7 – ident: e_1_2_8_45_1 doi: 10.1364/OL.37.003849 – ident: e_1_2_8_4_1 doi: 10.1016/j.chaos.2018.11.004 – ident: e_1_2_8_34_1 doi: 10.1038/s42005-022-01068-x – start-page: 288 volume-title: Large Scale Structures in Nonlinear Physics ident: e_1_2_8_24_1 – ident: e_1_2_8_5_1 doi: 10.1002/lpor.202000132 – ident: e_1_2_8_49_1 doi: 10.1002/lpor.202200763 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevA.106.053509 – ident: e_1_2_8_42_1 doi: 10.1364/OE.432957 – ident: e_1_2_8_29_1 doi: 10.1364/OPTICA.394706 – ident: e_1_2_8_18_1 doi: 10.1126/sciadv.adl2125 – ident: e_1_2_8_1_1 doi: 10.1038/nphys1740 – ident: e_1_2_8_9_1 doi: 10.1038/s42005-023-01313-x – ident: e_1_2_8_11_1 doi: 10.1364/OL.482946 – ident: e_1_2_8_39_1 doi: 10.1002/lpor.202200731 – ident: e_1_2_8_48_1 doi: 10.1126/science.aal5326 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevA.96.043620 |
SSID | ssj0055556 |
Score | 2.5505738 |
Snippet | Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | buildup and switching mechanisms Gold Information systems noise‐like pulses Nonlinear optics Nonlinear systems Nonlinearity Phase transitions Polarization rogue waves Solitary waves soliton dynamics soliton molecules |
Title | Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401019 https://www.proquest.com/docview/3157781634 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iyYtvcXWVHARPWdumz6OKyyKuLquCt5KkCSxqu9hdBE_7E_yN_hJn0m59gAjaSylMQptkMt-kM98QchCBzgjfVSwy3DCs5cAkTDMTQnERKR3wDHOH-5dh79Y_vwvuPmXxV_wQzYEbaobdr1HBhSyPPkhDHwCfgn8HFglWFWbwYcAWoqJhwx8VwGXTi-KQM3D1nDlro-MdfW3-1Sp9QM3PgNVanO4KEfN3rQJN7jvTieyol280jv_5mFWyXMNRelytnzWyoPN1slJDU1orfrlBZgN0geuczbfZK1b8UCBxglW1p2MqcpB-Hk1sZCbta8wnHpWPJQVMTK8xxq7Iab8qxatLirtQUUL7wtDLYlRq6PJidI-3wRSMNbUm1EaT0QoOb5Lb7tnNaY_VxRuY4kGUsEwb9PWEI2IeG6NlBp6OwP_PnDux1oq7EsBhZFToaR7wKMGsXvA2HTfzfZXwLbKYF7neJtQ1IgwSVwUmNL70E-EYKXWWeaHwZJwlLcLmk5eqmtkcC2w8pBUns5fi8KbN8LbIYSM_rjg9fpRsz9dCWut2mXI3iKIYcKzfIp6d1F96SS8GV8PmaecvjXbJkoeFh-3ZT5ssTp6meg_Q0ETu2xX_DlOmB0g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R5dBeKK-qCwV8QOLkNonzPAKiWmB3WS2t1FtkO7a0aklWZFeVeupP4DfyS5hxHksrVUgllyjS2Epsj-cbZ-YbgLcJ6owMfc0TKyynWg5c4TRzKbWQiTaRKCh3eDKNR6fhl7OoiyakXJiGH6I_cCPNcPs1KTgdSB9tWEMvEKCig4cmCZdVtgUPqay386rmPYNUhJdLMEpjwdHZ8zreRi84utn-pl3agM2_IauzOce7oLq3bUJNzg_XK3Wor24ROf7X5zyGRy0iZe-bJfQEHpjyKey26JS1ul8_g-sZecFt2ubv619U9EOjxAcqrL1eMlmi9OVi5YIz2cRQSvGi_lEzhMXsO4XZVSWbNNV4Tc1oI6pqbF9ZNq0WtcEux4tzus3WaK-Zs6IuoIw1iPg5nB5_Ovk44m39Bq5FlGS8MJbcPenJVKTWGlWgsyPpF7QQXmqMFr5CfJhYHQdGRCLJKLEXHU7PL8JQZ2IPBmVVmn1gvpVxlPk6srENVZhJzypliiKIZaDSIhsC72Yv1y25OdXYuMgbWuYgp-HN--EdwrteftnQetwpedAthrxV7zoXfpQkKULZcAiBm9V_9JKPZ9_m_dOL-zR6A9ujk8k4H3-efn0JOwHVIXZHQQcwWP1cm1cIjlbqtVv-fwC1gAtj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VEK9AC1FXX5aHyr1ZEji_B5p6YqW3e2KgsQtsh1bWkGTFdkVEicegWfsk3TGyQaohCpBLlGksZXYM55vHM83AJ8StBkZ-ponVlhOtRy4wmnmUmohE20iUVDu8HAUH56GP86is3tZ_A0_RLfhRpbh1msy8Glh9-5IQy8Qn2J8hx4JtSp7Ca_C2EtJrw-OOwKpCC-XX5TGgmOs5y1oG71g72H7h27pDmveR6zO5fRXQS5etjlpcr47n6ldff0Pj-NzvmYNVlo8yvYbBXoDL0z5FlZbbMpay6_X4WZMMXCbtPnn5pZKfmiU-EJltedTJkuUvprM3NFMNjSUUDypf9cMQTH7RYfsqpINm1q8pma0DFU1tq8sG1WT2mCXg8k53cZz9NbM-VB3nIw1ePgdnPa_nXw95G31Bq5FlGS8MJaCPenJVKTWGlVgqCPpB7QQXmqMFr5CdJhYHQdGRCLJKK0Xw03PL8JQZ2IDlsqqNO-B-VbGUebryMY2VGEmPauUKYogloFKi6wHfDF5uW6pzanCxkXekDIHOQ1v3g1vDz538tOG1ONRye2FLuStcde58KMkSRHIhj0I3KT-p5d8MP553D1tPqXRR1geH_TzwffR0Ra8DqgIsdsH2oal2eXc7CAymqkPTvn_Aq5xChs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization%E2%80%90Induced+Buildup+and+Switching+Mechanisms+for+Soliton+Molecules+Composed+of+Noise%E2%80%90Like%E2%80%90Pulse+Transition+States&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Si%2C+Zhi%E2%80%90Zeng&rft.au=Ju%2C+Zhen%E2%80%90Tao&rft.au=Ren%2C+Long%E2%80%90Fei&rft.au=Wang%2C+Xue%E2%80%90Peng&rft.date=2025-01-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1002%2Flpor.202401019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202401019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |