Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States

Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new build...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 19; no. 2
Main Authors Si, Zhi‐Zeng, Ju, Zhen‐Tao, Ren, Long‐Fei, Wang, Xue‐Peng, Malomed, Boris A., Dai, Chao‐Qing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems. Using a novel strongly nonlinear optical system, including saturable absorber MOF‐253@Au and a polarization controller, the work reveals a new buildup and switching scenario for soliton molecules (SMs), which includes a long‐duration stage dominated by the emergence of transient NLPs modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity.
AbstractList Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems. Using a novel strongly nonlinear optical system, including saturable absorber MOF‐253@Au and a polarization controller, the work reveals a new buildup and switching scenario for soliton molecules (SMs), which includes a long‐duration stage dominated by the emergence of transient NLPs modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity.
Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear optical system, including saturable absorber metal‐organic framework (MOF)‐253@Au and a polarization controller (PC), the work reveals a new buildup scenario for “soliton molecules (SMs)”, which includes a long‐duration stage dominated by the emergence of transient noise‐like pulses (NLPs) modes to withstand strong disturbances arising from “turbulence” and extreme nonlinearity in the optical cavity. The switching between SMs and NLPs is controlled by the cavity polarization state. The switching involves the spectral collapse, following spectral oscillations with a variable period, and self‐organization of NLPs, following energy overshoot. This switching mechanism applies to various patterns with single, paired, and clustered pulses. In the multi‐pulses stage, XPM (cross‐phase‐modulation)‐induced interactions between solitons facilitate a specific mode of energy exchange between them, proportional to interaction duration, ensuring pulse stability during and after state transitions. Systematic simulations reveal the effects of the PC's rotation angle and intra‐cavity nonlinearity on the periodic phase transitions between the different soliton states and accurately reproduce the experimentally observed buildup and switching mechanisms. These findings can enhance the fundamental study and points to potential uses in designing information encoding systems.
Author Wang, Xue‐Peng
Ju, Zhen‐Tao
Dai, Chao‐Qing
Malomed, Boris A.
Si, Zhi‐Zeng
Ren, Long‐Fei
Author_xml – sequence: 1
  givenname: Zhi‐Zeng
  surname: Si
  fullname: Si, Zhi‐Zeng
  organization: Zhejiang A&F University
– sequence: 2
  givenname: Zhen‐Tao
  surname: Ju
  fullname: Ju, Zhen‐Tao
  organization: Zhejiang A&F University
– sequence: 3
  givenname: Long‐Fei
  surname: Ren
  fullname: Ren, Long‐Fei
  organization: Zhejiang A&F University
– sequence: 4
  givenname: Xue‐Peng
  surname: Wang
  fullname: Wang, Xue‐Peng
  organization: Zhejiang A&F University
– sequence: 5
  givenname: Boris A.
  surname: Malomed
  fullname: Malomed, Boris A.
  organization: Universidad de Tarapacá
– sequence: 6
  givenname: Chao‐Qing
  surname: Dai
  fullname: Dai, Chao‐Qing
  email: dcq424@126.com
  organization: Zhejiang A&F University
BookMark eNqFkMtOAjEUhhuDiYBuXTdxDbbTuXSWSryQDEIE15PS6UixtGM7E4IrHsFn9EksYjAxMZ7NOUnPd_7064CWNloAcI5RHyMUXKrK2H6AghBhhNMj0MY0Jj1K07R1mCk6AR3nlghFvuI22E6MYla-sVoa_bF9H-qi4aKA141URVNBpgs4XcuaL6R-hiPBF0xLt3KwNBZOjZK10XBklOCNEg4OzKoyzvOmhA9GOuFPZvJl1yaNcgLOLNNO7sLgtGa1cKfguGT-5ey7d8HT7c1scN_LxnfDwVXW4yRK0l4hytj_iyFGCS1LMS_iMGBhgANCEBWCEzyPEE1KHgeCRCRJMQ69ihThIgx5SrrgYn-3sua1Ea7Ol6ax2kfmBEdJQnFMQr_V329xa5yzoswrK1fMbnKM8p3lfGc5P1j2QPgL4LL-kllbJtXfWLrH1lKJzT8heTYZP_6wn_r7mMk
CitedBy_id crossref_primary_10_1021_acsami_4c18533
crossref_primary_10_1007_s11071_024_10760_2
crossref_primary_10_1016_j_cej_2024_159024
crossref_primary_10_1016_j_physleta_2024_130060
crossref_primary_10_1007_s11082_024_07757_x
crossref_primary_10_1117_1_AP_7_1_016005
crossref_primary_10_3934_math_2025202
crossref_primary_10_1016_j_chaos_2025_116258
crossref_primary_10_1007_s11071_024_10850_1
crossref_primary_10_1016_j_chaos_2025_116218
crossref_primary_10_1016_j_cjph_2024_10_012
crossref_primary_10_1016_j_chaos_2024_115967
crossref_primary_10_1007_s12346_025_01240_y
Cites_doi 10.1002/lpor.202200298
10.1002/lpor.202300471
10.1364/OPTICA.445704
10.1103/PhysRevLett.128.213902
10.1364/OL.20.000163
10.1063/5.0134119
10.1364/OL.443319
10.1364/PRJ.500126
10.1038/s41467-020-15720-z
10.1063/1.858409
10.1103/PhysRevLett.121.023905
10.1038/s41377-024-01423-3
10.3788/COL202220.081402
10.1103/PhysRevA.64.033814
10.1364/OPTICA.493601
10.1002/lpor.201800009
10.1038/s41467-021-25861-4
10.1063/1.5091811
10.1126/sciadv.adk2290
10.1016/j.yofte.2014.07.004
10.1038/s41377-024-01451-z
10.1038/s41377-022-00998-z
10.1038/s41586-023-06915-7
10.1038/s41377-023-01170-x
10.1103/PhysRevA.107.053512
10.1103/PhysRevLett.131.263802
10.1103/PhysRevLett.130.153801
10.1364/OE.399946
10.1016/j.chaos.2023.113438
10.1364/OL.35.002403
10.1038/s41467-019-13265-4
10.1109/JLT.2022.3162699
10.1063/5.0196407
10.1007/s11433-023-2365-7
10.1364/OL.37.003849
10.1016/j.chaos.2018.11.004
10.1038/s42005-022-01068-x
10.1002/lpor.202000132
10.1002/lpor.202200763
10.1103/PhysRevA.106.053509
10.1364/OE.432957
10.1364/OPTICA.394706
10.1126/sciadv.adl2125
10.1038/nphys1740
10.1038/s42005-023-01313-x
10.1364/OL.482946
10.1002/lpor.202200731
10.1126/science.aal5326
10.1103/PhysRevA.96.043620
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202401019
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202401019
LPOR202401019
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12261131495; 12475008
– fundername: Scientific Research and Development Fund of Zhejiang A&F University
  funderid: 2021FR0009
GroupedDBID 05W
0R~
1OC
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
LW6
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3579-def6010a0a838ffebd642a42123308eec31b5087fc62e35379114240901d44c93
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Tue Jul 22 22:52:30 EDT 2025
Tue Jul 01 04:54:02 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Jan 22 09:30:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-def6010a0a838ffebd642a42123308eec31b5087fc62e35379114240901d44c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202401019
PQID 3157781634
PQPubID 1016358
PageCount 13
ParticipantIDs proquest_journals_3157781634
crossref_primary_10_1002_lpor_202401019
crossref_citationtrail_10_1002_lpor_202401019
wiley_primary_10_1002_lpor_202401019_LPOR202401019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2021; 46
2018; 121
2023; 11
2019; 6
2010; 35
2023; 12
2023; 17
2023; 6
2019; 10
2024; 625
2023; 8
2021; 29
2024; 10
2022; 20
2020; 11
2024; 13
2012; 37
2023; 107
2017; 356
2024; 18
2001; 64
2014; 20
1995; 20
2020; 7
2021; 15
2017; 96
2023; 171
2021; 12
2018; 117
2023; 131
2023; 130
2023; 48
2022; 5
2022; 40
2024; 9
2022; 9
2020; 28
2024; 67
2022; 11
2018; 12
2022; 128
2022; 106
2010; 6
1992; 4
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Malomed B. A. (e_1_2_8_24_1)
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 2402
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: Appl. Phys. Rev.
– volume: 37
  start-page: 3849
  year: 2012
  publication-title: Opt. Lett.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 35
  start-page: 2403
  year: 2010
  publication-title: Opt. Lett.
– start-page: 288
– volume: 64
  year: 2001
  publication-title: Phys. Rev. A
– volume: 20
  start-page: 575
  year: 2014
  publication-title: Opt. Fiber Technol.
– volume: 6
  start-page: 191
  year: 2023
  publication-title: Commun. Phys.
– volume: 40
  start-page: 4391
  year: 2022
  publication-title: J. Lightwave Technol.
– volume: 10
  start-page: 1280
  year: 2023
  publication-title: Optica
– volume: 11
  start-page: 2011
  year: 2023
  publication-title: Photonics Res.
– volume: 20
  start-page: 163
  year: 1995
  publication-title: Opt. Lett.
– volume: 130
  year: 2023
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 296
  year: 2022
  publication-title: Light: Sci. Appl.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 1329
  year: 1992
  publication-title: Phys. Fluids A
– volume: 8
  year: 2023
  publication-title: APL Photonics
– volume: 48
  start-page: 779
  year: 2023
  publication-title: Opt. Lett.
– volume: 13
  start-page: 81
  year: 2024
  publication-title: Light: Sci. Appl.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 9
  year: 2024
  publication-title: APL Photonics
– volume: 10
  start-page: 5663
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 123
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 6
  start-page: 790
  year: 2010
  publication-title: Nat. Phys.
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 67
  year: 2024
  publication-title: Sci. China Phys., Mech. Astron.
– volume: 13
  start-page: 101
  year: 2024
  publication-title: Light: Sci. Appl.
– volume: 46
  start-page: 5695
  year: 2021
  publication-title: Opt. Lett.
– volume: 106
  year: 2022
  publication-title: Phys. Rev. A
– volume: 117
  start-page: 264
  year: 2018
  publication-title: Chaos, Solitons Fractals
– volume: 5
  start-page: 302
  year: 2022
  publication-title: Commun. Phys.
– volume: 12
  start-page: 5567
  year: 2021
  publication-title: Nat. Commun.
– volume: 18
  year: 2024
  publication-title: Laser Photonics Rev.
– volume: 356
  start-page: 50
  year: 2017
  publication-title: Science
– volume: 12
  year: 2018
  publication-title: Laser Photonics Rev.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 10
  year: 2024
  publication-title: Sci. Adv.
– volume: 7
  start-page: 965
  year: 2020
  publication-title: Optica
– volume: 131
  year: 2023
  publication-title: Phys. Rev. Lett.
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 20
  year: 2022
  publication-title: Chin. Opt. Lett.
– volume: 625
  start-page: 685
  year: 2024
  publication-title: Nature
– volume: 171
  year: 2023
  publication-title: Chaos, Solitons Fractals
– volume: 9
  start-page: 240
  year: 2022
  publication-title: Optica
– ident: e_1_2_8_15_1
  doi: 10.1002/lpor.202200298
– ident: e_1_2_8_16_1
  doi: 10.1002/lpor.202300471
– ident: e_1_2_8_28_1
  doi: 10.1364/OPTICA.445704
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.128.213902
– ident: e_1_2_8_19_1
  doi: 10.1364/OL.20.000163
– ident: e_1_2_8_33_1
  doi: 10.1063/5.0134119
– ident: e_1_2_8_41_1
  doi: 10.1364/OL.443319
– ident: e_1_2_8_10_1
  doi: 10.1364/PRJ.500126
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-020-15720-z
– ident: e_1_2_8_3_1
  doi: 10.1063/1.858409
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.121.023905
– ident: e_1_2_8_44_1
  doi: 10.1038/s41377-024-01423-3
– ident: e_1_2_8_22_1
  doi: 10.3788/COL202220.081402
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevA.64.033814
– ident: e_1_2_8_7_1
  doi: 10.1364/OPTICA.493601
– ident: e_1_2_8_21_1
  doi: 10.1002/lpor.201800009
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-021-25861-4
– ident: e_1_2_8_27_1
  doi: 10.1063/1.5091811
– ident: e_1_2_8_8_1
  doi: 10.1126/sciadv.adk2290
– ident: e_1_2_8_47_1
  doi: 10.1016/j.yofte.2014.07.004
– ident: e_1_2_8_35_1
  doi: 10.1038/s41377-024-01451-z
– ident: e_1_2_8_46_1
  doi: 10.1038/s41377-022-00998-z
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-023-06915-7
– ident: e_1_2_8_31_1
  doi: 10.1038/s41377-023-01170-x
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevA.107.053512
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.131.263802
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.130.153801
– ident: e_1_2_8_23_1
  doi: 10.1364/OE.399946
– ident: e_1_2_8_12_1
  doi: 10.1016/j.chaos.2023.113438
– ident: e_1_2_8_20_1
  doi: 10.1364/OL.35.002403
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-019-13265-4
– ident: e_1_2_8_40_1
  doi: 10.1109/JLT.2022.3162699
– ident: e_1_2_8_32_1
  doi: 10.1063/5.0196407
– ident: e_1_2_8_13_1
  doi: 10.1007/s11433-023-2365-7
– ident: e_1_2_8_45_1
  doi: 10.1364/OL.37.003849
– ident: e_1_2_8_4_1
  doi: 10.1016/j.chaos.2018.11.004
– ident: e_1_2_8_34_1
  doi: 10.1038/s42005-022-01068-x
– start-page: 288
  volume-title: Large Scale Structures in Nonlinear Physics
  ident: e_1_2_8_24_1
– ident: e_1_2_8_5_1
  doi: 10.1002/lpor.202000132
– ident: e_1_2_8_49_1
  doi: 10.1002/lpor.202200763
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevA.106.053509
– ident: e_1_2_8_42_1
  doi: 10.1364/OE.432957
– ident: e_1_2_8_29_1
  doi: 10.1364/OPTICA.394706
– ident: e_1_2_8_18_1
  doi: 10.1126/sciadv.adl2125
– ident: e_1_2_8_1_1
  doi: 10.1038/nphys1740
– ident: e_1_2_8_9_1
  doi: 10.1038/s42005-023-01313-x
– ident: e_1_2_8_11_1
  doi: 10.1364/OL.482946
– ident: e_1_2_8_39_1
  doi: 10.1002/lpor.202200731
– ident: e_1_2_8_48_1
  doi: 10.1126/science.aal5326
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevA.96.043620
SSID ssj0055556
Score 2.5505738
Snippet Buildup and switching mechanisms of solitons in complex nonlinear systems are fundamentally important dynamical regimes. Using a novel strongly nonlinear...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms buildup and switching mechanisms
Gold
Information systems
noise‐like pulses
Nonlinear optics
Nonlinear systems
Nonlinearity
Phase transitions
Polarization
rogue waves
Solitary waves
soliton dynamics
soliton molecules
Title Polarization‐Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise‐Like‐Pulse Transition States
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202401019
https://www.proquest.com/docview/3157781634
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iyYtvcXWVHARPWdumz6OKyyKuLquCt5KkCSxqu9hdBE_7E_yN_hJn0m59gAjaSylMQptkMt-kM98QchCBzgjfVSwy3DCs5cAkTDMTQnERKR3wDHOH-5dh79Y_vwvuPmXxV_wQzYEbaobdr1HBhSyPPkhDHwCfgn8HFglWFWbwYcAWoqJhwx8VwGXTi-KQM3D1nDlro-MdfW3-1Sp9QM3PgNVanO4KEfN3rQJN7jvTieyol280jv_5mFWyXMNRelytnzWyoPN1slJDU1orfrlBZgN0geuczbfZK1b8UCBxglW1p2MqcpB-Hk1sZCbta8wnHpWPJQVMTK8xxq7Iab8qxatLirtQUUL7wtDLYlRq6PJidI-3wRSMNbUm1EaT0QoOb5Lb7tnNaY_VxRuY4kGUsEwb9PWEI2IeG6NlBp6OwP_PnDux1oq7EsBhZFToaR7wKMGsXvA2HTfzfZXwLbKYF7neJtQ1IgwSVwUmNL70E-EYKXWWeaHwZJwlLcLmk5eqmtkcC2w8pBUns5fi8KbN8LbIYSM_rjg9fpRsz9dCWut2mXI3iKIYcKzfIp6d1F96SS8GV8PmaecvjXbJkoeFh-3ZT5ssTp6meg_Q0ETu2xX_DlOmB0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R5dBeKK-qCwV8QOLkNonzPAKiWmB3WS2t1FtkO7a0aklWZFeVeupP4DfyS5hxHksrVUgllyjS2Epsj-cbZ-YbgLcJ6owMfc0TKyynWg5c4TRzKbWQiTaRKCh3eDKNR6fhl7OoiyakXJiGH6I_cCPNcPs1KTgdSB9tWEMvEKCig4cmCZdVtgUPqay386rmPYNUhJdLMEpjwdHZ8zreRi84utn-pl3agM2_IauzOce7oLq3bUJNzg_XK3Wor24ROf7X5zyGRy0iZe-bJfQEHpjyKey26JS1ul8_g-sZecFt2ubv619U9EOjxAcqrL1eMlmi9OVi5YIz2cRQSvGi_lEzhMXsO4XZVSWbNNV4Tc1oI6pqbF9ZNq0WtcEux4tzus3WaK-Zs6IuoIw1iPg5nB5_Ovk44m39Bq5FlGS8MJbcPenJVKTWGlWgsyPpF7QQXmqMFr5CfJhYHQdGRCLJKLEXHU7PL8JQZ2IPBmVVmn1gvpVxlPk6srENVZhJzypliiKIZaDSIhsC72Yv1y25OdXYuMgbWuYgp-HN--EdwrteftnQetwpedAthrxV7zoXfpQkKULZcAiBm9V_9JKPZ9_m_dOL-zR6A9ujk8k4H3-efn0JOwHVIXZHQQcwWP1cm1cIjlbqtVv-fwC1gAtj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VEK9AC1FXX5aHyr1ZEji_B5p6YqW3e2KgsQtsh1bWkGTFdkVEicegWfsk3TGyQaohCpBLlGksZXYM55vHM83AJ8StBkZ-ponVlhOtRy4wmnmUmohE20iUVDu8HAUH56GP86is3tZ_A0_RLfhRpbh1msy8Glh9-5IQy8Qn2J8hx4JtSp7Ca_C2EtJrw-OOwKpCC-XX5TGgmOs5y1oG71g72H7h27pDmveR6zO5fRXQS5etjlpcr47n6ldff0Pj-NzvmYNVlo8yvYbBXoDL0z5FlZbbMpay6_X4WZMMXCbtPnn5pZKfmiU-EJltedTJkuUvprM3NFMNjSUUDypf9cMQTH7RYfsqpINm1q8pma0DFU1tq8sG1WT2mCXg8k53cZz9NbM-VB3nIw1ePgdnPa_nXw95G31Bq5FlGS8MJaCPenJVKTWGlVgqCPpB7QQXmqMFr5CdJhYHQdGRCLJKK0Xw03PL8JQZ2IDlsqqNO-B-VbGUebryMY2VGEmPauUKYogloFKi6wHfDF5uW6pzanCxkXekDIHOQ1v3g1vDz538tOG1ONRye2FLuStcde58KMkSRHIhj0I3KT-p5d8MP553D1tPqXRR1geH_TzwffR0Ra8DqgIsdsH2oal2eXc7CAymqkPTvn_Aq5xChs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization%E2%80%90Induced+Buildup+and+Switching+Mechanisms+for+Soliton+Molecules+Composed+of+Noise%E2%80%90Like%E2%80%90Pulse+Transition+States&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Si%2C+Zhi%E2%80%90Zeng&rft.au=Ju%2C+Zhen%E2%80%90Tao&rft.au=Ren%2C+Long%E2%80%90Fei&rft.au=Wang%2C+Xue%E2%80%90Peng&rft.date=2025-01-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1002%2Flpor.202401019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202401019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon