Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuc...
Saved in:
Published in | Cell discovery Vol. 6; no. 1; p. 31 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
04.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14
++
monocytes with high inflammatory gene expression as well as a greater abundance of CD14
++
IL1β
+
monocytes in the ERS. CD4
+
T cells and CD8
+
T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19. |
---|---|
AbstractList | COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19. COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 monocytes with high inflammatory gene expression as well as a greater abundance of CD14 IL1β monocytes in the ERS. CD4 T cells and CD8 T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19. COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 ++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14 ++ IL1β + monocytes in the ERS. CD4 + T cells and CD8 + T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19. COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 ++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14 ++ IL1β + monocytes in the ERS. CD4 + T cells and CD8 + T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19. |
ArticleNumber | 31 |
Author | Wen, Wen Dong, Liwei Wang, Depeng Miao, Yushan Xie, Lihui Li, Jianmin Xiao, Chuanle Le, Wenqing Su, Wenru Dong, Jiantao Tang, Hao Chen, Wei Cui, Xiuliang Wang, Hongyang Ye, Jinguo Zhang, Xiaopeng Zheng, Yingfeng Liu, Xiuxing |
Author_xml | – sequence: 1 givenname: Wen surname: Wen fullname: Wen, Wen organization: National Center for Liver Cancer, Second Military Medical University – sequence: 2 givenname: Wenru surname: Su fullname: Su, Wenru organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 3 givenname: Hao surname: Tang fullname: Tang, Hao organization: Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Department of Critical Care, Wuhan Huoshenshan Hospital – sequence: 4 givenname: Wenqing surname: Le fullname: Le, Wenqing organization: Department of Critical Care, Wuhan Hankou Hospital – sequence: 5 givenname: Xiaopeng surname: Zhang fullname: Zhang, Xiaopeng organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology – sequence: 6 givenname: Yingfeng surname: Zheng fullname: Zheng, Yingfeng organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 7 givenname: Xiuxing surname: Liu fullname: Liu, Xiuxing organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 8 givenname: Lihui surname: Xie fullname: Xie, Lihui organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 9 givenname: Jianmin surname: Li fullname: Li, Jianmin organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology – sequence: 10 givenname: Jinguo surname: Ye fullname: Ye, Jinguo organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 11 givenname: Liwei surname: Dong fullname: Dong, Liwei organization: National Center for Liver Cancer, Second Military Medical University – sequence: 12 givenname: Xiuliang surname: Cui fullname: Cui, Xiuliang organization: National Center for Liver Cancer, Second Military Medical University – sequence: 13 givenname: Yushan surname: Miao fullname: Miao, Yushan organization: Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University – sequence: 14 givenname: Depeng surname: Wang fullname: Wang, Depeng organization: GrandOmics Diagnosis Co. Ltd – sequence: 15 givenname: Jiantao surname: Dong fullname: Dong, Jiantao organization: Berry Genomics Co. Ltd – sequence: 16 givenname: Chuanle surname: Xiao fullname: Xiao, Chuanle email: xiaochuanle@126.com organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 17 givenname: Wei surname: Chen fullname: Chen, Wei email: cw0226@foxmail.com organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology – sequence: 18 givenname: Hongyang surname: Wang fullname: Wang, Hongyang email: hywangk@vip.sina.com organization: National Center for Liver Cancer, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Ministry of Education (MOE) Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32377375$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtP3DAQthAVUMoP6KXysZe0fiXOXCpVS6ErIXEpHHqxHGeyGCX21k6Q-Pf1dqGiPXDyyPM9ZuZ7Sw5DDEjIe84-cSbbz1lxJXjFBKsYb9oKDsiJYHVT1dC0hy_qY3KW8z1jjNeibdv6iBxLIbWWuj4hP9fTtASkDseRblMc_OjDhsaBrq5v1-cVB7q1s8cwZ-oDne-QJnTxAdMjzbPdIO1KUSgjVn80Mv5aMLjy8468GeyY8ezpPSU3F99-rL5XV9eX69XXq8rJWkNVd0wp1QAoO2hohew6DpbhoITq-sah6gfoBwdWA_Salw36hjvArhZSNlqeki973e3STdi7Mmuyo9kmP9n0aKL15t9O8HdmEx-M5qAbWReBj08CKZbh82wmn3fL2IBxyUZIgFYpgKZAP7z0-mvyfNAC0HuASzHnhINxfi4HjDtrPxrOzC49s0_PlPTMLj0Dhcn_Yz6Lv8YRe04u2LDBZO7jkkK59iuk35Sbq-A |
CitedBy_id | crossref_primary_10_1111_1756_185X_13909 crossref_primary_10_3390_jcm13092481 crossref_primary_10_3892_etm_2021_9658 crossref_primary_10_1016_j_chom_2020_05_009 crossref_primary_10_1093_nop_npae029 crossref_primary_10_1097_CM9_0000000000001956 crossref_primary_10_1038_s41587_021_01131_y crossref_primary_10_1038_s41579_020_00468_6 crossref_primary_10_3389_fimmu_2021_764949 crossref_primary_10_3748_wjg_v27_i15_1531 crossref_primary_10_1038_s41467_020_19545_8 crossref_primary_10_1093_oxfimm_iqaa005 crossref_primary_10_1080_22221751_2020_1826361 crossref_primary_10_1084_jem_20200674 crossref_primary_10_1089_vim_2020_0313 crossref_primary_10_1038_s43856_023_00268_y crossref_primary_10_1126_sciadv_adg1812 crossref_primary_10_1038_s41587_020_0602_4 crossref_primary_10_1111_all_14657 crossref_primary_10_3389_fimmu_2021_741837 crossref_primary_10_1038_s41421_021_00300_2 crossref_primary_10_3389_fimmu_2023_1329026 crossref_primary_10_3389_fphar_2025_1508276 crossref_primary_10_1007_s11926_023_01107_8 crossref_primary_10_1038_s41598_022_17334_5 crossref_primary_10_1007_s10753_022_01674_5 crossref_primary_10_1371_journal_pcbi_1012265 crossref_primary_10_1038_s41392_021_00525_3 crossref_primary_10_1093_jmcb_mjab067 crossref_primary_10_1002_jmv_28192 crossref_primary_10_1007_s12035_023_03682_4 crossref_primary_10_3389_fnins_2022_898735 crossref_primary_10_3390_ijms25063280 crossref_primary_10_1177_09727531211023755 crossref_primary_10_1093_femsre_fuab035 crossref_primary_10_1111_cea_13718 crossref_primary_10_1038_s41392_022_01237_y crossref_primary_10_3389_fphar_2020_01309 crossref_primary_10_3389_fmed_2020_562142 crossref_primary_10_1097_COH_0000000000000655 crossref_primary_10_1093_immadv_ltab003 crossref_primary_10_3390_v12111277 crossref_primary_10_1038_s42003_021_02983_5 crossref_primary_10_3389_fimmu_2021_769011 crossref_primary_10_1016_j_isci_2023_108288 crossref_primary_10_7554_eLife_73012 crossref_primary_10_1038_s41467_021_22449_w crossref_primary_10_1016_j_arr_2022_101818 crossref_primary_10_1016_j_isci_2022_105608 crossref_primary_10_3389_fimmu_2021_625881 crossref_primary_10_1016_j_biopha_2022_114208 crossref_primary_10_1016_j_fmre_2021_03_001 crossref_primary_10_1007_s11011_022_01048_8 crossref_primary_10_1038_s41467_021_21289_y crossref_primary_10_1177_10760296231177676 crossref_primary_10_11613_BM_2021_030501 crossref_primary_10_3390_biomedicines9091253 crossref_primary_10_1038_s41467_024_44905_z crossref_primary_10_1097_SHK_0000000000001610 crossref_primary_10_3389_fmicb_2021_636250 crossref_primary_10_3389_fmicb_2020_588409 crossref_primary_10_3389_fimmu_2023_1022890 crossref_primary_10_1186_s12985_022_01885_0 crossref_primary_10_1007_s42399_020_00646_w crossref_primary_10_1097_MD_0000000000036818 crossref_primary_10_1038_s41598_021_00121_z crossref_primary_10_1111_all_14449 crossref_primary_10_1007_s00018_021_03808_8 crossref_primary_10_3390_v15071439 crossref_primary_10_1016_j_jns_2020_116942 crossref_primary_10_1186_s12859_024_05690_0 crossref_primary_10_1186_s40635_021_00409_4 crossref_primary_10_1007_s12195_020_00630_3 crossref_primary_10_3389_fbioe_2023_1339941 crossref_primary_10_1055_s_0040_1718735 crossref_primary_10_1007_s12026_022_09265_0 crossref_primary_10_1016_j_micpath_2023_106300 crossref_primary_10_1097_SHK_0000000000001724 crossref_primary_10_47360_1995_4484_2020_456_462 crossref_primary_10_3389_fimmu_2022_829760 crossref_primary_10_2500_aap_2021_42_210077 crossref_primary_10_5005_JABLM_11031_01104 crossref_primary_10_1002_ajh_25985 crossref_primary_10_1007_s00018_022_04329_8 crossref_primary_10_1186_s12929_021_00740_8 crossref_primary_10_1016_j_humimm_2025_111249 crossref_primary_10_3390_biology9090243 crossref_primary_10_3390_cancers15174277 crossref_primary_10_1016_j_clim_2023_109879 crossref_primary_10_3389_fimmu_2022_1006136 crossref_primary_10_1016_j_pathol_2020_08_001 crossref_primary_10_3389_fonc_2023_1115293 crossref_primary_10_1186_s12964_024_01718_3 crossref_primary_10_2217_imt_2021_0331 crossref_primary_10_1016_j_smim_2020_101428 crossref_primary_10_3389_fimmu_2020_01518 crossref_primary_10_1016_j_jbior_2020_100737 crossref_primary_10_1177_09636897211010632 crossref_primary_10_3389_fcimb_2020_00364 crossref_primary_10_1038_s41467_021_27716_4 crossref_primary_10_3389_fimmu_2023_1271098 crossref_primary_10_1002_jmv_29096 crossref_primary_10_1016_j_xcrm_2020_100144 crossref_primary_10_1093_jalm_jfad123 crossref_primary_10_1016_j_xcrm_2020_100146 crossref_primary_10_1038_s41392_021_00591_7 crossref_primary_10_3389_fimmu_2020_01748 crossref_primary_10_1016_j_ccc_2021_05_006 crossref_primary_10_1089_omi_2020_0110 crossref_primary_10_1007_s00109_021_02175_y crossref_primary_10_4049_jimmunol_2200063 crossref_primary_10_1371_journal_pone_0280592 crossref_primary_10_1016_j_clicom_2022_05_001 crossref_primary_10_3389_fimmu_2020_559716 crossref_primary_10_3389_fphar_2021_784335 crossref_primary_10_1038_s41392_021_00526_2 crossref_primary_10_1016_j_cell_2021_01_053 crossref_primary_10_3389_fimmu_2021_769442 crossref_primary_10_1016_j_fmre_2021_02_004 crossref_primary_10_3390_ijms232012311 crossref_primary_10_1038_s41598_023_28696_9 crossref_primary_10_1080_2162402X_2022_2026583 crossref_primary_10_1111_crj_13455 crossref_primary_10_1016_S2665_9913_21_00072_2 crossref_primary_10_1080_22221751_2020_1785336 crossref_primary_10_5483_BMBRep_2022_55_1_152 crossref_primary_10_1038_s41577_020_0402_6 crossref_primary_10_3390_nu14122534 crossref_primary_10_3389_fimmu_2023_1185233 crossref_primary_10_1016_S2665_9913_20_30340_4 crossref_primary_10_1111_obr_13221 crossref_primary_10_1038_s41419_021_03816_3 crossref_primary_10_4049_jimmunol_2101123 crossref_primary_10_1016_j_arcmed_2020_11_005 crossref_primary_10_1021_acs_analchem_1c02227 crossref_primary_10_1038_s41598_021_87413_6 crossref_primary_10_1371_journal_pone_0246731 crossref_primary_10_7717_peerj_18451 crossref_primary_10_1016_j_humimm_2021_10_007 crossref_primary_10_1016_j_jaci_2020_07_001 crossref_primary_10_1016_j_imlet_2022_08_006 crossref_primary_10_1172_JCI156211 crossref_primary_10_1186_s13054_020_03166_0 crossref_primary_10_1155_2020_8624963 crossref_primary_10_1002_iub_2794 crossref_primary_10_1186_s12916_021_02228_6 crossref_primary_10_1016_j_clim_2022_109177 crossref_primary_10_1242_dmm_047340 crossref_primary_10_1038_s41598_024_53117_w crossref_primary_10_1080_07853890_2020_1858234 crossref_primary_10_1038_s41577_021_00588_x crossref_primary_10_3389_fimmu_2021_631233 crossref_primary_10_1002_jmv_29573 crossref_primary_10_1002_jmv_28000 crossref_primary_10_1016_j_intimp_2021_107397 crossref_primary_10_1038_s41392_020_00263_y crossref_primary_10_4049_jimmunol_2000526 crossref_primary_10_3389_fimmu_2023_1117760 crossref_primary_10_3389_fimmu_2022_989556 crossref_primary_10_1038_s41423_024_01241_y crossref_primary_10_1080_21505594_2024_2421987 crossref_primary_10_1016_j_gendis_2022_08_020 crossref_primary_10_1111_bph_15164 crossref_primary_10_1016_j_biopha_2021_112247 crossref_primary_10_1016_j_tips_2020_06_001 crossref_primary_10_3389_fcimb_2020_586592 crossref_primary_10_1038_s41423_021_00754_0 crossref_primary_10_4103_jacp_jacp_3_21 crossref_primary_10_1016_j_isci_2021_102550 crossref_primary_10_1080_21505594_2021_1929800 crossref_primary_10_1126_sciimmunol_add6608 crossref_primary_10_3390_jcm9103188 crossref_primary_10_1016_j_ygeno_2020_12_036 crossref_primary_10_1016_j_ijbiomac_2021_10_144 crossref_primary_10_18093_0869_0189_2024_34_6_846_856 crossref_primary_10_1002_iub_2379 crossref_primary_10_3389_fimmu_2023_1064293 crossref_primary_10_1038_s41392_021_00610_7 crossref_primary_10_1080_08820139_2022_2092407 crossref_primary_10_3390_pathogens11111256 crossref_primary_10_1111_imr_13115 crossref_primary_10_3389_fcimb_2021_632490 crossref_primary_10_4049_jimmunol_2100228 crossref_primary_10_1084_jem_20220906 crossref_primary_10_3389_fimmu_2021_602539 crossref_primary_10_3390_pathogens9121027 crossref_primary_10_1126_sciadv_abq7599 crossref_primary_10_1016_j_prp_2022_153782 crossref_primary_10_1016_S2213_2600_21_00218_6 crossref_primary_10_1186_s13073_022_01021_1 crossref_primary_10_3389_fimmu_2021_729990 crossref_primary_10_1111_vox_12970 crossref_primary_10_1016_j_thromres_2020_06_029 crossref_primary_10_1016_j_ejphar_2025_177435 crossref_primary_10_3389_fimmu_2020_577875 crossref_primary_10_1182_bloodadvances_2022008445 crossref_primary_10_1016_j_cytogfr_2020_10_002 crossref_primary_10_1093_ofid_ofaa588 crossref_primary_10_1002_jmv_29488 crossref_primary_10_1016_j_ccell_2021_01_001 crossref_primary_10_3390_vaccines10040614 crossref_primary_10_1097_CCE_0000000000000178 crossref_primary_10_3390_plants11010137 crossref_primary_10_3389_fimmu_2022_992787 crossref_primary_10_1016_j_xcrm_2023_101266 crossref_primary_10_1158_2159_8290_CD_21_0316 crossref_primary_10_1038_s41421_020_00225_2 crossref_primary_10_1016_j_isci_2023_106055 crossref_primary_10_1093_bib_bbaa416 crossref_primary_10_1111_jcmm_15771 crossref_primary_10_18632_aging_202571 crossref_primary_10_1016_j_prostaglandins_2023_106762 crossref_primary_10_1038_s41421_021_00321_x crossref_primary_10_1016_j_ijid_2021_10_033 crossref_primary_10_1002_smtd_202000451 crossref_primary_10_1038_s41392_021_00764_4 crossref_primary_10_1016_j_intimp_2022_108767 crossref_primary_10_1038_s41375_023_02093_7 crossref_primary_10_1002_eji_202049159 crossref_primary_10_1016_j_cyto_2021_155439 crossref_primary_10_1002_qub2_78 crossref_primary_10_1152_ajplung_00355_2020 crossref_primary_10_1016_j_kint_2021_05_032 crossref_primary_10_3389_fphar_2020_592543 crossref_primary_10_1111_bjh_19594 crossref_primary_10_18632_aging_203432 crossref_primary_10_1038_s41582_020_0402_y crossref_primary_10_1038_s41422_020_00414_4 crossref_primary_10_1016_j_virol_2021_08_014 crossref_primary_10_3389_fimmu_2021_631044 crossref_primary_10_1016_j_clim_2021_108804 crossref_primary_10_1038_s41435_024_00270_x crossref_primary_10_1021_acsomega_4c02631 crossref_primary_10_1371_journal_ppat_1008820 crossref_primary_10_1186_s41231_020_00066_x crossref_primary_10_1002_jmv_70036 crossref_primary_10_3389_fimmu_2020_607583 crossref_primary_10_1126_science_adj4857 crossref_primary_10_1038_s41467_020_19967_4 crossref_primary_10_1155_2020_7570981 crossref_primary_10_1038_s42003_024_05805_6 crossref_primary_10_3389_fimmu_2022_1034379 crossref_primary_10_1002_jmv_28745 crossref_primary_10_1016_j_jcyt_2020_04_100 crossref_primary_10_14348_molcells_2022_0089 crossref_primary_10_1172_jci_insight_160039 crossref_primary_10_3390_v15051188 crossref_primary_10_1016_j_lfs_2021_119580 crossref_primary_10_1172_jci_insight_151571 crossref_primary_10_1016_j_hnm_2024_200255 crossref_primary_10_1007_s11239_020_02230_4 crossref_primary_10_3390_ijerph182412891 crossref_primary_10_1002_cti2_1259 crossref_primary_10_18632_aging_104205 crossref_primary_10_1007_s00216_021_03499_x crossref_primary_10_1007_s12026_021_09198_0 crossref_primary_10_3899_jrheum_220219 crossref_primary_10_1016_j_ebiom_2020_102964 crossref_primary_10_4049_jimmunol_2200844 crossref_primary_10_1126_science_abc8511 crossref_primary_10_1016_j_ijbiomac_2025_140037 crossref_primary_10_1159_000542652 crossref_primary_10_36425_rehab104997 crossref_primary_10_1038_s43018_020_00120_5 crossref_primary_10_1016_j_csbj_2022_06_066 crossref_primary_10_1371_journal_pone_0266652 crossref_primary_10_1038_s41598_020_76781_0 crossref_primary_10_1038_s41598_023_32268_2 crossref_primary_10_1002_cti2_1228 crossref_primary_10_1007_s00011_022_01540_y crossref_primary_10_25122_jml_2023_0275 crossref_primary_10_3389_fimmu_2021_720109 crossref_primary_10_1177_10815589231158041 crossref_primary_10_1371_journal_pone_0255402 crossref_primary_10_1111_bph_15206 crossref_primary_10_1096_fj_202100024R crossref_primary_10_1002_admt_202100906 crossref_primary_10_3390_life11111152 crossref_primary_10_1007_s11910_021_01130_1 crossref_primary_10_1111_1348_0421_12978 crossref_primary_10_1038_s41467_023_42841_y crossref_primary_10_1128_mbio_02546_22 crossref_primary_10_3389_fmolb_2022_835590 crossref_primary_10_1080_2162402X_2020_1854424 crossref_primary_10_1093_jpids_piaa098 crossref_primary_10_1002_pnp_698 crossref_primary_10_3389_fimmu_2021_594356 crossref_primary_10_3390_vaccines8030443 crossref_primary_10_1002_jmv_26353 crossref_primary_10_3389_fimmu_2020_610300 crossref_primary_10_1016_j_cellsig_2021_110064 crossref_primary_10_1038_s42003_021_02859_8 crossref_primary_10_1097_JBR_0000000000000109 crossref_primary_10_1097_MD_0000000000021803 crossref_primary_10_1016_j_vaccine_2024_126253 crossref_primary_10_3389_fimmu_2022_1066176 crossref_primary_10_1182_bloodadvances_2020003918 crossref_primary_10_1128_iai_00216_24 crossref_primary_10_1186_s43042_022_00360_3 crossref_primary_10_1080_08830185_2021_1883600 crossref_primary_10_1038_s41419_022_04674_3 crossref_primary_10_1128_mSphere_00827_20 crossref_primary_10_1093_cvr_cvac139 crossref_primary_10_3389_fimmu_2020_596684 crossref_primary_10_1111_imm_13457 crossref_primary_10_1080_00325481_2020_1855921 crossref_primary_10_3390_biomedicines9111691 crossref_primary_10_1038_s41392_021_00686_1 crossref_primary_10_1016_j_csbj_2020_10_016 crossref_primary_10_1016_j_immuni_2021_05_006 crossref_primary_10_2147_ITT_S280706 crossref_primary_10_3390_ijms21218171 crossref_primary_10_3389_fendo_2021_626842 crossref_primary_10_15789_2220_7619_OFC_1917 crossref_primary_10_1111_1440_1681_13744 crossref_primary_10_1038_s41422_020_00455_9 crossref_primary_10_1152_ajplung_00236_2023 crossref_primary_10_3390_ijms24021712 crossref_primary_10_4049_jimmunol_2001407 crossref_primary_10_1007_s11239_020_02266_6 crossref_primary_10_1073_pnas_2023216118 crossref_primary_10_3389_fendo_2023_1139692 crossref_primary_10_1007_s13238_020_00762_2 crossref_primary_10_15252_embj_2021108249 crossref_primary_10_1073_pnas_2018587118 crossref_primary_10_3389_fimmu_2021_665773 crossref_primary_10_3389_fphys_2020_00699 crossref_primary_10_2217_fvl_2020_0065 crossref_primary_10_4110_in_2021_21_e12 crossref_primary_10_1126_scisignal_abg8744 crossref_primary_10_4110_in_2021_21_e10 crossref_primary_10_1016_j_bcp_2022_115116 crossref_primary_10_3389_fimmu_2021_753558 crossref_primary_10_3390_nu14051000 crossref_primary_10_1186_s12864_020_07300_8 crossref_primary_10_1136_rmdopen_2020_001549 crossref_primary_10_1016_j_celrep_2020_108590 crossref_primary_10_3389_fimmu_2021_781432 crossref_primary_10_1007_s13258_022_01285_2 crossref_primary_10_1080_08820139_2021_1936009 crossref_primary_10_3389_fimmu_2021_741218 crossref_primary_10_1038_s41467_021_24981_1 crossref_primary_10_1016_j_clim_2020_108591 crossref_primary_10_1038_s41392_020_00457_4 crossref_primary_10_1159_000514193 crossref_primary_10_3389_fimmu_2023_1190844 crossref_primary_10_1111_bph_16323 crossref_primary_10_1038_s41556_021_00690_1 crossref_primary_10_1038_s41577_021_00578_z crossref_primary_10_1055_a_1581_6899 crossref_primary_10_1093_jleuko_qiac001 crossref_primary_10_1016_j_ebiom_2022_104299 crossref_primary_10_1182_bloodadvances_2021005949 crossref_primary_10_1186_s12967_022_03737_5 crossref_primary_10_1021_acs_bioconjchem_1c00220 crossref_primary_10_3389_fcell_2023_1207960 crossref_primary_10_1002_mco2_70056 crossref_primary_10_1126_sciimmunol_abg5021 crossref_primary_10_3390_cells9061440 crossref_primary_10_1007_s13167_023_00317_5 crossref_primary_10_1038_s41598_021_04683_w crossref_primary_10_1080_14789450_2021_1908894 crossref_primary_10_3389_fimmu_2024_1358725 crossref_primary_10_2217_nnm_2020_0286 crossref_primary_10_3389_fimmu_2023_1172724 crossref_primary_10_3390_vaccines9121493 crossref_primary_10_1111_aji_13317 crossref_primary_10_1038_s41590_021_01035_8 crossref_primary_10_1016_j_amjmed_2021_01_040 crossref_primary_10_1371_journal_ppat_1010176 crossref_primary_10_1038_s41392_021_00749_3 crossref_primary_10_3390_ijms23158285 crossref_primary_10_1007_s00018_022_04220_6 crossref_primary_10_2174_2666796701999201116125249 crossref_primary_10_3389_fimmu_2022_832394 crossref_primary_10_1186_s12879_021_05792_7 crossref_primary_10_3389_fimmu_2022_964976 crossref_primary_10_3389_fphar_2021_598925 crossref_primary_10_1016_j_ejphar_2020_173547 crossref_primary_10_3389_fimmu_2021_816745 crossref_primary_10_3390_pr10061053 crossref_primary_10_1016_j_ajpath_2020_08_009 crossref_primary_10_1177_1179548420980699 crossref_primary_10_1016_j_intimp_2021_107622 crossref_primary_10_1038_s44320_024_00070_5 crossref_primary_10_7555_JBR_36_20220221 crossref_primary_10_1038_s41590_020_00835_8 crossref_primary_10_3389_fimmu_2022_993025 crossref_primary_10_1186_s41231_023_00155_7 crossref_primary_10_3389_fgene_2021_745483 crossref_primary_10_1182_bloodadvances_2022009022 crossref_primary_10_34133_hds_0002 crossref_primary_10_3389_fimmu_2020_573662 crossref_primary_10_1172_JCI141772 crossref_primary_10_1007_s12015_020_10056_z crossref_primary_10_1111_all_15239 crossref_primary_10_1186_s10020_020_00186_y crossref_primary_10_1161_STROKEAHA_120_032764 crossref_primary_10_1016_j_isci_2022_105559 crossref_primary_10_3389_fimmu_2020_571481 crossref_primary_10_1186_s12964_024_01867_5 crossref_primary_10_1186_s13073_021_00881_3 crossref_primary_10_1038_s41467_024_54732_x crossref_primary_10_1038_s41467_020_19080_6 crossref_primary_10_1080_23808993_2020_1785286 crossref_primary_10_3389_fimmu_2022_917141 crossref_primary_10_1093_bib_bbac070 crossref_primary_10_1093_pnasnexus_pgac062 crossref_primary_10_3389_fmolb_2021_658932 crossref_primary_10_3390_jpm12071119 crossref_primary_10_1080_21645515_2020_1802974 crossref_primary_10_1038_s41385_020_00374_3 crossref_primary_10_1016_j_heliyon_2021_e07147 crossref_primary_10_1038_s42003_021_02095_0 crossref_primary_10_3390_jcm12103539 crossref_primary_10_1016_j_heliyon_2024_e26663 crossref_primary_10_1186_s13073_021_01008_4 crossref_primary_10_3389_fimmu_2024_1460442 crossref_primary_10_1177_2472630320950248 crossref_primary_10_3389_fimmu_2022_1095577 crossref_primary_10_1039_D3LC00749A crossref_primary_10_1126_scitranslmed_abe8146 crossref_primary_10_1371_journal_ppat_1010025 crossref_primary_10_1186_s12985_022_01926_8 crossref_primary_10_1016_j_biopha_2020_110653 crossref_primary_10_1038_s41421_020_00187_5 crossref_primary_10_1016_j_jbc_2021_100630 crossref_primary_10_1038_s41421_021_00329_3 crossref_primary_10_1155_2021_5488591 crossref_primary_10_3389_fcell_2021_578825 crossref_primary_10_1159_000529985 crossref_primary_10_1172_jci_insight_147413 crossref_primary_10_1002_JLB_3COVR0520_272R crossref_primary_10_1084_jem_20201707 crossref_primary_10_1016_j_bbadis_2023_166671 crossref_primary_10_3389_fmed_2023_1282390 crossref_primary_10_3389_fimmu_2020_561851 crossref_primary_10_3389_fimmu_2020_579250 crossref_primary_10_3389_fmed_2021_718641 crossref_primary_10_1002_ccr3_7006 crossref_primary_10_1016_j_prmcm_2021_100024 crossref_primary_10_1016_j_ijrobp_2021_08_029 crossref_primary_10_3390_ijms23158590 crossref_primary_10_1016_j_it_2020_08_008 crossref_primary_10_1111_ijcp_14767 crossref_primary_10_1093_bioinformatics_btaa739 crossref_primary_10_1038_s41587_021_01001_7 crossref_primary_10_1007_s13205_021_02647_5 crossref_primary_10_1016_j_it_2023_04_001 crossref_primary_10_1038_s41392_021_00703_3 crossref_primary_10_1016_j_csbj_2022_11_001 crossref_primary_10_3390_vaccines10020242 crossref_primary_10_3389_fimmu_2021_694243 crossref_primary_10_1002_acn3_52142 crossref_primary_10_3349_ymj_2021_62_5_381 crossref_primary_10_1126_scitranslmed_abl5278 crossref_primary_10_1007_s12015_020_10065_y crossref_primary_10_1080_2314808X_2020_1843119 crossref_primary_10_1007_s42000_021_00300_7 crossref_primary_10_4049_jimmunol_2100813 crossref_primary_10_3389_fimmu_2021_789317 crossref_primary_10_3390_ijms22031118 crossref_primary_10_2147_IJGM_S263666 crossref_primary_10_1007_s10875_021_01142_z crossref_primary_10_4236_wjcd_2022_123018 crossref_primary_10_1016_j_xinn_2022_100359 crossref_primary_10_1128_mbio_01429_24 |
Cites_doi | 10.1128/JVI.79.10.6441-6448.2005 10.1016/j.immuni.2016.05.006 10.1038/ncomms7833 10.1016/j.celrep.2018.10.047 10.1016/j.immuni.2009.02.006 10.1126/sciimmunol.aan5393 10.1016/j.immuni.2018.01.005 10.1084/jem.20050828 10.4049/jimmunol.0904092 10.1371/journal.pone.0031535 10.1038/ncomms12780 10.1002/jmv.20499 10.1038/d41586-020-00190-6 10.1172/JCI137244 10.1056/NEJMoa2001017 10.1056/NEJMoa2001282 10.1016/S0140-6736(20)30183-5 10.1016/j.cell.2019.05.031 10.1016/j.jaci.2009.09.017 10.1016/j.chom.2016.01.007 10.1111/resp.13196 10.3389/fimmu.2018.02425 10.1016/S0140-6736(03)13413-7 10.1038/s41591-019-0602-4 10.1038/nbt.2859 10.1007/s00281-017-0629-x 10.1126/science.aah4573 10.1038/nri1732 10.1007/s00134-020-05943-5 10.1038/emboj.2008.179 10.1016/S0140-6736(20)30154-9 10.1002/jmv.25709 10.1001/jama.2020.1585 10.1038/s41467-019-09234-6 10.1016/j.tim.2019.08.007 10.1016/j.coviro.2011.07.002 10.1016/S1473-3099(13)70204-4 10.1016/S1473-3099(20)30198-5 10.1038/s41591-019-0590-4 10.1001/jama.2020.4344 10.1001/jama.2020.3204 10.1101/2020.02.20.20025841 10.1093/cid/ciaa248 10.1101/2020.02.12.945576 10.1016/j.cell.2020.02.058 10.1056/NEJMoa2001316 10.1093/cid/ciaa237 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1038/s41421-020-0168-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2056-5968 |
ExternalDocumentID | PMC7197635 32377375 10_1038_s41421_020_0168_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81830054, 81988101,91859205; 81722034; 81670015; 81530028,81721003 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2016A030306006; 2020B1515020057 funderid: https://doi.org/10.13039/501100003453 – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2018ZX09101002, 2017ZX100203205 funderid: https://doi.org/10.13039/501100002855 – fundername: Shanghai Municipal Human Resources and Social Security Bureau grantid: 2019PJD059 funderid: https://doi.org/10.13039/501100009018 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81530028,81721003 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2020B1515020057 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81722034 – fundername: Shanghai Municipal Human Resources and Social Security Bureau grantid: 2019PJD059 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81830054, 81988101,91859205 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81670015 – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2018ZX09101002, 2017ZX100203205 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2016A030306006 – fundername: ; grantid: 2019PJD059 – fundername: ; grantid: 81830054, 81988101,91859205; 81722034; 81670015; 81530028,81721003 – fundername: ; grantid: 2016A030306006; 2020B1515020057 – fundername: ; grantid: 2018ZX09101002, 2017ZX100203205 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKKN ABEEZ ABUWG ACACY ACGFS ACULB ADBBV AFGXO AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C24 C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 LK8 M7P M~E NAO O9- OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c3579-5b04446994af79823bb19a0ef424bd6ce4df9dfc9a799d71885d61c9eb5233673 |
IEDL.DBID | AAJSJ |
ISSN | 2056-5968 |
IngestDate | Thu Aug 21 18:25:25 EDT 2025 Tue Aug 05 11:13:49 EDT 2025 Mon Jul 21 06:00:42 EDT 2025 Tue Jul 01 01:20:26 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 21 02:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mechanisms of disease Immunology |
Language | English |
License | The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3579-5b04446994af79823bb19a0ef424bd6ce4df9dfc9a799d71885d61c9eb5233673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41421-020-0168-9 |
PMID | 32377375 |
PQID | 2399844996 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197635 proquest_miscellaneous_2399844996 pubmed_primary_32377375 crossref_citationtrail_10_1038_s41421_020_0168_9 crossref_primary_10_1038_s41421_020_0168_9 springer_journals_10_1038_s41421_020_0168_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200504 |
PublicationDateYYYYMMDD | 2020-05-04 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200504 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: England |
PublicationTitle | Cell discovery |
PublicationTitleAbbrev | Cell Discov |
PublicationTitleAlternate | Cell Discov |
PublicationYear | 2020 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Chan (CR6) 2020; 395 Goodwin (CR42) 2018; 48 Zhao (CR15) 2016; 44 Schmitz, Kurrer, Bachmann, Kopf (CR29) 2005; 79 Zhang (CR32) 2006; 78 Rothenburg, Brennan (CR19) 2020; 28 Arabi (CR10) 2020; 46 See, Lum, Chen, Ginhoux (CR45) 2018; 9 Chen (CR37) 2020 Zhu (CR1) 2020; 382 Cao (CR11) 2020 CR35 CR34 Thomas (CR28) 2009; 30 Aoshi, Koyama, Kobiyama, Akira, Ishii (CR31) 2011; 1 Fernandez (CR49) 2019; 25 Channappanavar (CR24) 2016; 19 Nicholls (CR26) 2003; 361 CR2 CR4 CR3 Cyranoski (CR8) 2020; 577 Zhou (CR48) 2019; 10 CR7 CR9 Trapnell (CR47) 2014; 32 CR44 Gu (CR25) 2005; 202 Stuart (CR46) 2019; 177 Assiri (CR12) 2013; 13 Liu (CR23) 2020; 92 Villani (CR27) 2017; 356 Fox (CR16) 2012; 7 Huang (CR5) 2020; 395 Channappanavar, Perlman (CR22) 2017; 39 Ryon, Moss, Monze, Griffin (CR38) 2002; 9 Kumar (CR17) 2018; 25 Ehrhardt (CR43) 2019; 25 Thomson (CR39) 2008; 27 Wang (CR14) 2020 Perlman, Dandekar (CR18) 2005; 5 CR21 Qiu (CR36) 2020 Yin (CR13) 2018; 23 Bonilla, Oettgen (CR30) 2010; 125 Thomson, Little, Reason, Schrader (CR40) 2011; 186 Wang (CR20) 2015; 6 Zhao (CR33) 2017; 2 Fu (CR41) 2016; 7 N Zhu (168_CR1) 2020; 382 JF Chan (168_CR6) 2020; 395 J Gu (168_CR25) 2005; 202 E Goodwin (168_CR42) 2018; 48 168_CR35 PG Thomas (168_CR28) 2009; 30 168_CR34 JM Nicholls (168_CR26) 2003; 361 D Wang (168_CR14) 2020 P See (168_CR45) 2018; 9 C Trapnell (168_CR47) 2014; 32 YM Arabi (168_CR10) 2020; 46 S Rothenburg (168_CR19) 2020; 28 A Assiri (168_CR12) 2013; 13 168_CR44 JJ Ryon (168_CR38) 2002; 9 Y Fu (168_CR41) 2016; 7 B Cao (168_CR11) 2020 CA Thomson (168_CR40) 2011; 186 S Perlman (168_CR18) 2005; 5 J Liu (168_CR23) 2020; 92 J Zhao (168_CR15) 2016; 44 MP Kumar (168_CR17) 2018; 25 FA Bonilla (168_CR30) 2010; 125 L Zhang (168_CR32) 2006; 78 CA Thomson (168_CR39) 2008; 27 T Aoshi (168_CR31) 2011; 1 H Qiu (168_CR36) 2020 Y Yin (168_CR13) 2018; 23 SA Ehrhardt (168_CR43) 2019; 25 G Chen (168_CR37) 2020 Y Zhou (168_CR48) 2019; 10 C Huang (168_CR5) 2020; 395 168_CR3 168_CR4 168_CR7 A Fox (168_CR16) 2012; 7 R Channappanavar (168_CR24) 2016; 19 168_CR9 168_CR21 Z Wang (168_CR20) 2015; 6 168_CR2 N Schmitz (168_CR29) 2005; 79 T Stuart (168_CR46) 2019; 177 R Channappanavar (168_CR22) 2017; 39 J Zhao (168_CR33) 2017; 2 DM Fernandez (168_CR49) 2019; 25 D Cyranoski (168_CR8) 2020; 577 AC Villani (168_CR27) 2017; 356 32595980 - Cell Discov. 2020 Jun 20;6:41. doi: 10.1038/s41421-020-00187-5 |
References_xml | – volume: 79 start-page: 6441 year: 2005 end-page: 6448 ident: CR29 article-title: Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection publication-title: J. Virol. doi: 10.1128/JVI.79.10.6441-6448.2005 – volume: 44 start-page: 1379 year: 2016 end-page: 1391 ident: CR15 article-title: Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses publication-title: Immunity doi: 10.1016/j.immuni.2016.05.006 – volume: 6 year: 2015 ident: CR20 article-title: Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8 T cells publication-title: Nat. Commun. doi: 10.1038/ncomms7833 – volume: 25 start-page: 1458 year: 2018 end-page: 1468 ident: CR17 article-title: Analysis of single-cell RNA-seq identifies cell-cell communication associated with tumor characteristics publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.047 – ident: CR4 – volume: 30 start-page: 566 year: 2009 end-page: 575 ident: CR28 article-title: The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1 publication-title: Immunity doi: 10.1016/j.immuni.2009.02.006 – volume: 2 start-page: eaan5393 year: 2017 ident: CR33 article-title: Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aan5393 – volume: 48 start-page: 339 year: 2018 end-page: 349 ident: CR42 article-title: Infants infected with respiratory syncytial virus generate potent neutralizing antibodies that lack somatic hypermutation publication-title: Immunity doi: 10.1016/j.immuni.2018.01.005 – volume: 202 start-page: 415 year: 2005 end-page: 424 ident: CR25 article-title: Multiple organ infection and the pathogenesis of SARS publication-title: J. Exp. Med. doi: 10.1084/jem.20050828 – ident: CR35 – volume: 186 start-page: 2291 year: 2011 end-page: 2298 ident: CR40 article-title: Somatic diversity in CDR3 loops allows single V-genes to encode innate immunological memories for multiple pathogens publication-title: J. Immunol. doi: 10.4049/jimmunol.0904092 – volume: 7 year: 2012 ident: CR16 article-title: Severe pandemic H1N1 2009 infection is associated with transient NK and T deficiency and aberrant CD8 responses publication-title: PLoS ONE doi: 10.1371/journal.pone.0031535 – volume: 7 year: 2016 ident: CR41 article-title: A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve publication-title: Nat. Commun. doi: 10.1038/ncomms12780 – volume: 78 start-page: 1 year: 2006 end-page: 8 ident: CR32 article-title: Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals publication-title: J. Med. Virol. doi: 10.1002/jmv.20499 – ident: CR21 – volume: 577 start-page: 607 year: 2020 ident: CR8 article-title: This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan publication-title: Nature doi: 10.1038/d41586-020-00190-6 – year: 2020 ident: CR37 article-title: Clinical and immunologic features in severe and moderate Coronavirus Disease 2019 publication-title: J. Clin. Invest doi: 10.1172/JCI137244 – volume: 9 start-page: 994 year: 2002 end-page: 1003 ident: CR38 article-title: Functional and phenotypic changes in circulating lymphocytes from hospitalized zambian children with measles publication-title: Clin. Diagn. Lab Immunol. – ident: CR9 – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: CR1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – year: 2020 ident: CR11 article-title: A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001282 – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR5 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR46 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 125 start-page: S33 year: 2010 end-page: S40 ident: CR30 article-title: Adaptive immunity publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2009.09.017 – ident: CR2 – volume: 19 start-page: 181 year: 2016 end-page: 193 ident: CR24 article-title: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal neumonia in SARS-CoV-infected mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.007 – volume: 23 start-page: 130 year: 2018 end-page: 137 ident: CR13 article-title: MERS, SARS and other coronaviruses as causes of pneumonia publication-title: Respirology doi: 10.1111/resp.13196 – volume: 9 start-page: 2425 year: 2018 ident: CR45 article-title: A single-cell sequencing guide for immunologists publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02425 – volume: 361 start-page: 1773 year: 2003 end-page: 1778 ident: CR26 article-title: Lung pathology of fatal severe acute respiratory syndrome publication-title: Lancet doi: 10.1016/S0140-6736(03)13413-7 – volume: 25 start-page: 1589 year: 2019 end-page: 1600 ident: CR43 article-title: Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV publication-title: Nat. Med. doi: 10.1038/s41591-019-0602-4 – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: CR47 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 39 start-page: 529 year: 2017 end-page: 539 ident: CR22 article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology publication-title: Semin. Immunopathol. doi: 10.1007/s00281-017-0629-x – volume: 356 start-page: eaah4573 year: 2017 ident: CR27 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science doi: 10.1126/science.aah4573 – volume: 5 start-page: 917 year: 2005 end-page: 927 ident: CR18 article-title: Immunopathogenesis of coronavirus infections: implications for SARS publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1732 – volume: 46 start-page: 315 year: 2020 end-page: 328 ident: CR10 article-title: Critical care management of adults with community-acquired severe respiratory viral infection publication-title: Intensive Care Med. doi: 10.1007/s00134-020-05943-5 – volume: 27 start-page: 2592 year: 2008 end-page: 2602 ident: CR39 article-title: Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus publication-title: EMBO J. doi: 10.1038/emboj.2008.179 – ident: CR44 – volume: 395 start-page: 514 year: 2020 end-page: 523 ident: CR6 article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 92 start-page: 491 year: 2020 end-page: 494 ident: CR23 article-title: Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV publication-title: J. Med. Virol. doi: 10.1002/jmv.25709 – ident: CR3 – year: 2020 ident: CR14 article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China publication-title: JAMA doi: 10.1001/jama.2020.1585 – volume: 10 year: 2019 ident: CR48 article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-09234-6 – volume: 28 start-page: 46 year: 2020 end-page: 56 ident: CR19 article-title: Species-specific host-virus interactions: implications for viral host range and virulence publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.08.007 – volume: 1 start-page: 226 year: 2011 end-page: 232 ident: CR31 article-title: Innate and adaptive immune responses to viral infection and vaccination publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.07.002 – ident: CR34 – volume: 13 start-page: 752 year: 2013 end-page: 761 ident: CR12 article-title: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70204-4 – ident: CR7 – year: 2020 ident: CR36 article-title: Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30198-5 – volume: 25 start-page: 1576 year: 2019 end-page: 1588 ident: CR49 article-title: Single-cell immune landscape of human atherosclerotic plaques publication-title: Nat. Med. doi: 10.1038/s41591-019-0590-4 – volume: 2 start-page: eaan5393 year: 2017 ident: 168_CR33 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aan5393 – volume: 7 year: 2016 ident: 168_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms12780 – volume: 48 start-page: 339 year: 2018 ident: 168_CR42 publication-title: Immunity doi: 10.1016/j.immuni.2018.01.005 – ident: 168_CR3 doi: 10.1001/jama.2020.4344 – volume: 7 year: 2012 ident: 168_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0031535 – volume: 6 year: 2015 ident: 168_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms7833 – volume: 23 start-page: 130 year: 2018 ident: 168_CR13 publication-title: Respirology doi: 10.1111/resp.13196 – volume: 25 start-page: 1576 year: 2019 ident: 168_CR49 publication-title: Nat. Med. doi: 10.1038/s41591-019-0590-4 – volume: 9 start-page: 2425 year: 2018 ident: 168_CR45 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02425 – ident: 168_CR7 doi: 10.1001/jama.2020.3204 – volume: 92 start-page: 491 year: 2020 ident: 168_CR23 publication-title: J. Med. Virol. doi: 10.1002/jmv.25709 – volume: 46 start-page: 315 year: 2020 ident: 168_CR10 publication-title: Intensive Care Med. doi: 10.1007/s00134-020-05943-5 – volume: 25 start-page: 1458 year: 2018 ident: 168_CR17 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.047 – ident: 168_CR34 doi: 10.1101/2020.02.20.20025841 – volume: 39 start-page: 529 year: 2017 ident: 168_CR22 publication-title: Semin. Immunopathol. doi: 10.1007/s00281-017-0629-x – volume: 382 start-page: 727 year: 2020 ident: 168_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 19 start-page: 181 year: 2016 ident: 168_CR24 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.007 – year: 2020 ident: 168_CR36 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30198-5 – ident: 168_CR35 doi: 10.1093/cid/ciaa248 – ident: 168_CR44 doi: 10.1101/2020.02.12.945576 – volume: 30 start-page: 566 year: 2009 ident: 168_CR28 publication-title: Immunity doi: 10.1016/j.immuni.2009.02.006 – volume: 27 start-page: 2592 year: 2008 ident: 168_CR39 publication-title: EMBO J. doi: 10.1038/emboj.2008.179 – ident: 168_CR4 – volume: 361 start-page: 1773 year: 2003 ident: 168_CR26 publication-title: Lancet doi: 10.1016/S0140-6736(03)13413-7 – ident: 168_CR21 doi: 10.1016/j.cell.2020.02.058 – volume: 9 start-page: 994 year: 2002 ident: 168_CR38 publication-title: Clin. Diagn. Lab Immunol. – ident: 168_CR2 doi: 10.1056/NEJMoa2001316 – year: 2020 ident: 168_CR11 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001282 – volume: 395 start-page: 514 year: 2020 ident: 168_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 202 start-page: 415 year: 2005 ident: 168_CR25 publication-title: J. Exp. Med. doi: 10.1084/jem.20050828 – year: 2020 ident: 168_CR37 publication-title: J. Clin. Invest doi: 10.1172/JCI137244 – volume: 32 start-page: 381 year: 2014 ident: 168_CR47 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 1 start-page: 226 year: 2011 ident: 168_CR31 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.07.002 – volume: 78 start-page: 1 year: 2006 ident: 168_CR32 publication-title: J. Med. Virol. doi: 10.1002/jmv.20499 – volume: 186 start-page: 2291 year: 2011 ident: 168_CR40 publication-title: J. Immunol. doi: 10.4049/jimmunol.0904092 – year: 2020 ident: 168_CR14 publication-title: JAMA doi: 10.1001/jama.2020.1585 – volume: 79 start-page: 6441 year: 2005 ident: 168_CR29 publication-title: J. Virol. doi: 10.1128/JVI.79.10.6441-6448.2005 – volume: 25 start-page: 1589 year: 2019 ident: 168_CR43 publication-title: Nat. Med. doi: 10.1038/s41591-019-0602-4 – volume: 577 start-page: 607 year: 2020 ident: 168_CR8 publication-title: Nature doi: 10.1038/d41586-020-00190-6 – volume: 356 start-page: eaah4573 year: 2017 ident: 168_CR27 publication-title: Science doi: 10.1126/science.aah4573 – ident: 168_CR9 doi: 10.1093/cid/ciaa237 – volume: 395 start-page: 497 year: 2020 ident: 168_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 10 year: 2019 ident: 168_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09234-6 – volume: 44 start-page: 1379 year: 2016 ident: 168_CR15 publication-title: Immunity doi: 10.1016/j.immuni.2016.05.006 – volume: 28 start-page: 46 year: 2020 ident: 168_CR19 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.08.007 – volume: 177 start-page: 1888 year: 2019 ident: 168_CR46 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 5 start-page: 917 year: 2005 ident: 168_CR18 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1732 – volume: 125 start-page: S33 year: 2010 ident: 168_CR30 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2009.09.017 – volume: 13 start-page: 752 year: 2013 ident: 168_CR12 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70204-4 – reference: 32595980 - Cell Discov. 2020 Jun 20;6:41. doi: 10.1038/s41421-020-00187-5 |
SSID | ssj0001528885 |
Score | 2.6203866 |
Snippet | COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states... COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31 |
SubjectTerms | 631/250 631/80/304 Biomedical and Life Sciences Cell Biology Cell Culture Cell Cycle Analysis Cell Physiology Life Sciences Stem Cells |
Title | Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |
URI | https://link.springer.com/article/10.1038/s41421-020-0168-9 https://www.ncbi.nlm.nih.gov/pubmed/32377375 https://www.proquest.com/docview/2399844996 https://pubmed.ncbi.nlm.nih.gov/PMC7197635 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB71EBIviJtwrIzEE8gi8RHbj8vSql2JgoCiFS-RT6hUZatu-9B_zzjHomUFEk-JEttyZsbxjGfmG4BXkjvBnBPUpmSpsMFSVEMcFSn4oKyLpc_5zh9O6qNTMV_IxQ5UYy5MF7TfQVp2v-kxOuztSlSCoeHLchhVjWt0F_YzUjuK9v50Ov8y_32wIhladXL0YHK93XdzD9pSLLfjI_9wknZ7z-FduDMojWTaT_Me7MT2Ptzqy0jePIDvxznJI5J8CE_6Itw4DFkmMvv47fg9rQwZ4FNX5KwlqPKRbAejEN8QVA5_ROLwBrucR9qNMcRX45OHcHp48HV2RIeaCdRzqQyVLgPA1cYIm5TRjDtXGVvGJJhwofZRhGRC8sYqYwJuTFqGuvImOrRIea34I9hrl218AsRYp8tgbfAqCc2j1qj9oD0YpGfZH1lAOVKx8QOgeK5rcd50jm2um57wDRK-yYRvTAGv110uejSNfzV-ObKmQZnP32_buLxeNTkfVwu01eoCHvesWg_HGVeKK1mA2mDiukHG095805797HC1VWUyPF8Bb0Z2N8OCXv19lk__q_UzuM06OZS0FM9h7-ryOr5ArebKTWBXLdRkkGa8vjs4-fQZn87q2aQ7KfgFeCP3EQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXxJvwNBInkEXit49oodqFtlxaVHGx7NgplaosYttD_z1jJ1m0rEDiFiW2lcyM4288428AXkseBAtBUN91ngofPUUYEqjoYhu1D6lu83nng0M1PxafTuTJDjTTWZiStF8oLctvesoOe7cSjWDo-LKcRqVwjl6D6wi1VTbkmZr93laRDH06OcUvudnuubkCbcHK7ezIP0KkZeXZuwO3R8hI3g8veRd2Un8PbgxFJK_uw7dFPuKRSN6CJ0MJbhyGLDsy-_J18YE2lozkqSty1hMEfCR7wWjCVwSh4WkiAS-wy3miZYwxuxrvPIDjvY9HszkdKybQlkttqQyZ_k1ZK3ynrWE8hMb6OnWCiRBVm0TsbOxa67W1EZclI6NqWpsC-qNcaf4Qdvtlnx4DsT6YOnofW90Jw5MxiH3QG4yyZTkaWUE9SdG1I514rmpx7kpYmxs3CN6h4F0WvLMVvFl3-TFwafyr8atJNQ4tPn-_79PycuXyaVwj0FNTFTwaVLUejjOuNdeyAr2hxHWDzKa9-aQ_-15YtXVjMzlfBW8ndbtxOq_-_pZP_qv1S7g5PzrYd_uLw89P4RYrNilpLZ7B7sXPy_Qc8c1FeFEs-hcZ-PRS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEG_C00icQIbEj9g-rlpW3QUKEhRVXCw7tqFSla3Y9tB_zziPRcsKJG5RYlvJzDj-xjP-BuCF5F4w7wV1KTkqXHAUYYinIoUmKOdj2eTzzh8O64MjsTiWxzsgx7MwXdJ-R2nZ_abH7LA3K1EJho4vy2lUNc7R12chXYFdhNuVmMDudLr4vPi9uSIZenZyjGJyvd1_cx3aApfbOZJ_BEq79Wd2E24MwJFM-1e9BTuxvQ1X-1KSl3fg2zwf9Igkb8STvhA3DkOWiex9_Drfp5UhA4Xqipy0BGEfyb4wGvIlQYD4PRKPF9jlNNJujCHHGu_chaPZ2y97B3Som0AbLpWh0mcSuNoY4ZIymnHvK-PKmAQTPtRNFCGZkBrjlDEBFyctQ101Jnr0Snmt-D2YtMs2PgBinNdlcC40KgnNo9aIgNAnDLJhOSZZQDlK0TYDqXiubXFqu-A217YXvEXB2yx4awp4ue5y1jNq_Kvx81E1Fu0-f79r4_JiZfOZXC3QX6sLuN-raj0cZ1wprmQBakOJ6waZU3vzSXvyo-PWVpXJFH0FvBrVbYdJvfr7Wz78r9bP4Nqn_Zl9Pz989wius84kJS3FY5ic_7yITxDknPung0n_ArFr9rY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+cell+profiling+of+COVID-19+patients+in+the+recovery+stage+by+single-cell+sequencing&rft.jtitle=Cell+discovery&rft.au=Wen%2C+Wen&rft.au=Su%2C+Wenru&rft.au=Tang%2C+Hao&rft.au=Le%2C+Wenqing&rft.date=2020-05-04&rft.issn=2056-5968&rft.eissn=2056-5968&rft.volume=6&rft.spage=31&rft_id=info:doi/10.1038%2Fs41421-020-0168-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-5968&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-5968&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-5968&client=summon |