Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing

COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuc...

Full description

Saved in:
Bibliographic Details
Published inCell discovery Vol. 6; no. 1; p. 31
Main Authors Wen, Wen, Su, Wenru, Tang, Hao, Le, Wenqing, Zhang, Xiaopeng, Zheng, Yingfeng, Liu, Xiuxing, Xie, Lihui, Li, Jianmin, Ye, Jinguo, Dong, Liwei, Cui, Xiuliang, Miao, Yushan, Wang, Depeng, Dong, Jiantao, Xiao, Chuanle, Chen, Wei, Wang, Hongyang
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 ++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14 ++ IL1β + monocytes in the ERS. CD4 + T cells and CD8 + T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
AbstractList COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1β+ monocytes in the ERS. CD4+ T cells and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 monocytes with high inflammatory gene expression as well as a greater abundance of CD14 IL1β monocytes in the ERS. CD4 T cells and CD8 T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 ++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14 ++ IL1β + monocytes in the ERS. CD4 + T cells and CD8 + T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states during the course of COVID-19 remain unclear. We sought to comprehensively characterize the transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19 by single-cell RNA sequencing technique. It was found that T cells decreased remarkably, whereas monocytes increased in patients in the early recovery stage (ERS) of COVID-19. There was an increased ratio of classical CD14 ++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14 ++ IL1β + monocytes in the ERS. CD4 + T cells and CD8 + T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Several novel B cell-receptor (BCR) changes were identified, such as IGHV3-23 and IGHV3-7, and isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development were confirmed. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity, which had not been reported yet. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2, and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting COVID-19 patients are still vulnerable after hospital discharge. Identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.
ArticleNumber 31
Author Wen, Wen
Dong, Liwei
Wang, Depeng
Miao, Yushan
Xie, Lihui
Li, Jianmin
Xiao, Chuanle
Le, Wenqing
Su, Wenru
Dong, Jiantao
Tang, Hao
Chen, Wei
Cui, Xiuliang
Wang, Hongyang
Ye, Jinguo
Zhang, Xiaopeng
Zheng, Yingfeng
Liu, Xiuxing
Author_xml – sequence: 1
  givenname: Wen
  surname: Wen
  fullname: Wen, Wen
  organization: National Center for Liver Cancer, Second Military Medical University
– sequence: 2
  givenname: Wenru
  surname: Su
  fullname: Su, Wenru
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 3
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Department of Critical Care, Wuhan Huoshenshan Hospital
– sequence: 4
  givenname: Wenqing
  surname: Le
  fullname: Le, Wenqing
  organization: Department of Critical Care, Wuhan Hankou Hospital
– sequence: 5
  givenname: Xiaopeng
  surname: Zhang
  fullname: Zhang, Xiaopeng
  organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology
– sequence: 6
  givenname: Yingfeng
  surname: Zheng
  fullname: Zheng, Yingfeng
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 7
  givenname: Xiuxing
  surname: Liu
  fullname: Liu, Xiuxing
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 8
  givenname: Lihui
  surname: Xie
  fullname: Xie, Lihui
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 9
  givenname: Jianmin
  surname: Li
  fullname: Li, Jianmin
  organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology
– sequence: 10
  givenname: Jinguo
  surname: Ye
  fullname: Ye, Jinguo
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 11
  givenname: Liwei
  surname: Dong
  fullname: Dong, Liwei
  organization: National Center for Liver Cancer, Second Military Medical University
– sequence: 12
  givenname: Xiuliang
  surname: Cui
  fullname: Cui, Xiuliang
  organization: National Center for Liver Cancer, Second Military Medical University
– sequence: 13
  givenname: Yushan
  surname: Miao
  fullname: Miao, Yushan
  organization: Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University
– sequence: 14
  givenname: Depeng
  surname: Wang
  fullname: Wang, Depeng
  organization: GrandOmics Diagnosis Co. Ltd
– sequence: 15
  givenname: Jiantao
  surname: Dong
  fullname: Dong, Jiantao
  organization: Berry Genomics Co. Ltd
– sequence: 16
  givenname: Chuanle
  surname: Xiao
  fullname: Xiao, Chuanle
  email: xiaochuanle@126.com
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University
– sequence: 17
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: cw0226@foxmail.com
  organization: Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology
– sequence: 18
  givenname: Hongyang
  surname: Wang
  fullname: Wang, Hongyang
  email: hywangk@vip.sina.com
  organization: National Center for Liver Cancer, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Ministry of Education (MOE) Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32377375$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtP3DAQthAVUMoP6KXysZe0fiXOXCpVS6ErIXEpHHqxHGeyGCX21k6Q-Pf1dqGiPXDyyPM9ZuZ7Sw5DDEjIe84-cSbbz1lxJXjFBKsYb9oKDsiJYHVT1dC0hy_qY3KW8z1jjNeibdv6iBxLIbWWuj4hP9fTtASkDseRblMc_OjDhsaBrq5v1-cVB7q1s8cwZ-oDne-QJnTxAdMjzbPdIO1KUSgjVn80Mv5aMLjy8468GeyY8ezpPSU3F99-rL5XV9eX69XXq8rJWkNVd0wp1QAoO2hohew6DpbhoITq-sah6gfoBwdWA_Salw36hjvArhZSNlqeki973e3STdi7Mmuyo9kmP9n0aKL15t9O8HdmEx-M5qAbWReBj08CKZbh82wmn3fL2IBxyUZIgFYpgKZAP7z0-mvyfNAC0HuASzHnhINxfi4HjDtrPxrOzC49s0_PlPTMLj0Dhcn_Yz6Lv8YRe04u2LDBZO7jkkK59iuk35Sbq-A
CitedBy_id crossref_primary_10_1111_1756_185X_13909
crossref_primary_10_3390_jcm13092481
crossref_primary_10_3892_etm_2021_9658
crossref_primary_10_1016_j_chom_2020_05_009
crossref_primary_10_1093_nop_npae029
crossref_primary_10_1097_CM9_0000000000001956
crossref_primary_10_1038_s41587_021_01131_y
crossref_primary_10_1038_s41579_020_00468_6
crossref_primary_10_3389_fimmu_2021_764949
crossref_primary_10_3748_wjg_v27_i15_1531
crossref_primary_10_1038_s41467_020_19545_8
crossref_primary_10_1093_oxfimm_iqaa005
crossref_primary_10_1080_22221751_2020_1826361
crossref_primary_10_1084_jem_20200674
crossref_primary_10_1089_vim_2020_0313
crossref_primary_10_1038_s43856_023_00268_y
crossref_primary_10_1126_sciadv_adg1812
crossref_primary_10_1038_s41587_020_0602_4
crossref_primary_10_1111_all_14657
crossref_primary_10_3389_fimmu_2021_741837
crossref_primary_10_1038_s41421_021_00300_2
crossref_primary_10_3389_fimmu_2023_1329026
crossref_primary_10_3389_fphar_2025_1508276
crossref_primary_10_1007_s11926_023_01107_8
crossref_primary_10_1038_s41598_022_17334_5
crossref_primary_10_1007_s10753_022_01674_5
crossref_primary_10_1371_journal_pcbi_1012265
crossref_primary_10_1038_s41392_021_00525_3
crossref_primary_10_1093_jmcb_mjab067
crossref_primary_10_1002_jmv_28192
crossref_primary_10_1007_s12035_023_03682_4
crossref_primary_10_3389_fnins_2022_898735
crossref_primary_10_3390_ijms25063280
crossref_primary_10_1177_09727531211023755
crossref_primary_10_1093_femsre_fuab035
crossref_primary_10_1111_cea_13718
crossref_primary_10_1038_s41392_022_01237_y
crossref_primary_10_3389_fphar_2020_01309
crossref_primary_10_3389_fmed_2020_562142
crossref_primary_10_1097_COH_0000000000000655
crossref_primary_10_1093_immadv_ltab003
crossref_primary_10_3390_v12111277
crossref_primary_10_1038_s42003_021_02983_5
crossref_primary_10_3389_fimmu_2021_769011
crossref_primary_10_1016_j_isci_2023_108288
crossref_primary_10_7554_eLife_73012
crossref_primary_10_1038_s41467_021_22449_w
crossref_primary_10_1016_j_arr_2022_101818
crossref_primary_10_1016_j_isci_2022_105608
crossref_primary_10_3389_fimmu_2021_625881
crossref_primary_10_1016_j_biopha_2022_114208
crossref_primary_10_1016_j_fmre_2021_03_001
crossref_primary_10_1007_s11011_022_01048_8
crossref_primary_10_1038_s41467_021_21289_y
crossref_primary_10_1177_10760296231177676
crossref_primary_10_11613_BM_2021_030501
crossref_primary_10_3390_biomedicines9091253
crossref_primary_10_1038_s41467_024_44905_z
crossref_primary_10_1097_SHK_0000000000001610
crossref_primary_10_3389_fmicb_2021_636250
crossref_primary_10_3389_fmicb_2020_588409
crossref_primary_10_3389_fimmu_2023_1022890
crossref_primary_10_1186_s12985_022_01885_0
crossref_primary_10_1007_s42399_020_00646_w
crossref_primary_10_1097_MD_0000000000036818
crossref_primary_10_1038_s41598_021_00121_z
crossref_primary_10_1111_all_14449
crossref_primary_10_1007_s00018_021_03808_8
crossref_primary_10_3390_v15071439
crossref_primary_10_1016_j_jns_2020_116942
crossref_primary_10_1186_s12859_024_05690_0
crossref_primary_10_1186_s40635_021_00409_4
crossref_primary_10_1007_s12195_020_00630_3
crossref_primary_10_3389_fbioe_2023_1339941
crossref_primary_10_1055_s_0040_1718735
crossref_primary_10_1007_s12026_022_09265_0
crossref_primary_10_1016_j_micpath_2023_106300
crossref_primary_10_1097_SHK_0000000000001724
crossref_primary_10_47360_1995_4484_2020_456_462
crossref_primary_10_3389_fimmu_2022_829760
crossref_primary_10_2500_aap_2021_42_210077
crossref_primary_10_5005_JABLM_11031_01104
crossref_primary_10_1002_ajh_25985
crossref_primary_10_1007_s00018_022_04329_8
crossref_primary_10_1186_s12929_021_00740_8
crossref_primary_10_1016_j_humimm_2025_111249
crossref_primary_10_3390_biology9090243
crossref_primary_10_3390_cancers15174277
crossref_primary_10_1016_j_clim_2023_109879
crossref_primary_10_3389_fimmu_2022_1006136
crossref_primary_10_1016_j_pathol_2020_08_001
crossref_primary_10_3389_fonc_2023_1115293
crossref_primary_10_1186_s12964_024_01718_3
crossref_primary_10_2217_imt_2021_0331
crossref_primary_10_1016_j_smim_2020_101428
crossref_primary_10_3389_fimmu_2020_01518
crossref_primary_10_1016_j_jbior_2020_100737
crossref_primary_10_1177_09636897211010632
crossref_primary_10_3389_fcimb_2020_00364
crossref_primary_10_1038_s41467_021_27716_4
crossref_primary_10_3389_fimmu_2023_1271098
crossref_primary_10_1002_jmv_29096
crossref_primary_10_1016_j_xcrm_2020_100144
crossref_primary_10_1093_jalm_jfad123
crossref_primary_10_1016_j_xcrm_2020_100146
crossref_primary_10_1038_s41392_021_00591_7
crossref_primary_10_3389_fimmu_2020_01748
crossref_primary_10_1016_j_ccc_2021_05_006
crossref_primary_10_1089_omi_2020_0110
crossref_primary_10_1007_s00109_021_02175_y
crossref_primary_10_4049_jimmunol_2200063
crossref_primary_10_1371_journal_pone_0280592
crossref_primary_10_1016_j_clicom_2022_05_001
crossref_primary_10_3389_fimmu_2020_559716
crossref_primary_10_3389_fphar_2021_784335
crossref_primary_10_1038_s41392_021_00526_2
crossref_primary_10_1016_j_cell_2021_01_053
crossref_primary_10_3389_fimmu_2021_769442
crossref_primary_10_1016_j_fmre_2021_02_004
crossref_primary_10_3390_ijms232012311
crossref_primary_10_1038_s41598_023_28696_9
crossref_primary_10_1080_2162402X_2022_2026583
crossref_primary_10_1111_crj_13455
crossref_primary_10_1016_S2665_9913_21_00072_2
crossref_primary_10_1080_22221751_2020_1785336
crossref_primary_10_5483_BMBRep_2022_55_1_152
crossref_primary_10_1038_s41577_020_0402_6
crossref_primary_10_3390_nu14122534
crossref_primary_10_3389_fimmu_2023_1185233
crossref_primary_10_1016_S2665_9913_20_30340_4
crossref_primary_10_1111_obr_13221
crossref_primary_10_1038_s41419_021_03816_3
crossref_primary_10_4049_jimmunol_2101123
crossref_primary_10_1016_j_arcmed_2020_11_005
crossref_primary_10_1021_acs_analchem_1c02227
crossref_primary_10_1038_s41598_021_87413_6
crossref_primary_10_1371_journal_pone_0246731
crossref_primary_10_7717_peerj_18451
crossref_primary_10_1016_j_humimm_2021_10_007
crossref_primary_10_1016_j_jaci_2020_07_001
crossref_primary_10_1016_j_imlet_2022_08_006
crossref_primary_10_1172_JCI156211
crossref_primary_10_1186_s13054_020_03166_0
crossref_primary_10_1155_2020_8624963
crossref_primary_10_1002_iub_2794
crossref_primary_10_1186_s12916_021_02228_6
crossref_primary_10_1016_j_clim_2022_109177
crossref_primary_10_1242_dmm_047340
crossref_primary_10_1038_s41598_024_53117_w
crossref_primary_10_1080_07853890_2020_1858234
crossref_primary_10_1038_s41577_021_00588_x
crossref_primary_10_3389_fimmu_2021_631233
crossref_primary_10_1002_jmv_29573
crossref_primary_10_1002_jmv_28000
crossref_primary_10_1016_j_intimp_2021_107397
crossref_primary_10_1038_s41392_020_00263_y
crossref_primary_10_4049_jimmunol_2000526
crossref_primary_10_3389_fimmu_2023_1117760
crossref_primary_10_3389_fimmu_2022_989556
crossref_primary_10_1038_s41423_024_01241_y
crossref_primary_10_1080_21505594_2024_2421987
crossref_primary_10_1016_j_gendis_2022_08_020
crossref_primary_10_1111_bph_15164
crossref_primary_10_1016_j_biopha_2021_112247
crossref_primary_10_1016_j_tips_2020_06_001
crossref_primary_10_3389_fcimb_2020_586592
crossref_primary_10_1038_s41423_021_00754_0
crossref_primary_10_4103_jacp_jacp_3_21
crossref_primary_10_1016_j_isci_2021_102550
crossref_primary_10_1080_21505594_2021_1929800
crossref_primary_10_1126_sciimmunol_add6608
crossref_primary_10_3390_jcm9103188
crossref_primary_10_1016_j_ygeno_2020_12_036
crossref_primary_10_1016_j_ijbiomac_2021_10_144
crossref_primary_10_18093_0869_0189_2024_34_6_846_856
crossref_primary_10_1002_iub_2379
crossref_primary_10_3389_fimmu_2023_1064293
crossref_primary_10_1038_s41392_021_00610_7
crossref_primary_10_1080_08820139_2022_2092407
crossref_primary_10_3390_pathogens11111256
crossref_primary_10_1111_imr_13115
crossref_primary_10_3389_fcimb_2021_632490
crossref_primary_10_4049_jimmunol_2100228
crossref_primary_10_1084_jem_20220906
crossref_primary_10_3389_fimmu_2021_602539
crossref_primary_10_3390_pathogens9121027
crossref_primary_10_1126_sciadv_abq7599
crossref_primary_10_1016_j_prp_2022_153782
crossref_primary_10_1016_S2213_2600_21_00218_6
crossref_primary_10_1186_s13073_022_01021_1
crossref_primary_10_3389_fimmu_2021_729990
crossref_primary_10_1111_vox_12970
crossref_primary_10_1016_j_thromres_2020_06_029
crossref_primary_10_1016_j_ejphar_2025_177435
crossref_primary_10_3389_fimmu_2020_577875
crossref_primary_10_1182_bloodadvances_2022008445
crossref_primary_10_1016_j_cytogfr_2020_10_002
crossref_primary_10_1093_ofid_ofaa588
crossref_primary_10_1002_jmv_29488
crossref_primary_10_1016_j_ccell_2021_01_001
crossref_primary_10_3390_vaccines10040614
crossref_primary_10_1097_CCE_0000000000000178
crossref_primary_10_3390_plants11010137
crossref_primary_10_3389_fimmu_2022_992787
crossref_primary_10_1016_j_xcrm_2023_101266
crossref_primary_10_1158_2159_8290_CD_21_0316
crossref_primary_10_1038_s41421_020_00225_2
crossref_primary_10_1016_j_isci_2023_106055
crossref_primary_10_1093_bib_bbaa416
crossref_primary_10_1111_jcmm_15771
crossref_primary_10_18632_aging_202571
crossref_primary_10_1016_j_prostaglandins_2023_106762
crossref_primary_10_1038_s41421_021_00321_x
crossref_primary_10_1016_j_ijid_2021_10_033
crossref_primary_10_1002_smtd_202000451
crossref_primary_10_1038_s41392_021_00764_4
crossref_primary_10_1016_j_intimp_2022_108767
crossref_primary_10_1038_s41375_023_02093_7
crossref_primary_10_1002_eji_202049159
crossref_primary_10_1016_j_cyto_2021_155439
crossref_primary_10_1002_qub2_78
crossref_primary_10_1152_ajplung_00355_2020
crossref_primary_10_1016_j_kint_2021_05_032
crossref_primary_10_3389_fphar_2020_592543
crossref_primary_10_1111_bjh_19594
crossref_primary_10_18632_aging_203432
crossref_primary_10_1038_s41582_020_0402_y
crossref_primary_10_1038_s41422_020_00414_4
crossref_primary_10_1016_j_virol_2021_08_014
crossref_primary_10_3389_fimmu_2021_631044
crossref_primary_10_1016_j_clim_2021_108804
crossref_primary_10_1038_s41435_024_00270_x
crossref_primary_10_1021_acsomega_4c02631
crossref_primary_10_1371_journal_ppat_1008820
crossref_primary_10_1186_s41231_020_00066_x
crossref_primary_10_1002_jmv_70036
crossref_primary_10_3389_fimmu_2020_607583
crossref_primary_10_1126_science_adj4857
crossref_primary_10_1038_s41467_020_19967_4
crossref_primary_10_1155_2020_7570981
crossref_primary_10_1038_s42003_024_05805_6
crossref_primary_10_3389_fimmu_2022_1034379
crossref_primary_10_1002_jmv_28745
crossref_primary_10_1016_j_jcyt_2020_04_100
crossref_primary_10_14348_molcells_2022_0089
crossref_primary_10_1172_jci_insight_160039
crossref_primary_10_3390_v15051188
crossref_primary_10_1016_j_lfs_2021_119580
crossref_primary_10_1172_jci_insight_151571
crossref_primary_10_1016_j_hnm_2024_200255
crossref_primary_10_1007_s11239_020_02230_4
crossref_primary_10_3390_ijerph182412891
crossref_primary_10_1002_cti2_1259
crossref_primary_10_18632_aging_104205
crossref_primary_10_1007_s00216_021_03499_x
crossref_primary_10_1007_s12026_021_09198_0
crossref_primary_10_3899_jrheum_220219
crossref_primary_10_1016_j_ebiom_2020_102964
crossref_primary_10_4049_jimmunol_2200844
crossref_primary_10_1126_science_abc8511
crossref_primary_10_1016_j_ijbiomac_2025_140037
crossref_primary_10_1159_000542652
crossref_primary_10_36425_rehab104997
crossref_primary_10_1038_s43018_020_00120_5
crossref_primary_10_1016_j_csbj_2022_06_066
crossref_primary_10_1371_journal_pone_0266652
crossref_primary_10_1038_s41598_020_76781_0
crossref_primary_10_1038_s41598_023_32268_2
crossref_primary_10_1002_cti2_1228
crossref_primary_10_1007_s00011_022_01540_y
crossref_primary_10_25122_jml_2023_0275
crossref_primary_10_3389_fimmu_2021_720109
crossref_primary_10_1177_10815589231158041
crossref_primary_10_1371_journal_pone_0255402
crossref_primary_10_1111_bph_15206
crossref_primary_10_1096_fj_202100024R
crossref_primary_10_1002_admt_202100906
crossref_primary_10_3390_life11111152
crossref_primary_10_1007_s11910_021_01130_1
crossref_primary_10_1111_1348_0421_12978
crossref_primary_10_1038_s41467_023_42841_y
crossref_primary_10_1128_mbio_02546_22
crossref_primary_10_3389_fmolb_2022_835590
crossref_primary_10_1080_2162402X_2020_1854424
crossref_primary_10_1093_jpids_piaa098
crossref_primary_10_1002_pnp_698
crossref_primary_10_3389_fimmu_2021_594356
crossref_primary_10_3390_vaccines8030443
crossref_primary_10_1002_jmv_26353
crossref_primary_10_3389_fimmu_2020_610300
crossref_primary_10_1016_j_cellsig_2021_110064
crossref_primary_10_1038_s42003_021_02859_8
crossref_primary_10_1097_JBR_0000000000000109
crossref_primary_10_1097_MD_0000000000021803
crossref_primary_10_1016_j_vaccine_2024_126253
crossref_primary_10_3389_fimmu_2022_1066176
crossref_primary_10_1182_bloodadvances_2020003918
crossref_primary_10_1128_iai_00216_24
crossref_primary_10_1186_s43042_022_00360_3
crossref_primary_10_1080_08830185_2021_1883600
crossref_primary_10_1038_s41419_022_04674_3
crossref_primary_10_1128_mSphere_00827_20
crossref_primary_10_1093_cvr_cvac139
crossref_primary_10_3389_fimmu_2020_596684
crossref_primary_10_1111_imm_13457
crossref_primary_10_1080_00325481_2020_1855921
crossref_primary_10_3390_biomedicines9111691
crossref_primary_10_1038_s41392_021_00686_1
crossref_primary_10_1016_j_csbj_2020_10_016
crossref_primary_10_1016_j_immuni_2021_05_006
crossref_primary_10_2147_ITT_S280706
crossref_primary_10_3390_ijms21218171
crossref_primary_10_3389_fendo_2021_626842
crossref_primary_10_15789_2220_7619_OFC_1917
crossref_primary_10_1111_1440_1681_13744
crossref_primary_10_1038_s41422_020_00455_9
crossref_primary_10_1152_ajplung_00236_2023
crossref_primary_10_3390_ijms24021712
crossref_primary_10_4049_jimmunol_2001407
crossref_primary_10_1007_s11239_020_02266_6
crossref_primary_10_1073_pnas_2023216118
crossref_primary_10_3389_fendo_2023_1139692
crossref_primary_10_1007_s13238_020_00762_2
crossref_primary_10_15252_embj_2021108249
crossref_primary_10_1073_pnas_2018587118
crossref_primary_10_3389_fimmu_2021_665773
crossref_primary_10_3389_fphys_2020_00699
crossref_primary_10_2217_fvl_2020_0065
crossref_primary_10_4110_in_2021_21_e12
crossref_primary_10_1126_scisignal_abg8744
crossref_primary_10_4110_in_2021_21_e10
crossref_primary_10_1016_j_bcp_2022_115116
crossref_primary_10_3389_fimmu_2021_753558
crossref_primary_10_3390_nu14051000
crossref_primary_10_1186_s12864_020_07300_8
crossref_primary_10_1136_rmdopen_2020_001549
crossref_primary_10_1016_j_celrep_2020_108590
crossref_primary_10_3389_fimmu_2021_781432
crossref_primary_10_1007_s13258_022_01285_2
crossref_primary_10_1080_08820139_2021_1936009
crossref_primary_10_3389_fimmu_2021_741218
crossref_primary_10_1038_s41467_021_24981_1
crossref_primary_10_1016_j_clim_2020_108591
crossref_primary_10_1038_s41392_020_00457_4
crossref_primary_10_1159_000514193
crossref_primary_10_3389_fimmu_2023_1190844
crossref_primary_10_1111_bph_16323
crossref_primary_10_1038_s41556_021_00690_1
crossref_primary_10_1038_s41577_021_00578_z
crossref_primary_10_1055_a_1581_6899
crossref_primary_10_1093_jleuko_qiac001
crossref_primary_10_1016_j_ebiom_2022_104299
crossref_primary_10_1182_bloodadvances_2021005949
crossref_primary_10_1186_s12967_022_03737_5
crossref_primary_10_1021_acs_bioconjchem_1c00220
crossref_primary_10_3389_fcell_2023_1207960
crossref_primary_10_1002_mco2_70056
crossref_primary_10_1126_sciimmunol_abg5021
crossref_primary_10_3390_cells9061440
crossref_primary_10_1007_s13167_023_00317_5
crossref_primary_10_1038_s41598_021_04683_w
crossref_primary_10_1080_14789450_2021_1908894
crossref_primary_10_3389_fimmu_2024_1358725
crossref_primary_10_2217_nnm_2020_0286
crossref_primary_10_3389_fimmu_2023_1172724
crossref_primary_10_3390_vaccines9121493
crossref_primary_10_1111_aji_13317
crossref_primary_10_1038_s41590_021_01035_8
crossref_primary_10_1016_j_amjmed_2021_01_040
crossref_primary_10_1371_journal_ppat_1010176
crossref_primary_10_1038_s41392_021_00749_3
crossref_primary_10_3390_ijms23158285
crossref_primary_10_1007_s00018_022_04220_6
crossref_primary_10_2174_2666796701999201116125249
crossref_primary_10_3389_fimmu_2022_832394
crossref_primary_10_1186_s12879_021_05792_7
crossref_primary_10_3389_fimmu_2022_964976
crossref_primary_10_3389_fphar_2021_598925
crossref_primary_10_1016_j_ejphar_2020_173547
crossref_primary_10_3389_fimmu_2021_816745
crossref_primary_10_3390_pr10061053
crossref_primary_10_1016_j_ajpath_2020_08_009
crossref_primary_10_1177_1179548420980699
crossref_primary_10_1016_j_intimp_2021_107622
crossref_primary_10_1038_s44320_024_00070_5
crossref_primary_10_7555_JBR_36_20220221
crossref_primary_10_1038_s41590_020_00835_8
crossref_primary_10_3389_fimmu_2022_993025
crossref_primary_10_1186_s41231_023_00155_7
crossref_primary_10_3389_fgene_2021_745483
crossref_primary_10_1182_bloodadvances_2022009022
crossref_primary_10_34133_hds_0002
crossref_primary_10_3389_fimmu_2020_573662
crossref_primary_10_1172_JCI141772
crossref_primary_10_1007_s12015_020_10056_z
crossref_primary_10_1111_all_15239
crossref_primary_10_1186_s10020_020_00186_y
crossref_primary_10_1161_STROKEAHA_120_032764
crossref_primary_10_1016_j_isci_2022_105559
crossref_primary_10_3389_fimmu_2020_571481
crossref_primary_10_1186_s12964_024_01867_5
crossref_primary_10_1186_s13073_021_00881_3
crossref_primary_10_1038_s41467_024_54732_x
crossref_primary_10_1038_s41467_020_19080_6
crossref_primary_10_1080_23808993_2020_1785286
crossref_primary_10_3389_fimmu_2022_917141
crossref_primary_10_1093_bib_bbac070
crossref_primary_10_1093_pnasnexus_pgac062
crossref_primary_10_3389_fmolb_2021_658932
crossref_primary_10_3390_jpm12071119
crossref_primary_10_1080_21645515_2020_1802974
crossref_primary_10_1038_s41385_020_00374_3
crossref_primary_10_1016_j_heliyon_2021_e07147
crossref_primary_10_1038_s42003_021_02095_0
crossref_primary_10_3390_jcm12103539
crossref_primary_10_1016_j_heliyon_2024_e26663
crossref_primary_10_1186_s13073_021_01008_4
crossref_primary_10_3389_fimmu_2024_1460442
crossref_primary_10_1177_2472630320950248
crossref_primary_10_3389_fimmu_2022_1095577
crossref_primary_10_1039_D3LC00749A
crossref_primary_10_1126_scitranslmed_abe8146
crossref_primary_10_1371_journal_ppat_1010025
crossref_primary_10_1186_s12985_022_01926_8
crossref_primary_10_1016_j_biopha_2020_110653
crossref_primary_10_1038_s41421_020_00187_5
crossref_primary_10_1016_j_jbc_2021_100630
crossref_primary_10_1038_s41421_021_00329_3
crossref_primary_10_1155_2021_5488591
crossref_primary_10_3389_fcell_2021_578825
crossref_primary_10_1159_000529985
crossref_primary_10_1172_jci_insight_147413
crossref_primary_10_1002_JLB_3COVR0520_272R
crossref_primary_10_1084_jem_20201707
crossref_primary_10_1016_j_bbadis_2023_166671
crossref_primary_10_3389_fmed_2023_1282390
crossref_primary_10_3389_fimmu_2020_561851
crossref_primary_10_3389_fimmu_2020_579250
crossref_primary_10_3389_fmed_2021_718641
crossref_primary_10_1002_ccr3_7006
crossref_primary_10_1016_j_prmcm_2021_100024
crossref_primary_10_1016_j_ijrobp_2021_08_029
crossref_primary_10_3390_ijms23158590
crossref_primary_10_1016_j_it_2020_08_008
crossref_primary_10_1111_ijcp_14767
crossref_primary_10_1093_bioinformatics_btaa739
crossref_primary_10_1038_s41587_021_01001_7
crossref_primary_10_1007_s13205_021_02647_5
crossref_primary_10_1016_j_it_2023_04_001
crossref_primary_10_1038_s41392_021_00703_3
crossref_primary_10_1016_j_csbj_2022_11_001
crossref_primary_10_3390_vaccines10020242
crossref_primary_10_3389_fimmu_2021_694243
crossref_primary_10_1002_acn3_52142
crossref_primary_10_3349_ymj_2021_62_5_381
crossref_primary_10_1126_scitranslmed_abl5278
crossref_primary_10_1007_s12015_020_10065_y
crossref_primary_10_1080_2314808X_2020_1843119
crossref_primary_10_1007_s42000_021_00300_7
crossref_primary_10_4049_jimmunol_2100813
crossref_primary_10_3389_fimmu_2021_789317
crossref_primary_10_3390_ijms22031118
crossref_primary_10_2147_IJGM_S263666
crossref_primary_10_1007_s10875_021_01142_z
crossref_primary_10_4236_wjcd_2022_123018
crossref_primary_10_1016_j_xinn_2022_100359
crossref_primary_10_1128_mbio_01429_24
Cites_doi 10.1128/JVI.79.10.6441-6448.2005
10.1016/j.immuni.2016.05.006
10.1038/ncomms7833
10.1016/j.celrep.2018.10.047
10.1016/j.immuni.2009.02.006
10.1126/sciimmunol.aan5393
10.1016/j.immuni.2018.01.005
10.1084/jem.20050828
10.4049/jimmunol.0904092
10.1371/journal.pone.0031535
10.1038/ncomms12780
10.1002/jmv.20499
10.1038/d41586-020-00190-6
10.1172/JCI137244
10.1056/NEJMoa2001017
10.1056/NEJMoa2001282
10.1016/S0140-6736(20)30183-5
10.1016/j.cell.2019.05.031
10.1016/j.jaci.2009.09.017
10.1016/j.chom.2016.01.007
10.1111/resp.13196
10.3389/fimmu.2018.02425
10.1016/S0140-6736(03)13413-7
10.1038/s41591-019-0602-4
10.1038/nbt.2859
10.1007/s00281-017-0629-x
10.1126/science.aah4573
10.1038/nri1732
10.1007/s00134-020-05943-5
10.1038/emboj.2008.179
10.1016/S0140-6736(20)30154-9
10.1002/jmv.25709
10.1001/jama.2020.1585
10.1038/s41467-019-09234-6
10.1016/j.tim.2019.08.007
10.1016/j.coviro.2011.07.002
10.1016/S1473-3099(13)70204-4
10.1016/S1473-3099(20)30198-5
10.1038/s41591-019-0590-4
10.1001/jama.2020.4344
10.1001/jama.2020.3204
10.1101/2020.02.20.20025841
10.1093/cid/ciaa248
10.1101/2020.02.12.945576
10.1016/j.cell.2020.02.058
10.1056/NEJMoa2001316
10.1093/cid/ciaa237
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1038/s41421-020-0168-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2056-5968
ExternalDocumentID PMC7197635
32377375
10_1038_s41421_020_0168_9
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81830054, 81988101,91859205; 81722034; 81670015; 81530028,81721003
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2016A030306006; 2020B1515020057
  funderid: https://doi.org/10.13039/501100003453
– fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2018ZX09101002, 2017ZX100203205
  funderid: https://doi.org/10.13039/501100002855
– fundername: Shanghai Municipal Human Resources and Social Security Bureau
  grantid: 2019PJD059
  funderid: https://doi.org/10.13039/501100009018
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81530028,81721003
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2020B1515020057
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81722034
– fundername: Shanghai Municipal Human Resources and Social Security Bureau
  grantid: 2019PJD059
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81830054, 81988101,91859205
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81670015
– fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2018ZX09101002, 2017ZX100203205
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2016A030306006
– fundername: ;
  grantid: 2019PJD059
– fundername: ;
  grantid: 81830054, 81988101,91859205; 81722034; 81670015; 81530028,81721003
– fundername: ;
  grantid: 2016A030306006; 2020B1515020057
– fundername: ;
  grantid: 2018ZX09101002, 2017ZX100203205
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C24
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
LK8
M7P
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c3579-5b04446994af79823bb19a0ef424bd6ce4df9dfc9a799d71885d61c9eb5233673
IEDL.DBID AAJSJ
ISSN 2056-5968
IngestDate Thu Aug 21 18:25:25 EDT 2025
Tue Aug 05 11:13:49 EDT 2025
Mon Jul 21 06:00:42 EDT 2025
Tue Jul 01 01:20:26 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mechanisms of disease
Immunology
Language English
License The Author(s) 2020.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-5b04446994af79823bb19a0ef424bd6ce4df9dfc9a799d71885d61c9eb5233673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41421-020-0168-9
PMID 32377375
PQID 2399844996
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197635
proquest_miscellaneous_2399844996
pubmed_primary_32377375
crossref_citationtrail_10_1038_s41421_020_0168_9
crossref_primary_10_1038_s41421_020_0168_9
springer_journals_10_1038_s41421_020_0168_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200504
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 5
  year: 2020
  text: 20200504
  day: 4
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: England
PublicationTitle Cell discovery
PublicationTitleAbbrev Cell Discov
PublicationTitleAlternate Cell Discov
PublicationYear 2020
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Chan (CR6) 2020; 395
Goodwin (CR42) 2018; 48
Zhao (CR15) 2016; 44
Schmitz, Kurrer, Bachmann, Kopf (CR29) 2005; 79
Zhang (CR32) 2006; 78
Rothenburg, Brennan (CR19) 2020; 28
Arabi (CR10) 2020; 46
See, Lum, Chen, Ginhoux (CR45) 2018; 9
Chen (CR37) 2020
Zhu (CR1) 2020; 382
Cao (CR11) 2020
CR35
CR34
Thomas (CR28) 2009; 30
Aoshi, Koyama, Kobiyama, Akira, Ishii (CR31) 2011; 1
Fernandez (CR49) 2019; 25
Channappanavar (CR24) 2016; 19
Nicholls (CR26) 2003; 361
CR2
CR4
CR3
Cyranoski (CR8) 2020; 577
Zhou (CR48) 2019; 10
CR7
CR9
Trapnell (CR47) 2014; 32
CR44
Gu (CR25) 2005; 202
Stuart (CR46) 2019; 177
Assiri (CR12) 2013; 13
Liu (CR23) 2020; 92
Villani (CR27) 2017; 356
Fox (CR16) 2012; 7
Huang (CR5) 2020; 395
Channappanavar, Perlman (CR22) 2017; 39
Ryon, Moss, Monze, Griffin (CR38) 2002; 9
Kumar (CR17) 2018; 25
Ehrhardt (CR43) 2019; 25
Thomson (CR39) 2008; 27
Wang (CR14) 2020
Perlman, Dandekar (CR18) 2005; 5
CR21
Qiu (CR36) 2020
Yin (CR13) 2018; 23
Bonilla, Oettgen (CR30) 2010; 125
Thomson, Little, Reason, Schrader (CR40) 2011; 186
Wang (CR20) 2015; 6
Zhao (CR33) 2017; 2
Fu (CR41) 2016; 7
N Zhu (168_CR1) 2020; 382
JF Chan (168_CR6) 2020; 395
J Gu (168_CR25) 2005; 202
E Goodwin (168_CR42) 2018; 48
168_CR35
PG Thomas (168_CR28) 2009; 30
168_CR34
JM Nicholls (168_CR26) 2003; 361
D Wang (168_CR14) 2020
P See (168_CR45) 2018; 9
C Trapnell (168_CR47) 2014; 32
YM Arabi (168_CR10) 2020; 46
S Rothenburg (168_CR19) 2020; 28
A Assiri (168_CR12) 2013; 13
168_CR44
JJ Ryon (168_CR38) 2002; 9
Y Fu (168_CR41) 2016; 7
B Cao (168_CR11) 2020
CA Thomson (168_CR40) 2011; 186
S Perlman (168_CR18) 2005; 5
J Liu (168_CR23) 2020; 92
J Zhao (168_CR15) 2016; 44
MP Kumar (168_CR17) 2018; 25
FA Bonilla (168_CR30) 2010; 125
L Zhang (168_CR32) 2006; 78
CA Thomson (168_CR39) 2008; 27
T Aoshi (168_CR31) 2011; 1
H Qiu (168_CR36) 2020
Y Yin (168_CR13) 2018; 23
SA Ehrhardt (168_CR43) 2019; 25
G Chen (168_CR37) 2020
Y Zhou (168_CR48) 2019; 10
C Huang (168_CR5) 2020; 395
168_CR3
168_CR4
168_CR7
A Fox (168_CR16) 2012; 7
R Channappanavar (168_CR24) 2016; 19
168_CR9
168_CR21
Z Wang (168_CR20) 2015; 6
168_CR2
N Schmitz (168_CR29) 2005; 79
T Stuart (168_CR46) 2019; 177
R Channappanavar (168_CR22) 2017; 39
J Zhao (168_CR33) 2017; 2
DM Fernandez (168_CR49) 2019; 25
D Cyranoski (168_CR8) 2020; 577
AC Villani (168_CR27) 2017; 356
32595980 - Cell Discov. 2020 Jun 20;6:41. doi: 10.1038/s41421-020-00187-5
References_xml – volume: 79
  start-page: 6441
  year: 2005
  end-page: 6448
  ident: CR29
  article-title: Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.10.6441-6448.2005
– volume: 44
  start-page: 1379
  year: 2016
  end-page: 1391
  ident: CR15
  article-title: Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.006
– volume: 6
  year: 2015
  ident: CR20
  article-title: Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8 T cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7833
– volume: 25
  start-page: 1458
  year: 2018
  end-page: 1468
  ident: CR17
  article-title: Analysis of single-cell RNA-seq identifies cell-cell communication associated with tumor characteristics
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.047
– ident: CR4
– volume: 30
  start-page: 566
  year: 2009
  end-page: 575
  ident: CR28
  article-title: The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.006
– volume: 2
  start-page: eaan5393
  year: 2017
  ident: CR33
  article-title: Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aan5393
– volume: 48
  start-page: 339
  year: 2018
  end-page: 349
  ident: CR42
  article-title: Infants infected with respiratory syncytial virus generate potent neutralizing antibodies that lack somatic hypermutation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.01.005
– volume: 202
  start-page: 415
  year: 2005
  end-page: 424
  ident: CR25
  article-title: Multiple organ infection and the pathogenesis of SARS
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050828
– ident: CR35
– volume: 186
  start-page: 2291
  year: 2011
  end-page: 2298
  ident: CR40
  article-title: Somatic diversity in CDR3 loops allows single V-genes to encode innate immunological memories for multiple pathogens
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0904092
– volume: 7
  year: 2012
  ident: CR16
  article-title: Severe pandemic H1N1 2009 infection is associated with transient NK and T deficiency and aberrant CD8 responses
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031535
– volume: 7
  year: 2016
  ident: CR41
  article-title: A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12780
– volume: 78
  start-page: 1
  year: 2006
  end-page: 8
  ident: CR32
  article-title: Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.20499
– ident: CR21
– volume: 577
  start-page: 607
  year: 2020
  ident: CR8
  article-title: This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan
  publication-title: Nature
  doi: 10.1038/d41586-020-00190-6
– year: 2020
  ident: CR37
  article-title: Clinical and immunologic features in severe and moderate Coronavirus Disease 2019
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI137244
– volume: 9
  start-page: 994
  year: 2002
  end-page: 1003
  ident: CR38
  article-title: Functional and phenotypic changes in circulating lymphocytes from hospitalized zambian children with measles
  publication-title: Clin. Diagn. Lab Immunol.
– ident: CR9
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: CR1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– year: 2020
  ident: CR11
  article-title: A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001282
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR5
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR46
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 125
  start-page: S33
  year: 2010
  end-page: S40
  ident: CR30
  article-title: Adaptive immunity
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.09.017
– ident: CR2
– volume: 19
  start-page: 181
  year: 2016
  end-page: 193
  ident: CR24
  article-title: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal neumonia in SARS-CoV-infected mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.01.007
– volume: 23
  start-page: 130
  year: 2018
  end-page: 137
  ident: CR13
  article-title: MERS, SARS and other coronaviruses as causes of pneumonia
  publication-title: Respirology
  doi: 10.1111/resp.13196
– volume: 9
  start-page: 2425
  year: 2018
  ident: CR45
  article-title: A single-cell sequencing guide for immunologists
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02425
– volume: 361
  start-page: 1773
  year: 2003
  end-page: 1778
  ident: CR26
  article-title: Lung pathology of fatal severe acute respiratory syndrome
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13413-7
– volume: 25
  start-page: 1589
  year: 2019
  end-page: 1600
  ident: CR43
  article-title: Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0602-4
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  ident: CR47
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 39
  start-page: 529
  year: 2017
  end-page: 539
  ident: CR22
  article-title: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-017-0629-x
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: CR27
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 5
  start-page: 917
  year: 2005
  end-page: 927
  ident: CR18
  article-title: Immunopathogenesis of coronavirus infections: implications for SARS
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1732
– volume: 46
  start-page: 315
  year: 2020
  end-page: 328
  ident: CR10
  article-title: Critical care management of adults with community-acquired severe respiratory viral infection
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-020-05943-5
– volume: 27
  start-page: 2592
  year: 2008
  end-page: 2602
  ident: CR39
  article-title: Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.179
– ident: CR44
– volume: 395
  start-page: 514
  year: 2020
  end-page: 523
  ident: CR6
  article-title: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 92
  start-page: 491
  year: 2020
  end-page: 494
  ident: CR23
  article-title: Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25709
– ident: CR3
– year: 2020
  ident: CR14
  article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China
  publication-title: JAMA
  doi: 10.1001/jama.2020.1585
– volume: 10
  year: 2019
  ident: CR48
  article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09234-6
– volume: 28
  start-page: 46
  year: 2020
  end-page: 56
  ident: CR19
  article-title: Species-specific host-virus interactions: implications for viral host range and virulence
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.08.007
– volume: 1
  start-page: 226
  year: 2011
  end-page: 232
  ident: CR31
  article-title: Innate and adaptive immune responses to viral infection and vaccination
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2011.07.002
– ident: CR34
– volume: 13
  start-page: 752
  year: 2013
  end-page: 761
  ident: CR12
  article-title: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70204-4
– ident: CR7
– year: 2020
  ident: CR36
  article-title: Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30198-5
– volume: 25
  start-page: 1576
  year: 2019
  end-page: 1588
  ident: CR49
  article-title: Single-cell immune landscape of human atherosclerotic plaques
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0590-4
– volume: 2
  start-page: eaan5393
  year: 2017
  ident: 168_CR33
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aan5393
– volume: 7
  year: 2016
  ident: 168_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12780
– volume: 48
  start-page: 339
  year: 2018
  ident: 168_CR42
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.01.005
– ident: 168_CR3
  doi: 10.1001/jama.2020.4344
– volume: 7
  year: 2012
  ident: 168_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031535
– volume: 6
  year: 2015
  ident: 168_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7833
– volume: 23
  start-page: 130
  year: 2018
  ident: 168_CR13
  publication-title: Respirology
  doi: 10.1111/resp.13196
– volume: 25
  start-page: 1576
  year: 2019
  ident: 168_CR49
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0590-4
– volume: 9
  start-page: 2425
  year: 2018
  ident: 168_CR45
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02425
– ident: 168_CR7
  doi: 10.1001/jama.2020.3204
– volume: 92
  start-page: 491
  year: 2020
  ident: 168_CR23
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25709
– volume: 46
  start-page: 315
  year: 2020
  ident: 168_CR10
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-020-05943-5
– volume: 25
  start-page: 1458
  year: 2018
  ident: 168_CR17
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.047
– ident: 168_CR34
  doi: 10.1101/2020.02.20.20025841
– volume: 39
  start-page: 529
  year: 2017
  ident: 168_CR22
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-017-0629-x
– volume: 382
  start-page: 727
  year: 2020
  ident: 168_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 19
  start-page: 181
  year: 2016
  ident: 168_CR24
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.01.007
– year: 2020
  ident: 168_CR36
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30198-5
– ident: 168_CR35
  doi: 10.1093/cid/ciaa248
– ident: 168_CR44
  doi: 10.1101/2020.02.12.945576
– volume: 30
  start-page: 566
  year: 2009
  ident: 168_CR28
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.006
– volume: 27
  start-page: 2592
  year: 2008
  ident: 168_CR39
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.179
– ident: 168_CR4
– volume: 361
  start-page: 1773
  year: 2003
  ident: 168_CR26
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13413-7
– ident: 168_CR21
  doi: 10.1016/j.cell.2020.02.058
– volume: 9
  start-page: 994
  year: 2002
  ident: 168_CR38
  publication-title: Clin. Diagn. Lab Immunol.
– ident: 168_CR2
  doi: 10.1056/NEJMoa2001316
– year: 2020
  ident: 168_CR11
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001282
– volume: 395
  start-page: 514
  year: 2020
  ident: 168_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 202
  start-page: 415
  year: 2005
  ident: 168_CR25
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050828
– year: 2020
  ident: 168_CR37
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI137244
– volume: 32
  start-page: 381
  year: 2014
  ident: 168_CR47
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 1
  start-page: 226
  year: 2011
  ident: 168_CR31
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2011.07.002
– volume: 78
  start-page: 1
  year: 2006
  ident: 168_CR32
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.20499
– volume: 186
  start-page: 2291
  year: 2011
  ident: 168_CR40
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0904092
– year: 2020
  ident: 168_CR14
  publication-title: JAMA
  doi: 10.1001/jama.2020.1585
– volume: 79
  start-page: 6441
  year: 2005
  ident: 168_CR29
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.10.6441-6448.2005
– volume: 25
  start-page: 1589
  year: 2019
  ident: 168_CR43
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0602-4
– volume: 577
  start-page: 607
  year: 2020
  ident: 168_CR8
  publication-title: Nature
  doi: 10.1038/d41586-020-00190-6
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: 168_CR27
  publication-title: Science
  doi: 10.1126/science.aah4573
– ident: 168_CR9
  doi: 10.1093/cid/ciaa237
– volume: 395
  start-page: 497
  year: 2020
  ident: 168_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 10
  year: 2019
  ident: 168_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09234-6
– volume: 44
  start-page: 1379
  year: 2016
  ident: 168_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.006
– volume: 28
  start-page: 46
  year: 2020
  ident: 168_CR19
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.08.007
– volume: 177
  start-page: 1888
  year: 2019
  ident: 168_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 5
  start-page: 917
  year: 2005
  ident: 168_CR18
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1732
– volume: 125
  start-page: S33
  year: 2010
  ident: 168_CR30
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.09.017
– volume: 13
  start-page: 752
  year: 2013
  ident: 168_CR12
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(13)70204-4
– reference: 32595980 - Cell Discov. 2020 Jun 20;6:41. doi: 10.1038/s41421-020-00187-5
SSID ssj0001528885
Score 2.6203866
Snippet COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states...
COVID-19, caused by SARS-CoV-2, has recently affected over 1,200,000 people and killed more than 60,000. The key immune cell subsets change and their states...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31
SubjectTerms 631/250
631/80/304
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell Cycle Analysis
Cell Physiology
Life Sciences
Stem Cells
Title Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing
URI https://link.springer.com/article/10.1038/s41421-020-0168-9
https://www.ncbi.nlm.nih.gov/pubmed/32377375
https://www.proquest.com/docview/2399844996
https://pubmed.ncbi.nlm.nih.gov/PMC7197635
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB71EBIviJtwrIzEE8gi8RHbj8vSql2JgoCiFS-RT6hUZatu-9B_zzjHomUFEk-JEttyZsbxjGfmG4BXkjvBnBPUpmSpsMFSVEMcFSn4oKyLpc_5zh9O6qNTMV_IxQ5UYy5MF7TfQVp2v-kxOuztSlSCoeHLchhVjWt0F_YzUjuK9v50Ov8y_32wIhladXL0YHK93XdzD9pSLLfjI_9wknZ7z-FduDMojWTaT_Me7MT2Ptzqy0jePIDvxznJI5J8CE_6Itw4DFkmMvv47fg9rQwZ4FNX5KwlqPKRbAejEN8QVA5_ROLwBrucR9qNMcRX45OHcHp48HV2RIeaCdRzqQyVLgPA1cYIm5TRjDtXGVvGJJhwofZRhGRC8sYqYwJuTFqGuvImOrRIea34I9hrl218AsRYp8tgbfAqCc2j1qj9oD0YpGfZH1lAOVKx8QOgeK5rcd50jm2um57wDRK-yYRvTAGv110uejSNfzV-ObKmQZnP32_buLxeNTkfVwu01eoCHvesWg_HGVeKK1mA2mDiukHG095805797HC1VWUyPF8Bb0Z2N8OCXv19lk__q_UzuM06OZS0FM9h7-ryOr5ArebKTWBXLdRkkGa8vjs4-fQZn87q2aQ7KfgFeCP3EQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXxJvwNBInkEXit49oodqFtlxaVHGx7NgplaosYttD_z1jJ1m0rEDiFiW2lcyM4288428AXkseBAtBUN91ngofPUUYEqjoYhu1D6lu83nng0M1PxafTuTJDjTTWZiStF8oLctvesoOe7cSjWDo-LKcRqVwjl6D6wi1VTbkmZr93laRDH06OcUvudnuubkCbcHK7ezIP0KkZeXZuwO3R8hI3g8veRd2Un8PbgxFJK_uw7dFPuKRSN6CJ0MJbhyGLDsy-_J18YE2lozkqSty1hMEfCR7wWjCVwSh4WkiAS-wy3miZYwxuxrvPIDjvY9HszkdKybQlkttqQyZ_k1ZK3ynrWE8hMb6OnWCiRBVm0TsbOxa67W1EZclI6NqWpsC-qNcaf4Qdvtlnx4DsT6YOnofW90Jw5MxiH3QG4yyZTkaWUE9SdG1I514rmpx7kpYmxs3CN6h4F0WvLMVvFl3-TFwafyr8atJNQ4tPn-_79PycuXyaVwj0FNTFTwaVLUejjOuNdeyAr2hxHWDzKa9-aQ_-15YtXVjMzlfBW8ndbtxOq_-_pZP_qv1S7g5PzrYd_uLw89P4RYrNilpLZ7B7sXPy_Qc8c1FeFEs-hcZ-PRS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEG_C00icQIbEj9g-rlpW3QUKEhRVXCw7tqFSla3Y9tB_zziPRcsKJG5RYlvJzDj-xjP-BuCF5F4w7wV1KTkqXHAUYYinIoUmKOdj2eTzzh8O64MjsTiWxzsgx7MwXdJ-R2nZ_abH7LA3K1EJho4vy2lUNc7R12chXYFdhNuVmMDudLr4vPi9uSIZenZyjGJyvd1_cx3aApfbOZJ_BEq79Wd2E24MwJFM-1e9BTuxvQ1X-1KSl3fg2zwf9Igkb8STvhA3DkOWiex9_Drfp5UhA4Xqipy0BGEfyb4wGvIlQYD4PRKPF9jlNNJujCHHGu_chaPZ2y97B3Som0AbLpWh0mcSuNoY4ZIymnHvK-PKmAQTPtRNFCGZkBrjlDEBFyctQ101Jnr0Snmt-D2YtMs2PgBinNdlcC40KgnNo9aIgNAnDLJhOSZZQDlK0TYDqXiubXFqu-A217YXvEXB2yx4awp4ue5y1jNq_Kvx81E1Fu0-f79r4_JiZfOZXC3QX6sLuN-raj0cZ1wprmQBakOJ6waZU3vzSXvyo-PWVpXJFH0FvBrVbYdJvfr7Wz78r9bP4Nqn_Zl9Pz989wius84kJS3FY5ic_7yITxDknPung0n_ArFr9rY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+cell+profiling+of+COVID-19+patients+in+the+recovery+stage+by+single-cell+sequencing&rft.jtitle=Cell+discovery&rft.au=Wen%2C+Wen&rft.au=Su%2C+Wenru&rft.au=Tang%2C+Hao&rft.au=Le%2C+Wenqing&rft.date=2020-05-04&rft.issn=2056-5968&rft.eissn=2056-5968&rft.volume=6&rft.spage=31&rft_id=info:doi/10.1038%2Fs41421-020-0168-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-5968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-5968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-5968&client=summon