Measurements of basal d‐glucose transport through GLUT1 across the intact plasma membrane of isolated segments from single fast‐ and slow‐twitch skeletal muscle fibres of rat

Aim To develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d‐glucose transport under basal conditions. Methods A nove...

Full description

Saved in:
Bibliographic Details
Published inActa Physiologica Vol. 234; no. 4; pp. e13789 - n/a
Main Authors Rudayni, Hassan A., Stephenson, George, Posterino, Giuseppe S.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim To develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d‐glucose transport under basal conditions. Methods A novel method is described for measuring free 2‐NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2‐NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast‐twitch and slow‐twitch fibres, indicating that the 2‐NBDG transport is GLUT‐mediated. Fibres were identified as fast‐twitch or slow‐twitch based on the differential sensitivity of their contractile apparatus to Sr2+. Results The time course of 2‐NBDG uptake in the presence of 50 µM 2‐NBDG follows a one‐phase exponential plateau curve and is faster in fast‐twitch (rate constant 0.053 ± 0.0024 s‐1) than in slow‐twitch fibres (rate constant 0.031 ± 0.0021 s‐1). The rate constants were markedly reduced in the presence of 20 mM d‐glucose to 0.0082 ± 0.0004 s‐1 and 0.0056 ± 0.0002 s‐1 in fast‐twitch and slow‐twitch fibres respectively. 2‐NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2‐NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2‐NBDG and d‐glucose (dissociation constants, Michaelis–Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2‐NBDG. Conclusion Free 2‐NBDG and d‐glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate‐limiting step in d‐glucose uptake in skeletal muscle is not necessarily the GLUT‐mediated transport of d‐glucose.
AbstractList Abstract Aim To develop a method for direct measurement of the fluorescent d ‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d ‐glucose transport under basal conditions. Methods A novel method is described for measuring free 2‐NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2‐NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast‐twitch and slow‐twitch fibres, indicating that the 2‐NBDG transport is GLUT‐mediated. Fibres were identified as fast‐twitch or slow‐twitch based on the differential sensitivity of their contractile apparatus to Sr 2+ . Results The time course of 2‐NBDG uptake in the presence of 50 µM 2‐NBDG follows a one‐phase exponential plateau curve and is faster in fast‐twitch (rate constant 0.053 ± 0.0024 s ‐1 ) than in slow‐twitch fibres (rate constant 0.031 ± 0.0021 s ‐1 ). The rate constants were markedly reduced in the presence of 20 mM d ‐glucose to 0.0082 ± 0.0004 s ‐1 and 0.0056 ± 0.0002 s ‐1 in fast‐twitch and slow‐twitch fibres respectively. 2‐NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2‐NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2‐NBDG and d ‐glucose (dissociation constants, Michaelis–Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2‐NBDG. Conclusion Free 2‐NBDG and d ‐glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate‐limiting step in d ‐glucose uptake in skeletal muscle is not necessarily the GLUT‐mediated transport of d ‐glucose.
AIMTo develop a method for direct measurement of the fluorescent d-glucose analogue 2-NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d-glucose transport under basal conditions. METHODSA novel method is described for measuring free 2-NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2-NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast-twitch and slow-twitch fibres, indicating that the 2-NBDG transport is GLUT-mediated. Fibres were identified as fast-twitch or slow-twitch based on the differential sensitivity of their contractile apparatus to Sr2+ . RESULTSThe time course of 2-NBDG uptake in the presence of 50 µM 2-NBDG follows a one-phase exponential plateau curve and is faster in fast-twitch (rate constant 0.053 ± 0.0024 s-1 ) than in slow-twitch fibres (rate constant 0.031 ± 0.0021 s-1 ). The rate constants were markedly reduced in the presence of 20 mM d-glucose to 0.0082 ± 0.0004 s-1 and 0.0056 ± 0.0002 s-1 in fast-twitch and slow-twitch fibres respectively. 2-NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2-NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2-NBDG and d-glucose (dissociation constants, Michaelis-Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2-NBDG. CONCLUSIONFree 2-NBDG and d-glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate-limiting step in d-glucose uptake in skeletal muscle is not necessarily the GLUT-mediated transport of d-glucose.
To develop a method for direct measurement of the fluorescent d-glucose analogue 2-NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d-glucose transport under basal conditions. A novel method is described for measuring free 2-NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2-NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast-twitch and slow-twitch fibres, indicating that the 2-NBDG transport is GLUT-mediated. Fibres were identified as fast-twitch or slow-twitch based on the differential sensitivity of their contractile apparatus to Sr . The time course of 2-NBDG uptake in the presence of 50 µM 2-NBDG follows a one-phase exponential plateau curve and is faster in fast-twitch (rate constant 0.053 ± 0.0024 s ) than in slow-twitch fibres (rate constant 0.031 ± 0.0021 s ). The rate constants were markedly reduced in the presence of 20 mM d-glucose to 0.0082 ± 0.0004 s and 0.0056 ± 0.0002 s in fast-twitch and slow-twitch fibres respectively. 2-NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2-NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2-NBDG and d-glucose (dissociation constants, Michaelis-Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2-NBDG. Free 2-NBDG and d-glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate-limiting step in d-glucose uptake in skeletal muscle is not necessarily the GLUT-mediated transport of d-glucose.
Aim To develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d‐glucose transport under basal conditions. Methods A novel method is described for measuring free 2‐NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2‐NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast‐twitch and slow‐twitch fibres, indicating that the 2‐NBDG transport is GLUT‐mediated. Fibres were identified as fast‐twitch or slow‐twitch based on the differential sensitivity of their contractile apparatus to Sr2+. Results The time course of 2‐NBDG uptake in the presence of 50 µM 2‐NBDG follows a one‐phase exponential plateau curve and is faster in fast‐twitch (rate constant 0.053 ± 0.0024 s‐1) than in slow‐twitch fibres (rate constant 0.031 ± 0.0021 s‐1). The rate constants were markedly reduced in the presence of 20 mM d‐glucose to 0.0082 ± 0.0004 s‐1 and 0.0056 ± 0.0002 s‐1 in fast‐twitch and slow‐twitch fibres respectively. 2‐NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2‐NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2‐NBDG and d‐glucose (dissociation constants, Michaelis–Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2‐NBDG. Conclusion Free 2‐NBDG and d‐glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate‐limiting step in d‐glucose uptake in skeletal muscle is not necessarily the GLUT‐mediated transport of d‐glucose.
Author Rudayni, Hassan A.
Posterino, Giuseppe S.
Stephenson, George
Author_xml – sequence: 1
  givenname: Hassan A.
  orcidid: 0000-0003-4464-5989
  surname: Rudayni
  fullname: Rudayni, Hassan A.
  email: harudayni@imamu.edu.sa
  organization: Imam Mohammad Ibn Saud Islamic University
– sequence: 2
  givenname: George
  orcidid: 0000-0002-7095-4817
  surname: Stephenson
  fullname: Stephenson, George
  organization: La Trobe University
– sequence: 3
  givenname: Giuseppe S.
  orcidid: 0000-0003-2539-1469
  surname: Posterino
  fullname: Posterino, Giuseppe S.
  email: g.posterino@latrobe.edu.au
  organization: La Trobe University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35038771$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9u1TAQxi1UREvphgMgS2wQ0ivxn8TJ8qkqLdJDsGjXkWNP3ktx4uBx9NQdR-AIvUQvwFE4CU5TumCBNx6Nfv7m83wvycHgByDkNctOWTof9LjTp0yosnpGjpiS5YopVhw81Vl5SE4Qb7IsY5wJyfkLcijyTJRKsSNy_xk0TgF6GCJS39JGo3bU_v7xc-sm4xFoDHrA0YdI4y74abujF5vrK0a1CR4xNYF2Q9Qm0tFp7DXtoW_SG5jlOvROR7AUYbvMaIPvKXbD1gFtNcY0ieohAc7vUx33XTQ7it_AQUxO-gnNTHZNgNngr7ug4yvyvNUO4eTxPibXH8-vzi5Xmy8Xn87Wm5URuapWuShBNEabwqb9MCOlsNrKqoS8MtJaLpQRQuqWa1FaC6qqstxAawupcsWkOCbvFt0x-O8TYKz7Dg04l37nJ6x5wVnGecZFQt_-g974KQzJXaKkKIUqcpWo9wv1sLsAbT2GrtfhtmZZPedZz3nWD3km-M2j5NT0YJ_Qv-klgC3AvnNw-x-pev31cr2I_gEJg7Mq
CitedBy_id crossref_primary_10_1091_mbc_E22_04_0146
Cites_doi 10.1152/ajpendo.1988.255.6.E942
10.1152/ajpendo.1994.266.2.E171
10.1016/0005-2736(72)90014-4
10.1113/jphysiol.2013.265900
10.1117/1.3259364
10.1074/jbc.273.29.18173
10.1152/ajpcell.00013.2006
10.1152/jappl.1998.85.6.2305
10.1021/bi00230a014
10.1042/bj20031170
10.1007/s00424-020-02441-x
10.1523/JNEUROSCI.23-19-07337.2003
10.1152/physrev.1990.70.4.1135
10.1152/ajpendo.00496.2009
10.1152/japplphysiol.00445.2018
10.3758/BF03201412
10.1152/physrev.00038.2012
10.2337/db05-1216
10.2337/db10-0233
10.1152/ajpendo.1999.277.6.E1103
10.1021/acs.biochem.5b01286
10.1016/0005-2736(79)90150-0
10.1113/jphysiol.1983.sp014887
10.1152/ajpcell.2000.279.5.C1564
10.1002/jcb.240480109
10.1093/cercor/bhs309
10.1016/S0021-9258(18)77362-6
10.1152/ajpendo.2001.280.6.E994
10.1113/jphysiol.1996.sp021388
10.1113/jphysiol.1981.sp013825
10.1016/j.mvr.2007.04.006
10.1152/jappl.1967.22.1.71
10.1152/ajpcell.1985.249.3.C226
10.2337/db11-1299
10.1152/ajpendo.1990.259.4.E593
10.1113/jphysiol.1994.sp020253
10.1074/jbc.M908048199
10.1242/jeb.048041
10.1038/ncb734
10.1093/hesc/9780199655458.001.0001
10.1006/bbrc.1996.0860
10.1096/fj.01-0183com
10.2337/diab.37.7.885
10.1152/ajpcell.00555.2003
10.1007/s41048-018-0076-9
10.1113/jphysiol.2001.012920
10.1007/s001250051147
10.1111/j.1469-7793.2000.t01-2-00131.x
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
2022 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
– notice: 2022 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7TS
7X8
DOI 10.1111/apha.13789
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-1716
EndPage n/a
ExternalDocumentID 10_1111_apha_13789
35038771
APHA13789
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
– fundername: National Health and Medical Research Council
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23M
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DXH
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
O66
O9-
OHT
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7TS
7X8
ID FETCH-LOGICAL-c3579-538e3bcac6d7891c443dad498e59c4dd237c334af2a38dde79905cefd64757143
IEDL.DBID DR2
ISSN 1748-1708
IngestDate Sat Aug 17 02:01:59 EDT 2024
Thu Oct 10 17:20:39 EDT 2024
Fri Aug 23 02:11:16 EDT 2024
Sat Sep 28 08:17:25 EDT 2024
Sat Aug 24 01:08:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fast-twitch muscle fibres
GLUT1
d-glucose transport kinetics
2-NBDG transport in single muscle fibres
slow-twitch muscle fibres
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-538e3bcac6d7891c443dad498e59c4dd237c334af2a38dde79905cefd64757143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2539-1469
0000-0003-4464-5989
0000-0002-7095-4817
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapha.13789
PMID 35038771
PQID 2643837657
PQPubID 1036382
PageCount 19
ParticipantIDs proquest_miscellaneous_2621022023
proquest_journals_2643837657
crossref_primary_10_1111_apha_13789
pubmed_primary_35038771
wiley_primary_10_1111_apha_13789_APHA13789
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Stockholm
PublicationTitle Acta Physiologica
PublicationTitleAlternate Acta Physiol (Oxf)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2004; 287
2010; 59
1967; 22
1988; 37
1999; 48
2018; 125
2014; 24
2006; 291
1999; 42
1985; 249
2008; 75
1998; 85
1972; 255
1996; 223
1990; 265
1998; 273
1994; 266
2009; 14
1979; 550
1990; 259
1983; 343
2004; 378
2018; 4
2000; 527
1988; 255
2001; 15
2013; 591
1992; 48
1981; 317
1996; 493
1988; 415
2011; 214
1994; 478
2000; 279
2001; 280
2006; 55
1991; 30
2009; 297
2013; 93
1986; 18
2002; 4
2000; 275
2002; 538
2016; 55
2021
2020; 472
1999; 277
1990; 70
2003; 23
Butler PJ (e_1_2_7_39_1) 2021
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Fryer M (e_1_2_7_18_1) 1988; 415
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Lloyd PG (e_1_2_7_8_1) 1999; 48
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 70
  start-page: 1135
  year: 1990
  end-page: 1176
  article-title: Facilitated diffusion of glucose
  publication-title: Physiol Rev
– volume: 291
  start-page: C518
  year: 2006
  end-page: C528
  article-title: Denervation produces different single fiber phenotypes in fast‐ and slow‐twitch hindlimb muscles of the rat
  publication-title: Am J Physiol Cell Physiol
– volume: 59
  start-page: 2134
  year: 2010
  end-page: 2144
  article-title: Kinetics of contraction‐induced GLUT4 translocation in skeletal muscle fibers from living mice
  publication-title: Diabetes
– volume: 85
  start-page: 2305
  year: 1998
  end-page: 2313
  article-title: Limitations to exercise‐and maximal insulin‐stimulated muscle glucose uptake
  publication-title: J Appl Physiol
– year: 2021
– volume: 18
  start-page: 469
  year: 1986
  end-page: 471
  article-title: Confidence intervals and standard errors for ratios of normal variables
  publication-title: Behav Res Methods Instrum Comput
– volume: 55
  start-page: 2578
  year: 2016
  end-page: 2589
  article-title: Transport of a fluorescent analogue of glucose (2‐NBDG) versus radiolabeled sugars by rumen bacteria and
  publication-title: Biochemistry
– volume: 24
  start-page: 222
  issue: 1
  year: 2014
  end-page: 231
  article-title: Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices
  publication-title: Cereb Cortex
– volume: 30
  start-page: 3898
  year: 1991
  end-page: 3906
  article-title: Mechanisms for the facilitated diffusion of substrates across cell membranes
  publication-title: Biochemistry
– volume: 255
  start-page: 126
  year: 1972
  end-page: 132
  article-title: Kinetic parameters of glucose efflux from human red blood cells under zero‐trans conditions
  publication-title: Biochim Biophys Acta
– volume: 48
  start-page: 51
  year: 1992
  end-page: 60
  article-title: Acute and chronic signals controlling glucose transport in skeletal muscle
  publication-title: J Cell Biochem
– volume: 279
  start-page: C1564
  year: 2000
  end-page: C1577
  article-title: MHC isoform composition and Ca ‐ or Sr ‐activation properties of rat skeletal muscle fibers
  publication-title: Am J Physiol Cell Physiol
– volume: 93
  start-page: 993
  year: 2013
  end-page: 1017
  article-title: Exercise, GLUT4, and skeletal muscle glucose uptake
  publication-title: Physiol Rev
– volume: 14
  start-page: 64014
  issue: 6
  year: 2009
  article-title: Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography
  publication-title: J Biomed Opt
– volume: 48
  start-page: 401
  year: 1999
  end-page: 410
  article-title: Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analogue
  publication-title: Physiol Res
– volume: 527
  start-page: 131
  year: 2000
  end-page: 137
  article-title: Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat
  publication-title: J Physiol
– volume: 472
  start-page: 1299
  year: 2020
  end-page: 1343
  article-title: Glucose transporters in brain in health and disease
  publication-title: Pflügers Arch
– volume: 287
  start-page: 79
  year: 2004
  end-page: 87
  article-title: Troponin C isoform composition determines differences in Sr2+‐activation characteristics between rat diaphragm fibers
  publication-title: Am J Physiol Cell Physiol
– volume: 37
  start-page: 885
  year: 1988
  end-page: 890
  article-title: Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ‐induced diabetic rats
  publication-title: Diabetes
– volume: 275
  start-page: 22278
  year: 2000
  end-page: 22283
  article-title: Measurement of glucose uptake and intracellular calcium concentration in single living pancreatic β‐ cells
  publication-title: J Biol Chem
– volume: 75
  start-page: 73
  year: 2008
  end-page: 82
  article-title: Subcellular characterization of glucose uptake in coronary endothelial cells
  publication-title: Microvasc Res
– volume: 280
  start-page: E994
  year: 2001
  end-page: 999
  article-title: Functional limitations to glucose uptake in muscles comprised of different fiber types
  publication-title: Am J Physiol Endocrinol Metab
– volume: 214
  start-page: 254
  year: 2011
  end-page: 262
  article-title: The physiological regulation of glucose flux into muscle in vivo
  publication-title: J Exp Biol
– volume: 415
  start-page: 601
  year: 1988
  end-page: 624
  article-title: Effects of 2,3‐butanedione monoxime on the contractile activation properties of fast‐ and slow‐twitch muscle fibers
  publication-title: J Physiol
– volume: 61
  start-page: 995
  year: 2012
  end-page: 1003
  article-title: A novel method to measure glucose uptake and myosin heavy chain isoform expression of single fibers from rat skeletal muscle
  publication-title: Diabetes
– volume: 378
  start-page: 269
  year: 2004
  end-page: 274
  article-title: A single‐fibre study of the relationship between MHC and TnC isoform composition in rat skeletal muscle
  publication-title: Biochem J
– volume: 297
  start-page: E836
  year: 2009
  end-page: E848
  article-title: Will the original glucose transporter isoform please stand up!
  publication-title: Am J Physiol Endocrinol Metab
– volume: 255
  start-page: E942
  year: 1988
  end-page: E945
  article-title: No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia
  publication-title: Am J Physiol Endocrinol Metab
– volume: 550
  start-page: 474
  year: 1979
  end-page: 484
  article-title: Evidence of multiple operational affinities for D‐glucose inside the human erythrocyte membrane
  publication-title: Biochim Biophys Acta – Biomembr
– volume: 125
  start-page: 1105
  year: 2018
  end-page: 1127
  article-title: Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle
  publication-title: J Appl Physiol
– volume: 55
  start-page: 1300
  year: 2006
  end-page: 1306
  article-title: Imaging of insulin signaling in skeletal muscle of living mice shows major role of T‐tubules
  publication-title: Diabetes
– volume: 4
  start-page: 83
  year: 2002
  end-page: 88
  article-title: A small‐molecule inhibitor of skeletal muscle myosin II
  publication-title: Nature Cell Biol
– volume: 4
  start-page: 287
  year: 2018
  end-page: 299
  article-title: A critique of the alternating access transporter model of uniport glucose transport
  publication-title: Biophys Rep
– volume: 259
  start-page: E593
  year: 1990
  end-page: E598
  article-title: Glucose transporter protein content and glucose transport capacity in rat skeletal muscles
  publication-title: Am J Physiol Endocrinol Metab
– volume: 277
  start-page: E1103
  year: 1999
  end-page: E1110
  article-title: Contraction‐stimulated muscle glucose transport and GLUT‐4 surface content are dependent on glycogen content
  publication-title: Am J Physiol Endocrinol Metab
– volume: 42
  start-page: 256
  year: 1999
  end-page: 261
  article-title: Measurement of glucose in rats: differences between glucose meter and plasma laboratory results
  publication-title: Diabetologia
– volume: 343
  start-page: 161
  year: 1983
  end-page: 196
  article-title: Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye
  publication-title: J Physiol
– volume: 317
  start-page: 281
  year: 1981
  end-page: 302
  article-title: Calcium‐activated force responses in fast‐ and slow‐twitch skinned muscle fibres of the rat at different temperatures
  publication-title: J Physiol
– volume: 273
  start-page: 18173
  year: 1998
  end-page: 18179
  article-title: Dissociation of GLUT4 translocation and insulin induced glucose transport in transgenic mice overexpressing GlUT1 in skeletal muscle
  publication-title: J Biol Chem
– volume: 223
  start-page: 147
  year: 1996
  end-page: 152
  article-title: Exercise induces the translocation of GLUT4 to transverse tubules from an intracellular pool in rat skeletal muscle
  publication-title: Biochem Biophys Res Commun
– volume: 478
  start-page: 331
  year: 1994
  end-page: 339
  article-title: Effects of intracellular pH and [Mg ] on excitation–contraction coupling in skeletal muscle fibres of the rat
  publication-title: J Physiol
– volume: 266
  start-page: E171
  year: 1994
  end-page: E178
  article-title: Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise
  publication-title: Am J Physiol Endocrinol Metab
– volume: 23
  start-page: 7337
  year: 2003
  end-page: 7342
  article-title: Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real‐time confocal microscopy
  publication-title: J Neurosci
– volume: 265
  start-page: 13427
  year: 1990
  end-page: 13430
  article-title: Exercise induces recruitment of the ‘insulin‐responsive glucose transporter’. Evidence for distinct intracellular insulin‐ and exercise‐recruitable transporter pools in skeletal muscle
  publication-title: J Biol Chem
– volume: 538
  start-page: 607
  year: 2002
  end-page: 618
  article-title: Tubular system volume changes in twitch fibres from toad and rat skeletal muscle assessed by confocal microscopy
  publication-title: J Physiol
– volume: 591
  start-page: 6053
  year: 2013
  end-page: 6068
  article-title: Endogenous and maximal sarcoplasmic reticulum calcium content and calsequestrin expression in type I and type II human skeletal muscle fibres
  publication-title: J Physiol
– volume: 15
  start-page: 2415
  year: 2001
  end-page: 2422
  article-title: Changes in myosin structure and function in response to glycation
  publication-title: FASEB J
– volume: 493
  start-page: 357
  year: 1996
  end-page: 370
  article-title: Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle
  publication-title: J Physiology
– volume: 22
  start-page: 71
  year: 1967
  end-page: 85
  article-title: Interaction of physiological mechanisms during exercise
  publication-title: J Appl Physiol
– volume: 249
  start-page: C226
  year: 1985
  end-page: C232
  article-title: Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle
  publication-title: Am J Physiol Cell Physiol
– ident: e_1_2_7_36_1
  doi: 10.1152/ajpendo.1988.255.6.E942
– ident: e_1_2_7_7_1
  doi: 10.1152/ajpendo.1994.266.2.E171
– ident: e_1_2_7_21_1
  doi: 10.1016/0005-2736(72)90014-4
– ident: e_1_2_7_45_1
  doi: 10.1113/jphysiol.2013.265900
– ident: e_1_2_7_12_1
  doi: 10.1117/1.3259364
– ident: e_1_2_7_26_1
  doi: 10.1074/jbc.273.29.18173
– ident: e_1_2_7_35_1
  doi: 10.1152/ajpcell.00013.2006
– ident: e_1_2_7_5_1
  doi: 10.1152/jappl.1998.85.6.2305
– ident: e_1_2_7_33_1
  doi: 10.1021/bi00230a014
– ident: e_1_2_7_46_1
  doi: 10.1042/bj20031170
– ident: e_1_2_7_32_1
  doi: 10.1007/s00424-020-02441-x
– ident: e_1_2_7_11_1
  doi: 10.1523/JNEUROSCI.23-19-07337.2003
– ident: e_1_2_7_15_1
  doi: 10.1152/physrev.1990.70.4.1135
– ident: e_1_2_7_20_1
  doi: 10.1152/ajpendo.00496.2009
– ident: e_1_2_7_48_1
  doi: 10.1152/japplphysiol.00445.2018
– volume: 415
  start-page: 601
  year: 1988
  ident: e_1_2_7_18_1
  article-title: Effects of 2,3‐butanedione monoxime on the contractile activation properties of fast‐ and slow‐twitch muscle fibers
  publication-title: J Physiol
  contributor:
    fullname: Fryer M
– ident: e_1_2_7_51_1
  doi: 10.3758/BF03201412
– ident: e_1_2_7_24_1
  doi: 10.1152/physrev.00038.2012
– ident: e_1_2_7_27_1
  doi: 10.2337/db05-1216
– ident: e_1_2_7_30_1
  doi: 10.2337/db10-0233
– ident: e_1_2_7_29_1
  doi: 10.1152/ajpendo.1999.277.6.E1103
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.biochem.5b01286
– ident: e_1_2_7_19_1
  doi: 10.1016/0005-2736(79)90150-0
– ident: e_1_2_7_50_1
  doi: 10.1113/jphysiol.1983.sp014887
– ident: e_1_2_7_44_1
  doi: 10.1152/ajpcell.2000.279.5.C1564
– ident: e_1_2_7_23_1
  doi: 10.1002/jcb.240480109
– ident: e_1_2_7_14_1
  doi: 10.1093/cercor/bhs309
– ident: e_1_2_7_31_1
  doi: 10.1016/S0021-9258(18)77362-6
– ident: e_1_2_7_6_1
  doi: 10.1152/ajpendo.2001.280.6.E994
– ident: e_1_2_7_16_1
  doi: 10.1113/jphysiol.1996.sp021388
– ident: e_1_2_7_43_1
  doi: 10.1113/jphysiol.1981.sp013825
– volume: 48
  start-page: 401
  year: 1999
  ident: e_1_2_7_8_1
  article-title: Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analogue
  publication-title: Physiol Res
  contributor:
    fullname: Lloyd PG
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mvr.2007.04.006
– ident: e_1_2_7_2_1
  doi: 10.1152/jappl.1967.22.1.71
– ident: e_1_2_7_37_1
  doi: 10.1152/ajpcell.1985.249.3.C226
– ident: e_1_2_7_34_1
  doi: 10.2337/db11-1299
– ident: e_1_2_7_25_1
  doi: 10.1152/ajpendo.1990.259.4.E593
– ident: e_1_2_7_49_1
  doi: 10.1113/jphysiol.1994.sp020253
– ident: e_1_2_7_9_1
  doi: 10.1074/jbc.M908048199
– ident: e_1_2_7_3_1
  doi: 10.1242/jeb.048041
– ident: e_1_2_7_17_1
  doi: 10.1038/ncb734
– volume-title: Animal Physiology: An Environmental Perspective, Chapter 2
  year: 2021
  ident: e_1_2_7_39_1
  doi: 10.1093/hesc/9780199655458.001.0001
  contributor:
    fullname: Butler PJ
– ident: e_1_2_7_28_1
  doi: 10.1006/bbrc.1996.0860
– ident: e_1_2_7_40_1
  doi: 10.1096/fj.01-0183com
– ident: e_1_2_7_4_1
  doi: 10.2337/diab.37.7.885
– ident: e_1_2_7_47_1
  doi: 10.1152/ajpcell.00555.2003
– ident: e_1_2_7_22_1
  doi: 10.1007/s41048-018-0076-9
– ident: e_1_2_7_42_1
  doi: 10.1113/jphysiol.2001.012920
– ident: e_1_2_7_38_1
  doi: 10.1007/s001250051147
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1469-7793.2000.t01-2-00131.x
SSID ssj0001213422
ssj0043892
Score 2.4015293
Snippet Aim To develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle...
To develop a method for direct measurement of the fluorescent d-glucose analogue 2-NBDG transport across the plasma membrane of single skeletal muscle fibres...
Abstract Aim To develop a method for direct measurement of the fluorescent d ‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal...
AimTo develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle...
AIMTo develop a method for direct measurement of the fluorescent d-glucose analogue 2-NBDG transport across the plasma membrane of single skeletal muscle...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e13789
SubjectTerms 2‐NBDG transport in single muscle fibres
Animals
Calcium - metabolism
Cell Membrane - metabolism
Cytochalasin B
d‐glucose transport kinetics
fast‐twitch muscle fibres
Glucose
Glucose - metabolism
Glucose transport
Glucose Transporter Type 1 - metabolism
GLUT1
Muscle contraction
Muscle Contraction - physiology
Muscle Fibers, Fast-Twitch - metabolism
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Slow-Twitch - metabolism
Muscle, Skeletal - metabolism
Musculoskeletal system
Plasma
Rats
Skeletal muscle
slow‐twitch muscle fibres
Title Measurements of basal d‐glucose transport through GLUT1 across the intact plasma membrane of isolated segments from single fast‐ and slow‐twitch skeletal muscle fibres of rat
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapha.13789
https://www.ncbi.nlm.nih.gov/pubmed/35038771
https://www.proquest.com/docview/2643837657
https://search.proquest.com/docview/2621022023
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VnrjwV34CpTICcUBKtfFPnEhcVoiyQhRVqCv1giLHdtCqTbYiWVVw4hF4BF6CF-BReBJmnGTbgoQEtyjxxo494_lmduYzwBOTq6pUXsYVT2ws0V2LM5O42Gcmq6ROy1JQgfP-23Q2l6-P1NEGPB9rYXp-iHXAjTQj7Nek4KZsLyi5ITqlROiMqveISY8Q0Tt-IcCSCMnXXFJ0yjfvqyPRbdKTbOAqpbSe81ddtk5_QM7LCDaYoL3r8H4cfJ95cry76spd-_k3Xsf__bobcG3ApmzaC9NN2PDNLdiaNuiX15_YUxayRUMYfgu-758HF1u2rBiaQ_yt-_nl65AFz7qRN50NhwGxV2_mhwkz4dvxpmeLpjO2Y6cI4WvDal_jkBtPr1ugTiAMdqz1H_o-qBCGUWTjxLPKtB32xEyDDU6WZ3jdnS1QAFl7jHYUHQpWr1pLLXEWPA3wxzeU9dsw33t5-GIWD0dAxFYonce4HXtRWmNTh1ORWCmFM07mmVe5lc5xoa0Q0lTciAx3ao3GVVlfuVRqRUe734HNZtn4e8CUyybcTyYmTSrpjC6z3HGL7mtuEu9TE8HjcemL057poxg9JFqNIqxGBNujVBSDtrcFgkpy9FOlI3i0fox6Sn--4LQtV9QmONcIkSK420vTuhtBnDxaJxE8CzLxl_6L6cFsGq7u_0vjB3CVU91GSDnahs3u48o_RDTVlTtwhcuDnaA7vwAJ3iHd
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCCgPKTUmAQiANSpHVsx8lxhSgL7FY97Eq9RY7tVCuabEWyqnrjEXgEXoIX4FF4Emac7LYVEhK3KHFiy-PxfDOZ-czYa5OrqlRexlXCbSzRXYszw13sM5NVUqdlKajAeXaYThby07E6HnJzqBam54fYBtxIM8J-TQpOAekrWm6IT4kLneU32S1JTHBE7CyProRYuJDJlk2KzvlO-vpIdJz0KBvYSimx5_Jb1-3TX6DzOoYNRujgHrs7oEcY9-K-z2745gHbHTfoOdcX8AZCPmcIlO-yn7PL8F8LqwrQYOG77ve370OeOnQbZnMYjuuBD9PFnIMJY8ObHpZNZ2wHZwiyawO1r3HKGk-fW-KqRaDqoPUnfR9UqgIUezj1UJm2w57ANNjgdHWO1935EpcItF_Q0iHkh3rdWmqJUvA0wF8_cDU-ZIuD9_N3k3g4pCG2Quk8xg3Ti9IamzqcPW6lFM44mWde5VY6lwhthZCmSozIcC_VaP6U9ZVLpVZ0-PojttOsGv-EgXLZKPGjkUl5JZ3RZZa7xKKDmRvufWoi9mojmuKs5-IoNj4MCbAIAozY_kZqxaCPbYGwj1zxVOmIvdw-Rk2i3yM4bas1tQnuL4KYiD3upb3tRhBrjtY8Ym-D-P_RfzE-mozD1d7_NH7Bbk_ms2kx_Xj4-Sm7k1CVRUgQ2mc73de1f4bYpyufhxX-B-E2BAo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiEu_JWfhQJGIA5IqTa2EycSlxVlWaCtKtSVekGRYzto1Sa7IllVcOIReAReghfgUXgSZpxk24KEBDcrcfw745lvMjMGeKLTqMgjJ4OChyaQCNeCRIc2cIlOCqniPBcU4Ly7F0-m8s1hdLgGz_tYmDY_xMrgRpzhz2ti8IUtzjC5pnRKoVBJegEuylhwgl7b7_gZC0soJF8lk6JrvnkbHom4SQ2TLlkp-fWctnVePP2hc55XYb0MGl-F9_3oW9eTo61lk2-Zz78ldvzf6V2DK51yykYtNV2HNVfdgI1RhcC8_MSeMu8u6u3wG_B999S6WLN5wVAe4rf255evnRs8a_rE6ay7DYi92pkehEz7ueNDx2ZVo03DFqjDl5qVrsQhV46amyFToB5sWe0-tH1QJAwj08axY4WuG-yJ6QorHM9PsNyczJACWX2EghQRBSuXtaGauAqOBvjjGxL7TZiOXx68mATdHRCBEZFKAzyPnciNNrHFpQiNlMJqK9PERamR1nKhjBBSF1yLBI9qhdI1Mq6wsVQR3e1-C9areeXuAItsMuRuONRxWEirVZ6klhvEr6kOnYv1AB73W58t2lQfWQ-RaDcyvxsD2OypIuvYvc5QqySkH0dqAI9Wr5FR6e8LLtt8SXU8ukYdaQC3W2padSMoKY9S4QCeeZr4S__ZaH8y8qW7_1L5IVza3x5nO6_33t6Dy5xiOLz70SasNx-X7j5qVk3-wDPQL7wJI9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurements+of+basal+d%E2%80%90glucose+transport+through+GLUT1+across+the+intact+plasma+membrane+of+isolated+segments+from+single+fast%E2%80%90+and+slow%E2%80%90twitch+skeletal+muscle+fibres+of%C2%A0rat&rft.jtitle=Acta+Physiologica&rft.au=Rudayni%2C+Hassan+A.&rft.au=Stephenson%2C+George&rft.au=Posterino%2C+Giuseppe+S.&rft.date=2022-04-01&rft.issn=1748-1708&rft.eissn=1748-1716&rft.volume=234&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fapha.13789&rft.externalDBID=10.1111%252Fapha.13789&rft.externalDocID=APHA13789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-1708&client=summon