Evaluating High Spatial Resolution Diffusion Kurtosis Imaging at 3T: Reproducibility and Quality of Fit

Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes. Purpose To assess the reproducibil...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 53; no. 4; pp. 1175 - 1187
Main Authors Kasa, Loxlan W., Haast, Roy A.M., Kuehn, Tristan K., Mushtaha, Farah N., Baron, Corey A., Peters, Terry, Khan, Ali R.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes. Purpose To assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values. Study Type Retrospective. Subjects and Phantoms In all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms. Field Strength/Sequence Diffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only. Assessment From HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs). Statistical Tests DKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison. Results Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05). Data Conclusion The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.
AbstractList Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes. To assess the reproducibility in whole-brain high-resolution DKI at varying b-values. Retrospective. In all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms. Diffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only. From HCP data with b-values = 1000, 2000, 3000 s/mm (dataset A), two additional datasets with b-values = 1000, 3000 s/mm (dataset B) and b-values = 1000, 2000 s/mm (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs). DKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison. Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05). The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.
BackgroundDiffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes.PurposeTo assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values.Study TypeRetrospective.Subjects and PhantomsIn all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms.Field Strength/SequenceDiffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only.AssessmentFrom HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs).Statistical TestsDKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.ResultsDatasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).Data ConclusionThe study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.
Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes. Purpose To assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values. Study Type Retrospective. Subjects and Phantoms In all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms. Field Strength/Sequence Diffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only. Assessment From HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs). Statistical Tests DKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison. Results Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05). Data Conclusion The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.
Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes.BACKGROUNDDiffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes.To assess the reproducibility in whole-brain high-resolution DKI at varying b-values.PURPOSETo assess the reproducibility in whole-brain high-resolution DKI at varying b-values.Retrospective.STUDY TYPERetrospective.In all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms.SUBJECTS AND PHANTOMSIn all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms.Diffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only.FIELD STRENGTH/SEQUENCEDiffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only.From HCP data with b-values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b-values = 1000, 3000 s/mm2 (dataset B) and b-values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs).ASSESSMENTFrom HCP data with b-values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b-values = 1000, 3000 s/mm2 (dataset B) and b-values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs).DKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.STATISTICAL TESTSDKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).RESULTSDatasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.DATA CONCLUSIONThe study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.
Author Haast, Roy A.M.
Kuehn, Tristan K.
Kasa, Loxlan W.
Baron, Corey A.
Mushtaha, Farah N.
Khan, Ali R.
Peters, Terry
Author_xml – sequence: 1
  givenname: Loxlan W.
  orcidid: 0000-0001-6874-6157
  surname: Kasa
  fullname: Kasa, Loxlan W.
  organization: Western University
– sequence: 2
  givenname: Roy A.M.
  surname: Haast
  fullname: Haast, Roy A.M.
  organization: Robarts Research Institute, Western University
– sequence: 3
  givenname: Tristan K.
  surname: Kuehn
  fullname: Kuehn, Tristan K.
  organization: Robarts Research Institute, Western University
– sequence: 4
  givenname: Farah N.
  surname: Mushtaha
  fullname: Mushtaha, Farah N.
  organization: Robarts Research Institute, Western University
– sequence: 5
  givenname: Corey A.
  orcidid: 0000-0001-7343-5580
  surname: Baron
  fullname: Baron, Corey A.
  organization: Western University
– sequence: 6
  givenname: Terry
  surname: Peters
  fullname: Peters, Terry
  organization: Western University
– sequence: 7
  givenname: Ali R.
  surname: Khan
  fullname: Khan, Ali R.
  email: alik@robarts.ca
  organization: Western University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33098227$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOHDEQRS1ExCvZ8AGRpWyiSA1-TnvYIQJhAlEUAmvL7bYnHrnbEz8Szd_HzcAGoazqlnRuqaruIdgdw2gAOMboBCNETldDdCekZUjsgAPMCWkIF7PdqhGnDRao3QeHKa0QQvM543tgn1I0F4S0B2B5-Uf5orIbl_DaLX_Bn-vaKA_vTAq-ZBdG-NlZW9KkbkrMIbkEF4NaThaVIb0_q_A6hr5o1znv8gaqsYc_inrUwcIrl9-CN1b5ZN491SPwcHV5f3Hd3H7_srg4v2005a1oDFG8ox1uNetYK7jtDDNdz61WoqP1WKqwRhqxmdHEKmIEQ0T0ylLOe8sFPQIft3PrQr-LSVkOLmnjvRpNKEkSxhnGM8pYRT-8QFehxLFuJwlHWMzmiOFKvX-iSjeYXq6jG1TcyOcXVgBtAR1DStFYqV1W0-NyVM5LjOSUkpxSko8pVcunF5bnqa_CeAv_dd5s_kPKr9_uFlvPPzktomM
CitedBy_id crossref_primary_10_1016_j_nicl_2022_103201
crossref_primary_10_1002_nbm_5141
crossref_primary_10_1259_bjr_20220644
crossref_primary_10_1002_nbm_4856
crossref_primary_10_61186_ijrr_22_2_339
crossref_primary_10_1002_mrm_29420
crossref_primary_10_1371_journal_pone_0255711
crossref_primary_10_1002_jmri_29192
Cites_doi 10.1006/jmrb.1994.1037
10.1007/s12194-013-0206-5
10.1002/nbm.3777
10.1016/j.neuroimage.2013.05.057
10.1002/nbm.1020
10.1016/j.neuroimage.2013.04.127
10.1002/mrm.20508
10.1002/jmri.24985
10.1002/nbm.1506
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1101/2020.07.02.185397
10.3389/fnana.2017.00119
10.1089/brain.2014.0305
10.1038/s41598-017-11747-3
10.1523/JNEUROSCI.17-18-07079.1997
10.1002/nbm.1518
10.3174/ajnr.A4185
10.1002/mrm.22924
10.2214/AJR.13.11365
10.1016/j.neuroimage.2016.07.038
10.1038/nrclinonc.2016.162
10.1038/nn.4478
10.1038/nrn3900
10.1002/jmri.23840
10.1016/j.neuroimage.2005.06.058
10.1016/j.brainresbull.2018.01.015
10.3389/fneur.2017.00118
10.1002/nbm.787
10.1016/j.arr.2016.01.002
10.1002/mrm.22786
10.1161/STROKEAHA.112.657742
10.1002/mrm.1910360612
10.1089/neu.2011.1763
10.1016/j.neuroimage.2007.12.035
10.1196/annals.1444.017
10.3389/fnsys.2017.00046
10.1016/j.neuroimage.2018.02.017
10.1002/nbm.778
10.1016/j.nicl.2020.102168
10.1002/nbm.3017
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
2021 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
– notice: 2021 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.27408
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1187
ExternalDocumentID 33098227
10_1002_jmri_27408
JMRI27408
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada Research Chairs Program
  funderid: 950‐231964
– fundername: Canadian Institutes of Health Research Foundation
  funderid: 201409
– fundername: The Canada First Research Excellence Fund
– fundername: BrainsCAN
– fundername: NSERC Discovery
  funderid: RGPIN‐2015‐06639
– fundername: Fondation Brain Canada
– fundername: Canadian Institutes of Health Research Foundation
  grantid: 201409
– fundername: Canada Research Chairs Program
  grantid: 950-231964
– fundername: NSERC Discovery
  grantid: RGPIN-2015-06639
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3578-e2a5b3b17c4b4785fbe4ebd5fca8b30023a1c0c046ec2fa2e84028daf355df583
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 04:16:36 EDT 2025
Fri Jul 25 10:23:08 EDT 2025
Wed Feb 19 02:29:02 EST 2025
Tue Jul 01 03:56:47 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Wed Jan 22 16:29:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diffusion kurtosis imaging
diffusion magnetic resonance imaging
quality of fitting
reproducibility
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-e2a5b3b17c4b4785fbe4ebd5fca8b30023a1c0c046ec2fa2e84028daf355df583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7343-5580
0000-0001-6874-6157
PMID 33098227
PQID 2501869041
PQPubID 1006400
PageCount 13
ParticipantIDs proquest_miscellaneous_2454116344
proquest_journals_2501869041
pubmed_primary_33098227
crossref_citationtrail_10_1002_jmri_27408
crossref_primary_10_1002_jmri_27408
wiley_primary_10_1002_jmri_27408_JMRI27408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
2017; 20
2002; 15
2015; 36
2017; 8
2013; 26
2018; 182
2015; 16
2016; 30
2006; 19
1996; 36
1999; 8
2005; 28
2013; 6
2016; 142
2010; 23
2017; 30
2008; 1142
2013; 37
2014; 4
1994; 103
2018; 139
2017; 14
2015; 42
2017; 11
2013; 80
2005; 53
2011; 66
2020; 26
1997; 17
2011; 65
2012; 29
2008; 40
2012; 43
2014; 202
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
33166017 - J Magn Reson Imaging. 2021 Apr;53(4):1188-1189
References_xml – volume: 42
  start-page: 1190
  year: 2015
  end-page: 1202
  article-title: Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 1775
  year: 2013
  end-page: 1786
  article-title: Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging
  publication-title: NMR Biomed
– volume: 36
  start-page: 719
  year: 2015
  end-page: 724
  article-title: Altered microstructure in temporal lobe epilepsy: A diffusional kurtosis imaging study
  publication-title: AJNR Am J Neuroradiol
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: The quantification of non‐Gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 30
  start-page: 25
  year: 2016
  end-page: 48
  article-title: Brain atrophy in Alzheimer's disease and aging
  publication-title: Ageing Res Rev
– volume: 15
  start-page: 570
  year: 2002
  end-page: 577
  article-title: Applications of diffusion‐weighted and diffusion tensor MRI to white matter diseases — A review
  publication-title: NMR Biomed
– volume: 23
  start-page: 836
  year: 2010
  end-page: 848
  article-title: MR diffusion kurtosis imaging for neural tissue characterization
  publication-title: NMR Biomed
– volume: 26
  year: 2020
  article-title: Reproducibility, reliability and variability of FA and MD in the older healthy population: A test‐retest multiparametric analysis
  publication-title: Neuroimage Clin
– volume: 17
  start-page: 7079
  year: 1997
  end-page: 7102
  article-title: Structural and functional analyses of human cerebral cortex using a surface‐based atlas
  publication-title: J Neurosci
– volume: 142
  start-page: 522
  year: 2016
  end-page: 532
  article-title: The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE)
  publication-title: Neuroimage
– volume: 43
  start-page: 2968
  year: 2012
  end-page: 2973
  article-title: Stroke assessment with diffusional kurtosis imaging
  publication-title: Stroke
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
– volume: 182
  start-page: 488
  year: 2018
  end-page: 499
  article-title: Neurite imaging reveals microstructural variations in human cerebral cortical gray matter
  publication-title: Neuroimage
– volume: 37
  start-page: 365
  year: 2013
  end-page: 371
  article-title: Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 2318
  year: 2012
  end-page: 2327
  article-title: Thalamus and cognitive impairment in mild traumatic brain injury: A diffusional kurtosis imaging study
  publication-title: J Neurotrauma
– volume: 202
  start-page: W26
  year: 2014
  end-page: W33
  article-title: Diffusion kurtosis imaging: An emerging technique for evaluating the microstructural environment of the brain
  publication-title: AJR Am J Roentgenol
– volume: 66
  start-page: 92
  year: 2011
  end-page: 101
  article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling
  publication-title: Magn Reson Med
– volume: 4
  start-page: 718
  year: 2014
  end-page: 726
  article-title: Investigating the capability to resolve complex white matter structures with high b‐value diffusion magnetic resonance imaging on the MGH‐USC Connectom scanner
  publication-title: Brain Connect
– volume: 19
  start-page: 236
  year: 2006
  end-page: 247
  article-title: Three‐dimensional characterization of non‐Gaussian water diffusion in humans using diffusion kurtosis imaging
  publication-title: NMR Biomed
– volume: 15
  start-page: 516
  year: 2002
  end-page: 542
  article-title: High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues — A technical review
  publication-title: NMR Biomed
– volume: 30
  year: 2017
  article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b‐value selection
  publication-title: NMR Biomed
– volume: 1142
  start-page: 266
  year: 2008
  end-page: 309
  article-title: Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates
  publication-title: Ann N Y Acad Sci
– volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  article-title: A population‐average, landmark‐ and surface‐based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
– volume: 6
  start-page: 343
  year: 2013
  end-page: 348
  article-title: Effects of diffusional kurtosis imaging parameters on diffusion quantification
  publication-title: Radiol Phys Technol
– volume: 14
  start-page: 169
  year: 2017
  end-page: 186
  article-title: Imaging biomarker roadmap for cancer studies
  publication-title: Nat Rev Clin Oncol
– volume: 139
  start-page: 91
  year: 2018
  end-page: 98
  article-title: Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders
  publication-title: Brain Res Bull
– volume: 11
  start-page: 46
  year: 2017
  article-title: Architecture of the entorhinal cortex: A review of entorhinal anatomy in rodents with some comparative notes
  publication-title: Front Syst Neurosci
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn Reson Med
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo
  publication-title: J Magn Reson B
– volume: 7
  year: 2017
  article-title: Test‐retest reliability of high spatial resolution diffusion tensor and diffusion kurtosis imaging
  publication-title: Sci Rep
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: Neuroimage
– volume: 11
  start-page: 119
  year: 2017
  article-title: The superior fronto‐occipital fasciculus in the human brain revealed by diffusion spectrum imaging tractography: An anatomical reality or a methodological artifact?
  publication-title: Front Neuroanat
– volume: 36
  start-page: 893
  year: 1996
  end-page: 906
  article-title: Toward a quantitative assessment of diffusion anisotropy
  publication-title: Magn Reson Med
– volume: 23
  start-page: 698
  year: 2010
  end-page: 710
  article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis
  publication-title: NMR Biomed
– volume: 16
  start-page: 147
  year: 2015
  end-page: 158
  article-title: Exploring the origins of grey matter damage in multiple sclerosis
  publication-title: Nat Rev Neurosci
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  article-title: Building better biomarkers: Brain models in translational neuroimaging
  publication-title: Nat Neurosci
– volume: 8
  start-page: 118
  year: 2017
  article-title: Empirical comparison of diffusion kurtosis imaging and diffusion basis spectrum imaging using the same acquisition in healthy young adults
  publication-title: Front Neurol
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– ident: e_1_2_6_2_1
  doi: 10.1006/jmrb.1994.1037
– ident: e_1_2_6_36_1
  doi: 10.1007/s12194-013-0206-5
– ident: e_1_2_6_17_1
  doi: 10.1002/nbm.3777
– ident: e_1_2_6_21_1
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_2_6_37_1
  doi: 10.1002/nbm.1020
– ident: e_1_2_6_22_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_6_12_1
  doi: 10.1002/jmri.24985
– ident: e_1_2_6_7_1
  doi: 10.1002/nbm.1506
– ident: e_1_2_6_26_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: e_1_2_6_23_1
  doi: 10.1101/2020.07.02.185397
– ident: e_1_2_6_29_1
  doi: 10.3389/fnana.2017.00119
– ident: e_1_2_6_15_1
  doi: 10.1089/brain.2014.0305
– ident: e_1_2_6_18_1
  doi: 10.1038/s41598-017-11747-3
– ident: e_1_2_6_34_1
  doi: 10.1523/JNEUROSCI.17-18-07079.1997
– ident: e_1_2_6_35_1
  doi: 10.1002/nbm.1518
– ident: e_1_2_6_11_1
  doi: 10.3174/ajnr.A4185
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.22924
– ident: e_1_2_6_13_1
  doi: 10.2214/AJR.13.11365
– ident: e_1_2_6_41_1
  doi: 10.1016/j.neuroimage.2016.07.038
– ident: e_1_2_6_39_1
  doi: 10.1038/nrclinonc.2016.162
– ident: e_1_2_6_38_1
  doi: 10.1038/nn.4478
– ident: e_1_2_6_19_1
  doi: 10.1038/nrn3900
– ident: e_1_2_6_31_1
  doi: 10.1002/jmri.23840
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroimage.2005.06.058
– ident: e_1_2_6_8_1
  doi: 10.1016/j.brainresbull.2018.01.015
– ident: e_1_2_6_40_1
  doi: 10.3389/fneur.2017.00118
– ident: e_1_2_6_3_1
  doi: 10.1002/nbm.787
– ident: e_1_2_6_20_1
  doi: 10.1016/j.arr.2016.01.002
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.22786
– ident: e_1_2_6_9_1
  doi: 10.1161/STROKEAHA.112.657742
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.1910360612
– ident: e_1_2_6_10_1
  doi: 10.1089/neu.2011.1763
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2007.12.035
– ident: e_1_2_6_25_1
  doi: 10.1196/annals.1444.017
– ident: e_1_2_6_32_1
  doi: 10.3389/fnsys.2017.00046
– ident: e_1_2_6_33_1
  doi: 10.1016/j.neuroimage.2018.02.017
– ident: e_1_2_6_5_1
  doi: 10.1002/nbm.778
– ident: e_1_2_6_30_1
  doi: 10.1016/j.nicl.2020.102168
– ident: e_1_2_6_14_1
  doi: 10.1002/nbm.3017
– reference: 33166017 - J Magn Reson Imaging. 2021 Apr;53(4):1188-1189
SSID ssj0009945
Score 2.3929012
Snippet Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting...
Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and...
BackgroundDiffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1175
SubjectTerms Adult
Brain
Brain - diagnostic imaging
Coefficient of variation
Datasets
Diffusion
diffusion kurtosis imaging
diffusion magnetic resonance imaging
Diffusion Tensor Imaging - methods
Echo-Planar Imaging
Evaluation
Female
Fiber orientation
Field strength
Humans
Image Processing, Computer-Assisted - methods
Imaging
In vivo methods and tests
Kurtosis
Magnetic resonance imaging
Male
Microstructure
Neuroimaging
Parameters
Phantoms, Imaging
quality of fitting
Reproducibility
Reproducibility of Results
Retrospective Studies
Spatial discrimination
Spatial resolution
Statistical analysis
Statistical tests
Substantia alba
Substantia grisea
Three dimensional printing
Variance analysis
Young Adult
Title Evaluating High Spatial Resolution Diffusion Kurtosis Imaging at 3T: Reproducibility and Quality of Fit
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27408
https://www.ncbi.nlm.nih.gov/pubmed/33098227
https://www.proquest.com/docview/2501869041
https://www.proquest.com/docview/2454116344
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuvB-BgozgAlK2iR_rBHFB0FVbVA5VK_WCIj-rBZqtdpND-fV47GxWBYQEp0TKRI7tmfiz_fkbgFe1Y5W0UuWWMpVzUZV5ra3JHWNTL6Sx4YJsi8_T_VN-eCbOtuDd-ixM0ocYF9wwMuL_GgNc6dXuRjT068VyPglzqnjSF8laiIiON9pRdR0zFAf8wPKyKuSoTUp3N69eH41-g5jXEWsccma34cv6YxPT5Nuk7_TE_PhFx_F_a3MHbg1YlLxPznMXtlx7D24cDbvt9-F8b5ACb88J8kEI5i8O_kpwzT95LPk4977HFTfyqV92i9V8RQ4uYuYjojrCTt4G48uoKptouFdEtZYk5Y4rsvBkNu8ewOls7-TDfj4kZsgNiuPkjiqhmS6l4ZrLSnjtuNNWeKMqzRAGqNIUJky9naFeURdmkbSyygdwY72o2EPYbhetewzEME2Z11RQjVjOKyNLIZWubaGoNkUGr9cd1JhBtRyTZ3xvkt4ybbDlmthyGbwcbS-TVscfrXbW_dwM8bpqKOoaTuuClxm8GB-HSMPtE9W6RR9suOBlgK-cZ_Ao-cdYDGMFCiHKDN7EXv5L-c3h0fFBvHvyL8ZP4SZFOk0kDe3Adrfs3bOAhzr9PPr9T1u0BzA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKwGX8obQAkZwASnbxI91wg1BV7ttt4dqK_UW-VkttNlqNzm0v74eO82qgJDglEiZyIpnJv5mPP4GoY-lpYUwQqaGUJkyXuRpqYxOLaVDx4U2_gLVFkfD8QnbP-WnXW0OnIWJ_BB9wg08I_yvwcEhIb27Zg39cbGcD3xQBUd9N6Gld4iojtfsUWUZehR7BEHTvMhEz05Kdtfv3l2PfgOZdzFrWHRGj2Jn1VXgKoRak5-DtlEDff0Lk-N_f89jtNXBUfw12s8TdM_WT9H9abfh_gyd7XVs4PUZhpIQDC2MvcliSPtHo8Xf5861kHTDB-2yWazmKzy5CM2PsGwwnX3xwpeBWDZW4l5hWRscyTuu8MLh0bx5jk5Ge7Nv47TrzZBq4MdJLZFcUZULzRQTBXfKMqsMd1oWigISkLnOtI--rSZOEusDSVIY6Ty-MY4X9AXaqBe1fYWwpopQpwgnCuCck1rkXEhVmkwSpbMEfbrVUKU74nLon3FeRcplUsHMVWHmEvShl72MdB1_lNq5VXTVueyqIkBtOCwzlifoff_YOxvsoMjaLlovwzjLPYJlLEEvo4H0w1CaAReiSNDnoOa_jF_tT48n4e71vwi_Qw_Gs-lhdTg5OthGDwlU14Qaoh200Sxb-8bDo0a9DU5wA73WC0s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9RAFIcPpULxxfslteqIvihkm8xlJxFfxO3SbW2R0kJfJMy1rLbZZTd5qH-9c8lmqYqgTwnkhEky5yS_mZz5DsCb0pCCay5SjYlIKSvytJRapYaQoWVcabfx2RbHw_0zenDOzjfgw2otTORD9BNuPjLC-9oH-Fzb3TU09NvVYjpwYyq_0vcWHWaF9-nRyRoeVZahRLETECTNi4z3cFK8uz735ufoN415U7KGb874LnxdXW1MNfk-aBs5UD9-ATn-7-3cgzudGEUfo_fchw1TP4Cto-53-0O42OtY4PUF8gkhyBcwdg6L_KR_dFk0mlrb-ik3dNgumtlyukSTq1D6CIkGkdP3zngesLIxD_caiVqjiO64RjOLxtPmEZyN904_7addZYZUeTpOarBgksicKyopL5iVhhqpmVWikMTrAJGrTLmxt1HYCmzcMBIXWlinbrRlBXkMm_WsNk8BKSIxsRIzLL2Ys0LxnHEhS50JLFWWwNtVB1Wqw5b76hmXVQQu48o_uSo8uQRe97bzCOv4o9XOqp-rLmCXFfZgw2GZ0TyBV_1hF2r-_4mozax1NpTR3OlXShN4Ev2jb4aQzJMQeQLvQi__pf3q4OhkEva2_8X4JWx9GY2rz5Pjw2dwG_vUmpBAtAObzaI1z502auSLEAI_AbW2CgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+High+Spatial+Resolution+Diffusion+Kurtosis+Imaging+at+3T%3A+Reproducibility+and+Quality+of+Fit&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Kasa%2C+Loxlan+W.&rft.au=Haast%2C+Roy+A.M.&rft.au=Kuehn%2C+Tristan+K.&rft.au=Mushtaha%2C+Farah+N.&rft.date=2021-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=4&rft.spage=1175&rft.epage=1187&rft_id=info:doi/10.1002%2Fjmri.27408&rft.externalDBID=10.1002%252Fjmri.27408&rft.externalDocID=JMRI27408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon