Evaluating High Spatial Resolution Diffusion Kurtosis Imaging at 3T: Reproducibility and Quality of Fit
Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes. Purpose To assess the reproducibil...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 53; no. 4; pp. 1175 - 1187 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes.
Purpose
To assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values.
Study Type
Retrospective.
Subjects and Phantoms
In all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms.
Field Strength/Sequence
Diffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only.
Assessment
From HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs).
Statistical Tests
DKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.
Results
Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).
Data Conclusion
The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes. |
---|---|
AbstractList | Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes.
To assess the reproducibility in whole-brain high-resolution DKI at varying b-values.
Retrospective.
In all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms.
Diffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only.
From HCP data with b-values = 1000, 2000, 3000 s/mm
(dataset A), two additional datasets with b-values = 1000, 3000 s/mm
(dataset B) and b-values = 1000, 2000 s/mm
(dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs).
DKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.
Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).
The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes. BackgroundDiffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes.PurposeTo assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values.Study TypeRetrospective.Subjects and PhantomsIn all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms.Field Strength/SequenceDiffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only.AssessmentFrom HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs).Statistical TestsDKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.ResultsDatasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).Data ConclusionThe study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes. Background Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b‐values. Evaluation of DKI reproducibility is important for clinical purposes. Purpose To assess the reproducibility in whole‐brain high‐resolution DKI at varying b‐values. Study Type Retrospective. Subjects and Phantoms In all, 44 individuals from the test–retest Human Connectome Project (HCP) database and 12 3D‐printed phantoms. Field Strength/Sequence Diffusion‐weighted multiband echo‐planar imaging sequence at 3T and 9.4T. magnetization‐prepared rapid acquisition gradient echo at 3T for in vivo structural data only. Assessment From HCP data with b‐values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b‐values = 1000, 3000 s/mm2 (dataset B) and b‐values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole‐brain and regions of interest (ROIs). Statistical Tests DKI reproducibility was assessed using the within‐subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison. Results Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole‐brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05). Data Conclusion The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes. Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes.BACKGROUNDDiffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes.To assess the reproducibility in whole-brain high-resolution DKI at varying b-values.PURPOSETo assess the reproducibility in whole-brain high-resolution DKI at varying b-values.Retrospective.STUDY TYPERetrospective.In all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms.SUBJECTS AND PHANTOMSIn all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms.Diffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only.FIELD STRENGTH/SEQUENCEDiffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only.From HCP data with b-values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b-values = 1000, 3000 s/mm2 (dataset B) and b-values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs).ASSESSMENTFrom HCP data with b-values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b-values = 1000, 3000 s/mm2 (dataset B) and b-values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs).DKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.STATISTICAL TESTSDKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison.Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).RESULTSDatasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05).The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.DATA CONCLUSIONThe study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes. |
Author | Haast, Roy A.M. Kuehn, Tristan K. Kasa, Loxlan W. Baron, Corey A. Mushtaha, Farah N. Khan, Ali R. Peters, Terry |
Author_xml | – sequence: 1 givenname: Loxlan W. orcidid: 0000-0001-6874-6157 surname: Kasa fullname: Kasa, Loxlan W. organization: Western University – sequence: 2 givenname: Roy A.M. surname: Haast fullname: Haast, Roy A.M. organization: Robarts Research Institute, Western University – sequence: 3 givenname: Tristan K. surname: Kuehn fullname: Kuehn, Tristan K. organization: Robarts Research Institute, Western University – sequence: 4 givenname: Farah N. surname: Mushtaha fullname: Mushtaha, Farah N. organization: Robarts Research Institute, Western University – sequence: 5 givenname: Corey A. orcidid: 0000-0001-7343-5580 surname: Baron fullname: Baron, Corey A. organization: Western University – sequence: 6 givenname: Terry surname: Peters fullname: Peters, Terry organization: Western University – sequence: 7 givenname: Ali R. surname: Khan fullname: Khan, Ali R. email: alik@robarts.ca organization: Western University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33098227$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOHDEQRS1ExCvZ8AGRpWyiSA1-TnvYIQJhAlEUAmvL7bYnHrnbEz8Szd_HzcAGoazqlnRuqaruIdgdw2gAOMboBCNETldDdCekZUjsgAPMCWkIF7PdqhGnDRao3QeHKa0QQvM543tgn1I0F4S0B2B5-Uf5orIbl_DaLX_Bn-vaKA_vTAq-ZBdG-NlZW9KkbkrMIbkEF4NaThaVIb0_q_A6hr5o1znv8gaqsYc_inrUwcIrl9-CN1b5ZN491SPwcHV5f3Hd3H7_srg4v2005a1oDFG8ox1uNetYK7jtDDNdz61WoqP1WKqwRhqxmdHEKmIEQ0T0ylLOe8sFPQIft3PrQr-LSVkOLmnjvRpNKEkSxhnGM8pYRT-8QFehxLFuJwlHWMzmiOFKvX-iSjeYXq6jG1TcyOcXVgBtAR1DStFYqV1W0-NyVM5LjOSUkpxSko8pVcunF5bnqa_CeAv_dd5s_kPKr9_uFlvPPzktomM |
CitedBy_id | crossref_primary_10_1016_j_nicl_2022_103201 crossref_primary_10_1002_nbm_5141 crossref_primary_10_1259_bjr_20220644 crossref_primary_10_1002_nbm_4856 crossref_primary_10_61186_ijrr_22_2_339 crossref_primary_10_1002_mrm_29420 crossref_primary_10_1371_journal_pone_0255711 crossref_primary_10_1002_jmri_29192 |
Cites_doi | 10.1006/jmrb.1994.1037 10.1007/s12194-013-0206-5 10.1002/nbm.3777 10.1016/j.neuroimage.2013.05.057 10.1002/nbm.1020 10.1016/j.neuroimage.2013.04.127 10.1002/mrm.20508 10.1002/jmri.24985 10.1002/nbm.1506 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1101/2020.07.02.185397 10.3389/fnana.2017.00119 10.1089/brain.2014.0305 10.1038/s41598-017-11747-3 10.1523/JNEUROSCI.17-18-07079.1997 10.1002/nbm.1518 10.3174/ajnr.A4185 10.1002/mrm.22924 10.2214/AJR.13.11365 10.1016/j.neuroimage.2016.07.038 10.1038/nrclinonc.2016.162 10.1038/nn.4478 10.1038/nrn3900 10.1002/jmri.23840 10.1016/j.neuroimage.2005.06.058 10.1016/j.brainresbull.2018.01.015 10.3389/fneur.2017.00118 10.1002/nbm.787 10.1016/j.arr.2016.01.002 10.1002/mrm.22786 10.1161/STROKEAHA.112.657742 10.1002/mrm.1910360612 10.1089/neu.2011.1763 10.1016/j.neuroimage.2007.12.035 10.1196/annals.1444.017 10.3389/fnsys.2017.00046 10.1016/j.neuroimage.2018.02.017 10.1002/nbm.778 10.1016/j.nicl.2020.102168 10.1002/nbm.3017 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. 2021 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. – notice: 2021 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.27408 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1187 |
ExternalDocumentID | 33098227 10_1002_jmri_27408 JMRI27408 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canada Research Chairs Program funderid: 950‐231964 – fundername: Canadian Institutes of Health Research Foundation funderid: 201409 – fundername: The Canada First Research Excellence Fund – fundername: BrainsCAN – fundername: NSERC Discovery funderid: RGPIN‐2015‐06639 – fundername: Fondation Brain Canada – fundername: Canadian Institutes of Health Research Foundation grantid: 201409 – fundername: Canada Research Chairs Program grantid: 950-231964 – fundername: NSERC Discovery grantid: RGPIN-2015-06639 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3578-e2a5b3b17c4b4785fbe4ebd5fca8b30023a1c0c046ec2fa2e84028daf355df583 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 04:16:36 EDT 2025 Fri Jul 25 10:23:08 EDT 2025 Wed Feb 19 02:29:02 EST 2025 Tue Jul 01 03:56:47 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Wed Jan 22 16:29:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | diffusion kurtosis imaging diffusion magnetic resonance imaging quality of fitting reproducibility |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3578-e2a5b3b17c4b4785fbe4ebd5fca8b30023a1c0c046ec2fa2e84028daf355df583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7343-5580 0000-0001-6874-6157 |
PMID | 33098227 |
PQID | 2501869041 |
PQPubID | 1006400 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2454116344 proquest_journals_2501869041 pubmed_primary_33098227 crossref_citationtrail_10_1002_jmri_27408 crossref_primary_10_1002_jmri_27408 wiley_primary_10_1002_jmri_27408_JMRI27408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 20 2002; 15 2015; 36 2017; 8 2013; 26 2018; 182 2015; 16 2016; 30 2006; 19 1996; 36 1999; 8 2005; 28 2013; 6 2016; 142 2010; 23 2017; 30 2008; 1142 2013; 37 2014; 4 1994; 103 2018; 139 2017; 14 2015; 42 2017; 11 2013; 80 2005; 53 2011; 66 2020; 26 1997; 17 2011; 65 2012; 29 2008; 40 2012; 43 2014; 202 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 33166017 - J Magn Reson Imaging. 2021 Apr;53(4):1188-1189 |
References_xml | – volume: 42 start-page: 1190 year: 2015 end-page: 1202 article-title: Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice publication-title: J Magn Reson Imaging – volume: 26 start-page: 1775 year: 2013 end-page: 1786 article-title: Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging publication-title: NMR Biomed – volume: 36 start-page: 719 year: 2015 end-page: 724 article-title: Altered microstructure in temporal lobe epilepsy: A diffusional kurtosis imaging study publication-title: AJNR Am J Neuroradiol – volume: 53 start-page: 1432 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: The quantification of non‐Gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 30 start-page: 25 year: 2016 end-page: 48 article-title: Brain atrophy in Alzheimer's disease and aging publication-title: Ageing Res Rev – volume: 15 start-page: 570 year: 2002 end-page: 577 article-title: Applications of diffusion‐weighted and diffusion tensor MRI to white matter diseases — A review publication-title: NMR Biomed – volume: 23 start-page: 836 year: 2010 end-page: 848 article-title: MR diffusion kurtosis imaging for neural tissue characterization publication-title: NMR Biomed – volume: 26 year: 2020 article-title: Reproducibility, reliability and variability of FA and MD in the older healthy population: A test‐retest multiparametric analysis publication-title: Neuroimage Clin – volume: 17 start-page: 7079 year: 1997 end-page: 7102 article-title: Structural and functional analyses of human cerebral cortex using a surface‐based atlas publication-title: J Neurosci – volume: 142 start-page: 522 year: 2016 end-page: 532 article-title: The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE) publication-title: Neuroimage – volume: 43 start-page: 2968 year: 2012 end-page: 2973 article-title: Stroke assessment with diffusional kurtosis imaging publication-title: Stroke – volume: 80 start-page: 125 year: 2013 end-page: 143 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage – volume: 182 start-page: 488 year: 2018 end-page: 499 article-title: Neurite imaging reveals microstructural variations in human cerebral cortical gray matter publication-title: Neuroimage – volume: 37 start-page: 365 year: 2013 end-page: 371 article-title: Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging publication-title: J Magn Reson Imaging – volume: 29 start-page: 2318 year: 2012 end-page: 2327 article-title: Thalamus and cognitive impairment in mild traumatic brain injury: A diffusional kurtosis imaging study publication-title: J Neurotrauma – volume: 202 start-page: W26 year: 2014 end-page: W33 article-title: Diffusion kurtosis imaging: An emerging technique for evaluating the microstructural environment of the brain publication-title: AJR Am J Roentgenol – volume: 66 start-page: 92 year: 2011 end-page: 101 article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling publication-title: Magn Reson Med – volume: 4 start-page: 718 year: 2014 end-page: 726 article-title: Investigating the capability to resolve complex white matter structures with high b‐value diffusion magnetic resonance imaging on the MGH‐USC Connectom scanner publication-title: Brain Connect – volume: 19 start-page: 236 year: 2006 end-page: 247 article-title: Three‐dimensional characterization of non‐Gaussian water diffusion in humans using diffusion kurtosis imaging publication-title: NMR Biomed – volume: 15 start-page: 516 year: 2002 end-page: 542 article-title: High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues — A technical review publication-title: NMR Biomed – volume: 30 year: 2017 article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b‐value selection publication-title: NMR Biomed – volume: 1142 start-page: 266 year: 2008 end-page: 309 article-title: Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates publication-title: Ann N Y Acad Sci – volume: 28 start-page: 635 year: 2005 end-page: 662 article-title: A population‐average, landmark‐ and surface‐based (PALS) atlas of human cerebral cortex publication-title: Neuroimage – volume: 6 start-page: 343 year: 2013 end-page: 348 article-title: Effects of diffusional kurtosis imaging parameters on diffusion quantification publication-title: Radiol Phys Technol – volume: 14 start-page: 169 year: 2017 end-page: 186 article-title: Imaging biomarker roadmap for cancer studies publication-title: Nat Rev Clin Oncol – volume: 139 start-page: 91 year: 2018 end-page: 98 article-title: Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders publication-title: Brain Res Bull – volume: 11 start-page: 46 year: 2017 article-title: Architecture of the entorhinal cortex: A review of entorhinal anatomy in rodents with some comparative notes publication-title: Front Syst Neurosci – volume: 65 start-page: 1532 year: 2011 end-page: 1556 article-title: Diffusion tensor imaging and beyond publication-title: Magn Reson Med – volume: 103 start-page: 247 year: 1994 end-page: 254 article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo publication-title: J Magn Reson B – volume: 7 year: 2017 article-title: Test‐retest reliability of high spatial resolution diffusion tensor and diffusion kurtosis imaging publication-title: Sci Rep – volume: 8 start-page: 272 year: 1999 end-page: 284 article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp – volume: 40 start-page: 570 year: 2008 end-page: 582 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage – volume: 11 start-page: 119 year: 2017 article-title: The superior fronto‐occipital fasciculus in the human brain revealed by diffusion spectrum imaging tractography: An anatomical reality or a methodological artifact? publication-title: Front Neuroanat – volume: 36 start-page: 893 year: 1996 end-page: 906 article-title: Toward a quantitative assessment of diffusion anisotropy publication-title: Magn Reson Med – volume: 23 start-page: 698 year: 2010 end-page: 710 article-title: MRI quantification of non‐Gaussian water diffusion by kurtosis analysis publication-title: NMR Biomed – volume: 16 start-page: 147 year: 2015 end-page: 158 article-title: Exploring the origins of grey matter damage in multiple sclerosis publication-title: Nat Rev Neurosci – volume: 20 start-page: 365 year: 2017 end-page: 377 article-title: Building better biomarkers: Brain models in translational neuroimaging publication-title: Nat Neurosci – volume: 8 start-page: 118 year: 2017 article-title: Empirical comparison of diffusion kurtosis imaging and diffusion basis spectrum imaging using the same acquisition in healthy young adults publication-title: Front Neurol – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – ident: e_1_2_6_2_1 doi: 10.1006/jmrb.1994.1037 – ident: e_1_2_6_36_1 doi: 10.1007/s12194-013-0206-5 – ident: e_1_2_6_17_1 doi: 10.1002/nbm.3777 – ident: e_1_2_6_21_1 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_2_6_37_1 doi: 10.1002/nbm.1020 – ident: e_1_2_6_22_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.20508 – ident: e_1_2_6_12_1 doi: 10.1002/jmri.24985 – ident: e_1_2_6_7_1 doi: 10.1002/nbm.1506 – ident: e_1_2_6_26_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: e_1_2_6_23_1 doi: 10.1101/2020.07.02.185397 – ident: e_1_2_6_29_1 doi: 10.3389/fnana.2017.00119 – ident: e_1_2_6_15_1 doi: 10.1089/brain.2014.0305 – ident: e_1_2_6_18_1 doi: 10.1038/s41598-017-11747-3 – ident: e_1_2_6_34_1 doi: 10.1523/JNEUROSCI.17-18-07079.1997 – ident: e_1_2_6_35_1 doi: 10.1002/nbm.1518 – ident: e_1_2_6_11_1 doi: 10.3174/ajnr.A4185 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.22924 – ident: e_1_2_6_13_1 doi: 10.2214/AJR.13.11365 – ident: e_1_2_6_41_1 doi: 10.1016/j.neuroimage.2016.07.038 – ident: e_1_2_6_39_1 doi: 10.1038/nrclinonc.2016.162 – ident: e_1_2_6_38_1 doi: 10.1038/nn.4478 – ident: e_1_2_6_19_1 doi: 10.1038/nrn3900 – ident: e_1_2_6_31_1 doi: 10.1002/jmri.23840 – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroimage.2005.06.058 – ident: e_1_2_6_8_1 doi: 10.1016/j.brainresbull.2018.01.015 – ident: e_1_2_6_40_1 doi: 10.3389/fneur.2017.00118 – ident: e_1_2_6_3_1 doi: 10.1002/nbm.787 – ident: e_1_2_6_20_1 doi: 10.1016/j.arr.2016.01.002 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.22786 – ident: e_1_2_6_9_1 doi: 10.1161/STROKEAHA.112.657742 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.1910360612 – ident: e_1_2_6_10_1 doi: 10.1089/neu.2011.1763 – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroimage.2007.12.035 – ident: e_1_2_6_25_1 doi: 10.1196/annals.1444.017 – ident: e_1_2_6_32_1 doi: 10.3389/fnsys.2017.00046 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuroimage.2018.02.017 – ident: e_1_2_6_5_1 doi: 10.1002/nbm.778 – ident: e_1_2_6_30_1 doi: 10.1016/j.nicl.2020.102168 – ident: e_1_2_6_14_1 doi: 10.1002/nbm.3017 – reference: 33166017 - J Magn Reson Imaging. 2021 Apr;53(4):1188-1189 |
SSID | ssj0009945 |
Score | 2.3929012 |
Snippet | Background
Diffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting... Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and... BackgroundDiffusion kurtosis imaging (DKI) quantifies the non‐Gaussian diffusion of water within tissue microstructure. However, it has increased fitting... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1175 |
SubjectTerms | Adult Brain Brain - diagnostic imaging Coefficient of variation Datasets Diffusion diffusion kurtosis imaging diffusion magnetic resonance imaging Diffusion Tensor Imaging - methods Echo-Planar Imaging Evaluation Female Fiber orientation Field strength Humans Image Processing, Computer-Assisted - methods Imaging In vivo methods and tests Kurtosis Magnetic resonance imaging Male Microstructure Neuroimaging Parameters Phantoms, Imaging quality of fitting Reproducibility Reproducibility of Results Retrospective Studies Spatial discrimination Spatial resolution Statistical analysis Statistical tests Substantia alba Substantia grisea Three dimensional printing Variance analysis Young Adult |
Title | Evaluating High Spatial Resolution Diffusion Kurtosis Imaging at 3T: Reproducibility and Quality of Fit |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27408 https://www.ncbi.nlm.nih.gov/pubmed/33098227 https://www.proquest.com/docview/2501869041 https://www.proquest.com/docview/2454116344 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuvB-BgozgAlK2iR_rBHFB0FVbVA5VK_WCIj-rBZqtdpND-fV47GxWBYQEp0TKRI7tmfiz_fkbgFe1Y5W0UuWWMpVzUZV5ra3JHWNTL6Sx4YJsi8_T_VN-eCbOtuDd-ixM0ocYF9wwMuL_GgNc6dXuRjT068VyPglzqnjSF8laiIiON9pRdR0zFAf8wPKyKuSoTUp3N69eH41-g5jXEWsccma34cv6YxPT5Nuk7_TE_PhFx_F_a3MHbg1YlLxPznMXtlx7D24cDbvt9-F8b5ACb88J8kEI5i8O_kpwzT95LPk4977HFTfyqV92i9V8RQ4uYuYjojrCTt4G48uoKptouFdEtZYk5Y4rsvBkNu8ewOls7-TDfj4kZsgNiuPkjiqhmS6l4ZrLSnjtuNNWeKMqzRAGqNIUJky9naFeURdmkbSyygdwY72o2EPYbhetewzEME2Z11RQjVjOKyNLIZWubaGoNkUGr9cd1JhBtRyTZ3xvkt4ybbDlmthyGbwcbS-TVscfrXbW_dwM8bpqKOoaTuuClxm8GB-HSMPtE9W6RR9suOBlgK-cZ_Ao-cdYDGMFCiHKDN7EXv5L-c3h0fFBvHvyL8ZP4SZFOk0kDe3Adrfs3bOAhzr9PPr9T1u0BzA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKwGX8obQAkZwASnbxI91wg1BV7ttt4dqK_UW-VkttNlqNzm0v74eO82qgJDglEiZyIpnJv5mPP4GoY-lpYUwQqaGUJkyXuRpqYxOLaVDx4U2_gLVFkfD8QnbP-WnXW0OnIWJ_BB9wg08I_yvwcEhIb27Zg39cbGcD3xQBUd9N6Gld4iojtfsUWUZehR7BEHTvMhEz05Kdtfv3l2PfgOZdzFrWHRGj2Jn1VXgKoRak5-DtlEDff0Lk-N_f89jtNXBUfw12s8TdM_WT9H9abfh_gyd7XVs4PUZhpIQDC2MvcliSPtHo8Xf5861kHTDB-2yWazmKzy5CM2PsGwwnX3xwpeBWDZW4l5hWRscyTuu8MLh0bx5jk5Ge7Nv47TrzZBq4MdJLZFcUZULzRQTBXfKMqsMd1oWigISkLnOtI--rSZOEusDSVIY6Ty-MY4X9AXaqBe1fYWwpopQpwgnCuCck1rkXEhVmkwSpbMEfbrVUKU74nLon3FeRcplUsHMVWHmEvShl72MdB1_lNq5VXTVueyqIkBtOCwzlifoff_YOxvsoMjaLlovwzjLPYJlLEEvo4H0w1CaAReiSNDnoOa_jF_tT48n4e71vwi_Qw_Gs-lhdTg5OthGDwlU14Qaoh200Sxb-8bDo0a9DU5wA73WC0s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9RAFIcPpULxxfslteqIvihkm8xlJxFfxO3SbW2R0kJfJMy1rLbZZTd5qH-9c8lmqYqgTwnkhEky5yS_mZz5DsCb0pCCay5SjYlIKSvytJRapYaQoWVcabfx2RbHw_0zenDOzjfgw2otTORD9BNuPjLC-9oH-Fzb3TU09NvVYjpwYyq_0vcWHWaF9-nRyRoeVZahRLETECTNi4z3cFK8uz735ufoN415U7KGb874LnxdXW1MNfk-aBs5UD9-ATn-7-3cgzudGEUfo_fchw1TP4Cto-53-0O42OtY4PUF8gkhyBcwdg6L_KR_dFk0mlrb-ik3dNgumtlyukSTq1D6CIkGkdP3zngesLIxD_caiVqjiO64RjOLxtPmEZyN904_7addZYZUeTpOarBgksicKyopL5iVhhqpmVWikMTrAJGrTLmxt1HYCmzcMBIXWlinbrRlBXkMm_WsNk8BKSIxsRIzLL2Ys0LxnHEhS50JLFWWwNtVB1Wqw5b76hmXVQQu48o_uSo8uQRe97bzCOv4o9XOqp-rLmCXFfZgw2GZ0TyBV_1hF2r-_4mozax1NpTR3OlXShN4Ev2jb4aQzJMQeQLvQi__pf3q4OhkEva2_8X4JWx9GY2rz5Pjw2dwG_vUmpBAtAObzaI1z502auSLEAI_AbW2CgM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+High+Spatial+Resolution+Diffusion+Kurtosis+Imaging+at+3T%3A+Reproducibility+and+Quality+of+Fit&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Kasa%2C+Loxlan+W.&rft.au=Haast%2C+Roy+A.M.&rft.au=Kuehn%2C+Tristan+K.&rft.au=Mushtaha%2C+Farah+N.&rft.date=2021-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=4&rft.spage=1175&rft.epage=1187&rft_id=info:doi/10.1002%2Fjmri.27408&rft.externalDBID=10.1002%252Fjmri.27408&rft.externalDocID=JMRI27408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |