Boosting Photocatalytic Upcycling of Liquid Biomass into Biodiesel via Microenvironment Modulation
The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly ef...
Saved in:
Published in | Advanced energy materials Vol. 15; no. 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202403168 |
Cover
Loading…
Abstract | The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly efficient ternary biocompatible montmorillonite (Mt) nanocomposites of S‐scheme heterojunction photocatalysts (g‐C3N4‐TiO2@Mt, CTM) are successfully rationally designed. By modulating the microenvironment in photocatalytic biodiesel production, CTM‐2 demonstrates exceptional catalytic performance and stability, achieving a record‐breaking biodiesel yield of 98.5%. Through ex/in situ X‐ray photoelectron spectroscopy (XPS), X‐ray absorption near‐edge spectroscopy (XANES), and theoretical calculations, the formation of S‐scheme heterojunction is revealed, which can generate an interface electric field (IEF) that provides an intrinsic driving force for carrier migration and enhances surface positivity. This boosts the enrichment effect of electronegative oleic acid (OA) carboxyl molecules, thus greatly enriching the substrate concentration and improving the reaction microenvironment. Moreover, in situ fourier transform infrared spectrometer (FT‐IR)/Raman together with electron paramagnetic resonance (EPR) further confirm the formation of key intermediates CH3O• and ester carbonyl (C═O), and DFT calculations provide a key reference for the photocatalytic reaction pathway, of which CTM‐2 is determined to be capable of significantly reducing the energy barrier of rate‐determining step.
This work successfully fabricates a highly efficient ternary S‐scheme heterojunction photocatalyst by sol‐gel method and g‐C3N4 self‐assembly. Benefiting from enhanced substrate enrichment, effective visible light response, and unique S‐scheme charge transfer mode endowed by the synergistic effect of ternary components, as‐fabricated CTM‐2 can improve the reaction microenvironment and exhibit outstanding photocatalytic performance in liquid biomass upcycling into biofuel. |
---|---|
AbstractList | The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly efficient ternary biocompatible montmorillonite (Mt) nanocomposites of S‐scheme heterojunction photocatalysts (g‐C3N4‐TiO2@Mt, CTM) are successfully rationally designed. By modulating the microenvironment in photocatalytic biodiesel production, CTM‐2 demonstrates exceptional catalytic performance and stability, achieving a record‐breaking biodiesel yield of 98.5%. Through ex/in situ X‐ray photoelectron spectroscopy (XPS), X‐ray absorption near‐edge spectroscopy (XANES), and theoretical calculations, the formation of S‐scheme heterojunction is revealed, which can generate an interface electric field (IEF) that provides an intrinsic driving force for carrier migration and enhances surface positivity. This boosts the enrichment effect of electronegative oleic acid (OA) carboxyl molecules, thus greatly enriching the substrate concentration and improving the reaction microenvironment. Moreover, in situ fourier transform infrared spectrometer (FT‐IR)/Raman together with electron paramagnetic resonance (EPR) further confirm the formation of key intermediates CH3O• and ester carbonyl (C═O), and DFT calculations provide a key reference for the photocatalytic reaction pathway, of which CTM‐2 is determined to be capable of significantly reducing the energy barrier of rate‐determining step.
This work successfully fabricates a highly efficient ternary S‐scheme heterojunction photocatalyst by sol‐gel method and g‐C3N4 self‐assembly. Benefiting from enhanced substrate enrichment, effective visible light response, and unique S‐scheme charge transfer mode endowed by the synergistic effect of ternary components, as‐fabricated CTM‐2 can improve the reaction microenvironment and exhibit outstanding photocatalytic performance in liquid biomass upcycling into biofuel. |
Author | Zhang, Li‐Long Ma, Tianyi Tang, Bing Li, Hui He, Lijuan Zhou, Heng Zhang, Heng Nie, Yingxia Wang, Hao |
Author_xml | – sequence: 1 givenname: Lijuan surname: He fullname: He, Lijuan organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 2 givenname: Li‐Long surname: Zhang fullname: Zhang, Li‐Long organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 3 givenname: Heng surname: Zhou fullname: Zhou, Heng organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 4 givenname: Yingxia surname: Nie fullname: Nie, Yingxia organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 5 givenname: Hao surname: Wang fullname: Wang, Hao organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 6 givenname: Bing surname: Tang fullname: Tang, Bing email: tb2020@mail.ustc.edu.cn organization: University of Science and Technology of China – sequence: 7 givenname: Hui surname: Li fullname: Li, Hui organization: RMIT University – sequence: 8 givenname: Tianyi orcidid: 0000-0002-1042-8700 surname: Ma fullname: Ma, Tianyi email: tianyi.ma@rmit.edu.au organization: RMIT University – sequence: 9 givenname: Heng orcidid: 0000-0001-8436-5549 surname: Zhang fullname: Zhang, Heng email: hzhang23@gzu.edu.cn organization: Center for R&D of Fine Chemicals of Guizhou University |
BookMark | eNo9kM1OwzAQhC1UJErplbNfIMU_ceIc26pQpBY40HPkOGswSuwSu0V5exqBspeZ0Ugj7XeLJs47QOiekgUlhD0ocO2CEZYSTjN5haY0o2mSyZRMRs_ZDZqH8EUulxaUcD5F1cr7EK37wG-fPnqtomr6aDU-HHWvm6HwBu_s98nWeGV9q0LA1kU_hNpCgAafrcJ7qzsP7mw771pwEe99fWpUtN7doWujmgDzf52hw-Pmfb1Ndq9Pz-vlLtFc5DJRQEWRscpURtQAeU6kKICZmksltaB1TkShq5QwSmUmL07nl1-VIbzKwQg-Q8Xf7o9toC-PnW1V15eUlAOhciBUjoTK5eZlPyb-CzueYF0 |
CitedBy_id | crossref_primary_10_3390_catal15010019 crossref_primary_10_1007_s13399_025_06501_z crossref_primary_10_1002_slct_202404553 crossref_primary_10_1021_acs_iecr_4c02765 crossref_primary_10_1039_D4CY01247J crossref_primary_10_1021_acs_jafc_4c12952 crossref_primary_10_1002_ppsc_202500015 crossref_primary_10_1016_j_ijbiomac_2024_139295 crossref_primary_10_1016_j_nanoso_2024_101371 crossref_primary_10_1016_j_renene_2024_121939 crossref_primary_10_1021_acssuschemeng_4c08820 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH |
DBID | 24P |
DOI | 10.1002/aenm.202403168 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202403168 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2022YFD1700300 – fundername: Australian Government through the Cooperative Research Centres Projects funderid: CRCPXIII000077 – fundername: Guizhou Provincial Basic Research Program funderid: NaturalScience,ZK[2022]141 – fundername: Industrial Transformation Research Hub funderid: IH240100009 – fundername: Australian Renewable Energy Agency (ARENA) as part of ARENA's Transformative Research Accelerating Commercialisation Program (TM021) – fundername: National Natural Science Foundation of China funderid: 32302418 – fundername: Central Government Guides Local Science and Technology Development Fund Projects funderid: Qiankehezhongyindi(2024)007 – fundername: Discovery Project funderid: DP220100603,LinkageProject; LP210200504,LP220100088,LP230200897 – fundername: Australian Research Council (ARC) through Future Fellowship funderid: FT210100298 – fundername: Guizhou Provincial Key Technology R&D Program funderid: ZC[2023]330 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- |
ID | FETCH-LOGICAL-c3578-ae15962bfbf5dee770859e2fd38a8c51d7059cb40211868cb4c7316af03b7ef53 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Wed Jun 11 08:26:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3578-ae15962bfbf5dee770859e2fd38a8c51d7059cb40211868cb4c7316af03b7ef53 |
ORCID | 0000-0002-1042-8700 0000-0001-8436-5549 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202403168 |
PageCount | 14 |
ParticipantIDs | wiley_primary_10_1002_aenm_202403168_AENM202403168 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advanced energy materials |
PublicationYear | 2025 |
References | 2022; 650 2018; 282 2024; 227 2021; 125 2023; 145 2019; 12 2013; 129 2021; 207 2024; 309 2023; 425 2016; 30 2020; 12 2024; 146 2024; 344 2024; 34 2023; 3 2024; 36 2019; 240 2023; 21 2020; 5 2023; 292 2023; 25 2020; 3 2018; 1 2023; 250 2022; 34 2023; 259 2024; 63 2024; 351 2021; 273 2024; 630 2023; 855 2019; 471 2020; 818 2017; 203 2023; 10 2018; 220 2021; 6 2015; 17 2023; 14 2022; 191 2019; 33 2020; 384 2019; 78 2021; 229 2020; 268 2024; 14 2024; 15 2024; 16 2022; 315 2024; 17 2014; 115 2014; 43 2021; 14 2021; 11 2021; 55 2022; 6 2022; 12 2020; 27 2021; 170 2023; 638 2024; 453 2022; 2 2020; 278 2022; 304 2013; 142–143 |
References_xml | – volume: 17 start-page: 4725 year: 2024 publication-title: Energy Environ. Sci. – volume: 3 start-page: 781 year: 2023 publication-title: SusMat – volume: 12 start-page: 1919 year: 2022 publication-title: ACS Catal. – volume: 21 start-page: 3105 year: 2023 publication-title: Environ. Chem. Lett. – volume: 27 start-page: 198 year: 2020 publication-title: Mater. Today: Proc – volume: 309 year: 2024 publication-title: Energy Convers. Manage. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 259 year: 2023 publication-title: Composites, Part B – volume: 17 start-page: 497 year: 2024 publication-title: Energy Environ. Sci. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 78 start-page: 1 year: 2019 publication-title: J. Ind. Eng. Chem. – volume: 278 year: 2020 publication-title: Appl. Catal., B – volume: 170 start-page: 1 year: 2021 publication-title: Renew. Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 43 start-page: 7887 year: 2014 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 6733 year: 2023 publication-title: Nat. Commun. – volume: 115 start-page: 118 year: 2014 publication-title: Fuel – volume: 453 year: 2024 publication-title: J. Cleaner Prod. – volume: 6 start-page: 823 year: 2022 publication-title: Nat. Rev. Chem. – volume: 344 year: 2024 publication-title: Appl. Catal., B – volume: 1 start-page: 269 year: 2018 publication-title: Adv. Compos. Hybrid Mater. – volume: 818 year: 2020 publication-title: J. Alloys Compd. – volume: 2 start-page: 262 year: 2022 publication-title: Chem. Catal. – volume: 471 start-page: 1053 year: 2019 publication-title: Appl. Surf. Sci. – volume: 273 year: 2021 publication-title: Chemosphere – volume: 17 start-page: 2260 year: 2024 publication-title: Energy Environ. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 17 start-page: 2455 year: 2015 publication-title: Green Chem. – volume: 304 year: 2022 publication-title: Chemosphere – volume: 6 year: 2021 publication-title: ChemistrySelect – volume: 207 year: 2021 publication-title: Appl. Clay Sci. – volume: 220 start-page: 272 year: 2018 publication-title: Appl. Catal., B – volume: 203 start-page: 43 year: 2017 publication-title: Appl. Catal., B – volume: 30 start-page: 4790 year: 2016 publication-title: Energy Fuels – volume: 15 start-page: 3172 year: 2024 publication-title: Nat. Commun. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 240 start-page: 241 year: 2019 publication-title: Appl. Catal., B – volume: 855 year: 2023 publication-title: Sci. Total Environ. – volume: 16 start-page: 5487 year: 2024 publication-title: Nanoscale – volume: 630 start-page: 381 year: 2024 publication-title: Nature – volume: 55 start-page: 154 year: 2021 publication-title: J. Energy Chem. – volume: 12 start-page: 1265 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 start-page: 9872 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 9245 year: 2020 publication-title: ChemistrySelect – volume: 129 start-page: 39 year: 2013 publication-title: Appl. Catal., B – volume: 191 start-page: 405 year: 2022 publication-title: Renew. Energy – volume: 146 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 268 year: 2020 publication-title: J. Cleaner Prod. – volume: 425 year: 2023 publication-title: J. Cleaner Prod. – volume: 250 year: 2023 publication-title: Fuel Process. Technol. – volume: 351 year: 2024 publication-title: Appl. Catal., B – volume: 33 start-page: 3322 year: 2019 publication-title: Energy Fuels – volume: 227 year: 2024 publication-title: Renew. Energy – volume: 282 start-page: 767 year: 2018 publication-title: Electrochim. Acta – volume: 14 year: 2021 publication-title: Arabian J. Chem. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 3 start-page: 921 year: 2020 publication-title: Nat. Catal. – volume: 315 year: 2022 publication-title: Fuel – volume: 142–143 start-page: 512 year: 2013 publication-title: Appl. Catal., B – volume: 229 year: 2021 publication-title: Energy Convers. Manage. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 125 start-page: 4846 year: 2021 publication-title: J. Phys. Chem. C – volume: 10 year: 2023 publication-title: Natl. Sci. Rev. – volume: 292 year: 2023 publication-title: Energy Convers. Manage. – volume: 638 start-page: 63 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 650 year: 2022 publication-title: J. Membr. Sci. – volume: 25 start-page: 7410 year: 2023 publication-title: Green Chem. |
SSID | ssj0000491033 |
Score | 2.5876844 |
Snippet | The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | biodiesel liquid biomass microenvironment montmorillonite photocatalysis S‐scheme heterojunction |
Title | Boosting Photocatalytic Upcycling of Liquid Biomass into Biodiesel via Microenvironment Modulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202403168 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagLDAgTnHLA6vVHI5jxha1QohUHajULcqLbYiE4kJTpP57_JxS2pUtlmIPz9fz03cQci8DJYIHnTJIVcF4KoDJGALGpQp5KVQpPRgzG4mnCX-eJtMNFn-rD7EuuOHO8Oc1bvAC5t0_0dBC18gkRz25UMhdsof8WlzpER-vqywu_w0D7yfvMhvOhFu_v8qNQdTdHmI7PfX3y_CIHK4SQ9prZ_KY7Oj6hBxsyAWeEuhbO0eYMh2_28b6ysvS_U4ns3KJFMc3ag19qT4XlaL9CpE_c1rVjcUGogX1B_2uCpohCG-D4UYzq1YuXmdkMhy8Pj6xlUcCK1GnhhU6RP8cMGASpXWaomCZjoyKZSHLJFSpy59KcK_EEIXx3VeJXlWFCWJItUnic9Kpba0vCE24gMSFCb3SORgt3ZksYhNHAUiAxFySyMcnn7U6GHmreBzlGMZ8Hca8Nxhl69bVfzpdk_0IbXY9OPqGdJqvhb51d38Dd356fwD8m6hG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgDMCA-BTfeGCNmjiObcYWtSrQVB1aiS2KYxsioaTQFKn_Hp_ThrKy2ZKT4exzXk7v3kPoXviK-Q-ae5Kr1KOcSU-E0veoUAHNmMqEI2PGIzaY0ufXaM0mhF6YWh-iKbhBZrj7GhIcCtLtX9XQVBfQSg6CcgET22iHMsLBvYHQcVNmsQA48J2hvIU21GP2AK-lG33S_vuKv_jUfWD6h-hghQxxp97KI7Sli2O0v6EXeIJktyznwFPG4_eyKl3pZWmX4-ksW0KP4xsuDR7mn4tc4W4O1J85zouqhAnQBfUH_s5THAMLb6PFDcelWtl4naJpvzd5HHgrkwQvA6EaL9UBGOhII02ktOYcFMs0MSoUqciiQHELoDJpfxMDUMa3owzMqlLjh5JrE4VnqFWUhT5HOKJMRjZMYJZOpdHCXsosNCHxpZAyMheIuPgks1oII6klj0kCYUyaMCad3ihuZpf_eegO7Q4m8TAZPo1ertAeAc9dx5S-Rq3qa6FvLBCo5K3b6h8sQKuy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgSAgGxFO88cBqNQ_HMWMLrQo0VQcqdYvi2IZIKC40Rerf4-uUUFa2WIo9XL9Obs49B6Fb7knm3amYiFhmhMZMEB4Kj1AufZozmXNHxkxGbDChT9NoulbFX-tDNAk32BnuvIYNPpO6_SsamqkSKslBT85nfBNtwR8_WOMBHTdZFot_fc_5yVtkQwmz6_dHudEL2n-H-AtP3f3S30d7K2CIO_VMHqANVR6i3TW5wCMkusbMgaaMx2-mMi7zsrSv48ksX0KJ4ys2Gg-Lj0UhcbcA5s8cF2VloAFsQfWOv4oMJ0DCW6tww4mRKxevYzTp917uB2TlkUBy0KkhmfLBP0dooSOpVByDYJkKtAx5xvPIl7HFT7mwX4k-COPbpxy8qjLthSJWOgpPUKs0pTpFOKJMRDZM4JVOhVbcnsks1GHgCS5EpM9Q4OKTzmodjLRWPA5SCGPahDHt9EZJ0zr_T6cbtD1-6KfDx9HzBdoJwHHX8aQvUav6XKgrCwMqce1m-htyIqrk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Photocatalytic+Upcycling+of+Liquid+Biomass+into+Biodiesel+via+Microenvironment+Modulation&rft.jtitle=Advanced+energy+materials&rft.au=He%2C+Lijuan&rft.au=Zhang%2C+Li%E2%80%90Long&rft.au=Zhou%2C+Heng&rft.au=Nie%2C+Yingxia&rft.date=2025-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=15&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202403168&rft.externalDBID=10.1002%252Faenm.202403168&rft.externalDocID=AENM202403168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |