Boosting Photocatalytic Upcycling of Liquid Biomass into Biodiesel via Microenvironment Modulation

The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly ef...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 15; no. 5
Main Authors He, Lijuan, Zhang, Li‐Long, Zhou, Heng, Nie, Yingxia, Wang, Hao, Tang, Bing, Li, Hui, Ma, Tianyi, Zhang, Heng
Format Journal Article
LanguageEnglish
Published 01.02.2025
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202403168

Cover

Loading…
Abstract The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly efficient ternary biocompatible montmorillonite (Mt) nanocomposites of S‐scheme heterojunction photocatalysts (g‐C3N4‐TiO2@Mt, CTM) are successfully rationally designed. By modulating the microenvironment in photocatalytic biodiesel production, CTM‐2 demonstrates exceptional catalytic performance and stability, achieving a record‐breaking biodiesel yield of 98.5%. Through ex/in situ X‐ray photoelectron spectroscopy (XPS), X‐ray absorption near‐edge spectroscopy (XANES), and theoretical calculations, the formation of S‐scheme heterojunction is revealed, which can generate an interface electric field (IEF) that provides an intrinsic driving force for carrier migration and enhances surface positivity. This boosts the enrichment effect of electronegative oleic acid (OA) carboxyl molecules, thus greatly enriching the substrate concentration and improving the reaction microenvironment. Moreover, in situ fourier transform infrared spectrometer (FT‐IR)/Raman together with electron paramagnetic resonance (EPR) further confirm the formation of key intermediates CH3O• and ester carbonyl (C═O), and DFT calculations provide a key reference for the photocatalytic reaction pathway, of which CTM‐2 is determined to be capable of significantly reducing the energy barrier of rate‐determining step. This work successfully fabricates a highly efficient ternary S‐scheme heterojunction photocatalyst by sol‐gel method and g‐C3N4 self‐assembly. Benefiting from enhanced substrate enrichment, effective visible light response, and unique S‐scheme charge transfer mode endowed by the synergistic effect of ternary components, as‐fabricated CTM‐2 can improve the reaction microenvironment and exhibit outstanding photocatalytic performance in liquid biomass upcycling into biofuel.
AbstractList The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on photocatalytic biodiesel synthesis is not explored. Herein, based on the prediction of density functional theory (DFT) calculations, highly efficient ternary biocompatible montmorillonite (Mt) nanocomposites of S‐scheme heterojunction photocatalysts (g‐C3N4‐TiO2@Mt, CTM) are successfully rationally designed. By modulating the microenvironment in photocatalytic biodiesel production, CTM‐2 demonstrates exceptional catalytic performance and stability, achieving a record‐breaking biodiesel yield of 98.5%. Through ex/in situ X‐ray photoelectron spectroscopy (XPS), X‐ray absorption near‐edge spectroscopy (XANES), and theoretical calculations, the formation of S‐scheme heterojunction is revealed, which can generate an interface electric field (IEF) that provides an intrinsic driving force for carrier migration and enhances surface positivity. This boosts the enrichment effect of electronegative oleic acid (OA) carboxyl molecules, thus greatly enriching the substrate concentration and improving the reaction microenvironment. Moreover, in situ fourier transform infrared spectrometer (FT‐IR)/Raman together with electron paramagnetic resonance (EPR) further confirm the formation of key intermediates CH3O• and ester carbonyl (C═O), and DFT calculations provide a key reference for the photocatalytic reaction pathway, of which CTM‐2 is determined to be capable of significantly reducing the energy barrier of rate‐determining step. This work successfully fabricates a highly efficient ternary S‐scheme heterojunction photocatalyst by sol‐gel method and g‐C3N4 self‐assembly. Benefiting from enhanced substrate enrichment, effective visible light response, and unique S‐scheme charge transfer mode endowed by the synergistic effect of ternary components, as‐fabricated CTM‐2 can improve the reaction microenvironment and exhibit outstanding photocatalytic performance in liquid biomass upcycling into biofuel.
Author Zhang, Li‐Long
Ma, Tianyi
Tang, Bing
Li, Hui
He, Lijuan
Zhou, Heng
Zhang, Heng
Nie, Yingxia
Wang, Hao
Author_xml – sequence: 1
  givenname: Lijuan
  surname: He
  fullname: He, Lijuan
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 2
  givenname: Li‐Long
  surname: Zhang
  fullname: Zhang, Li‐Long
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 3
  givenname: Heng
  surname: Zhou
  fullname: Zhou, Heng
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 4
  givenname: Yingxia
  surname: Nie
  fullname: Nie, Yingxia
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 5
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 6
  givenname: Bing
  surname: Tang
  fullname: Tang, Bing
  email: tb2020@mail.ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: RMIT University
– sequence: 8
  givenname: Tianyi
  orcidid: 0000-0002-1042-8700
  surname: Ma
  fullname: Ma, Tianyi
  email: tianyi.ma@rmit.edu.au
  organization: RMIT University
– sequence: 9
  givenname: Heng
  orcidid: 0000-0001-8436-5549
  surname: Zhang
  fullname: Zhang, Heng
  email: hzhang23@gzu.edu.cn
  organization: Center for R&D of Fine Chemicals of Guizhou University
BookMark eNo9kM1OwzAQhC1UJErplbNfIMU_ceIc26pQpBY40HPkOGswSuwSu0V5exqBspeZ0Ugj7XeLJs47QOiekgUlhD0ocO2CEZYSTjN5haY0o2mSyZRMRs_ZDZqH8EUulxaUcD5F1cr7EK37wG-fPnqtomr6aDU-HHWvm6HwBu_s98nWeGV9q0LA1kU_hNpCgAafrcJ7qzsP7mw771pwEe99fWpUtN7doWujmgDzf52hw-Pmfb1Ndq9Pz-vlLtFc5DJRQEWRscpURtQAeU6kKICZmksltaB1TkShq5QwSmUmL07nl1-VIbzKwQg-Q8Xf7o9toC-PnW1V15eUlAOhciBUjoTK5eZlPyb-CzueYF0
CitedBy_id crossref_primary_10_3390_catal15010019
crossref_primary_10_1007_s13399_025_06501_z
crossref_primary_10_1002_slct_202404553
crossref_primary_10_1021_acs_iecr_4c02765
crossref_primary_10_1039_D4CY01247J
crossref_primary_10_1021_acs_jafc_4c12952
crossref_primary_10_1002_ppsc_202500015
crossref_primary_10_1016_j_ijbiomac_2024_139295
crossref_primary_10_1016_j_nanoso_2024_101371
crossref_primary_10_1016_j_renene_2024_121939
crossref_primary_10_1021_acssuschemeng_4c08820
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2024 The Author(s). Advanced Energy Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/aenm.202403168
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202403168
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2022YFD1700300
– fundername: Australian Government through the Cooperative Research Centres Projects
  funderid: CRCPXIII000077
– fundername: Guizhou Provincial Basic Research Program
  funderid: NaturalScience,ZK[2022]141
– fundername: Industrial Transformation Research Hub
  funderid: IH240100009
– fundername: Australian Renewable Energy Agency (ARENA) as part of ARENA's Transformative Research Accelerating Commercialisation Program (TM021)
– fundername: National Natural Science Foundation of China
  funderid: 32302418
– fundername: Central Government Guides Local Science and Technology Development Fund Projects
  funderid: Qiankehezhongyindi(2024)007
– fundername: Discovery Project
  funderid: DP220100603,LinkageProject; LP210200504,LP220100088,LP230200897
– fundername: Australian Research Council (ARC) through Future Fellowship
  funderid: FT210100298
– fundername: Guizhou Provincial Key Technology R&D Program
  funderid: ZC[2023]330
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
ID FETCH-LOGICAL-c3578-ae15962bfbf5dee770859e2fd38a8c51d7059cb40211868cb4c7316af03b7ef53
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Wed Jun 11 08:26:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-ae15962bfbf5dee770859e2fd38a8c51d7059cb40211868cb4c7316af03b7ef53
ORCID 0000-0002-1042-8700
0000-0001-8436-5549
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202403168
PageCount 14
ParticipantIDs wiley_primary_10_1002_aenm_202403168_AENM202403168
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2025
References 2022; 650
2018; 282
2024; 227
2021; 125
2023; 145
2019; 12
2013; 129
2021; 207
2024; 309
2023; 425
2016; 30
2020; 12
2024; 146
2024; 344
2024; 34
2023; 3
2024; 36
2019; 240
2023; 21
2020; 5
2023; 292
2023; 25
2020; 3
2018; 1
2023; 250
2022; 34
2023; 259
2024; 63
2024; 351
2021; 273
2024; 630
2023; 855
2019; 471
2020; 818
2017; 203
2023; 10
2018; 220
2021; 6
2015; 17
2023; 14
2022; 191
2019; 33
2020; 384
2019; 78
2021; 229
2020; 268
2024; 14
2024; 15
2024; 16
2022; 315
2024; 17
2014; 115
2014; 43
2021; 14
2021; 11
2021; 55
2022; 6
2022; 12
2020; 27
2021; 170
2023; 638
2024; 453
2022; 2
2020; 278
2022; 304
2013; 142–143
References_xml – volume: 17
  start-page: 4725
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 781
  year: 2023
  publication-title: SusMat
– volume: 12
  start-page: 1919
  year: 2022
  publication-title: ACS Catal.
– volume: 21
  start-page: 3105
  year: 2023
  publication-title: Environ. Chem. Lett.
– volume: 27
  start-page: 198
  year: 2020
  publication-title: Mater. Today: Proc
– volume: 309
  year: 2024
  publication-title: Energy Convers. Manage.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 259
  year: 2023
  publication-title: Composites, Part B
– volume: 17
  start-page: 497
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 78
  start-page: 1
  year: 2019
  publication-title: J. Ind. Eng. Chem.
– volume: 278
  year: 2020
  publication-title: Appl. Catal., B
– volume: 170
  start-page: 1
  year: 2021
  publication-title: Renew. Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 43
  start-page: 7887
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 6733
  year: 2023
  publication-title: Nat. Commun.
– volume: 115
  start-page: 118
  year: 2014
  publication-title: Fuel
– volume: 453
  year: 2024
  publication-title: J. Cleaner Prod.
– volume: 6
  start-page: 823
  year: 2022
  publication-title: Nat. Rev. Chem.
– volume: 344
  year: 2024
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 269
  year: 2018
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 818
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 262
  year: 2022
  publication-title: Chem. Catal.
– volume: 471
  start-page: 1053
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 273
  year: 2021
  publication-title: Chemosphere
– volume: 17
  start-page: 2260
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 2455
  year: 2015
  publication-title: Green Chem.
– volume: 304
  year: 2022
  publication-title: Chemosphere
– volume: 6
  year: 2021
  publication-title: ChemistrySelect
– volume: 207
  year: 2021
  publication-title: Appl. Clay Sci.
– volume: 220
  start-page: 272
  year: 2018
  publication-title: Appl. Catal., B
– volume: 203
  start-page: 43
  year: 2017
  publication-title: Appl. Catal., B
– volume: 30
  start-page: 4790
  year: 2016
  publication-title: Energy Fuels
– volume: 15
  start-page: 3172
  year: 2024
  publication-title: Nat. Commun.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 240
  start-page: 241
  year: 2019
  publication-title: Appl. Catal., B
– volume: 855
  year: 2023
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 5487
  year: 2024
  publication-title: Nanoscale
– volume: 630
  start-page: 381
  year: 2024
  publication-title: Nature
– volume: 55
  start-page: 154
  year: 2021
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 1265
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 9872
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 9245
  year: 2020
  publication-title: ChemistrySelect
– volume: 129
  start-page: 39
  year: 2013
  publication-title: Appl. Catal., B
– volume: 191
  start-page: 405
  year: 2022
  publication-title: Renew. Energy
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 268
  year: 2020
  publication-title: J. Cleaner Prod.
– volume: 425
  year: 2023
  publication-title: J. Cleaner Prod.
– volume: 250
  year: 2023
  publication-title: Fuel Process. Technol.
– volume: 351
  year: 2024
  publication-title: Appl. Catal., B
– volume: 33
  start-page: 3322
  year: 2019
  publication-title: Energy Fuels
– volume: 227
  year: 2024
  publication-title: Renew. Energy
– volume: 282
  start-page: 767
  year: 2018
  publication-title: Electrochim. Acta
– volume: 14
  year: 2021
  publication-title: Arabian J. Chem.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 921
  year: 2020
  publication-title: Nat. Catal.
– volume: 315
  year: 2022
  publication-title: Fuel
– volume: 142–143
  start-page: 512
  year: 2013
  publication-title: Appl. Catal., B
– volume: 229
  year: 2021
  publication-title: Energy Convers. Manage.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 125
  start-page: 4846
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 292
  year: 2023
  publication-title: Energy Convers. Manage.
– volume: 638
  start-page: 63
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 650
  year: 2022
  publication-title: J. Membr. Sci.
– volume: 25
  start-page: 7410
  year: 2023
  publication-title: Green Chem.
SSID ssj0000491033
Score 2.5876844
Snippet The rational design of a photocatalyst and its microenvironmental modulation is crucial in the heterogeneous photocatalysis process, yet relevant research on...
SourceID wiley
SourceType Publisher
SubjectTerms biodiesel
liquid biomass
microenvironment
montmorillonite
photocatalysis
S‐scheme heterojunction
Title Boosting Photocatalytic Upcycling of Liquid Biomass into Biodiesel via Microenvironment Modulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202403168
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagLDAgTnHLA6vVHI5jxha1QohUHajULcqLbYiE4kJTpP57_JxS2pUtlmIPz9fz03cQci8DJYIHnTJIVcF4KoDJGALGpQp5KVQpPRgzG4mnCX-eJtMNFn-rD7EuuOHO8Oc1bvAC5t0_0dBC18gkRz25UMhdsof8WlzpER-vqywu_w0D7yfvMhvOhFu_v8qNQdTdHmI7PfX3y_CIHK4SQ9prZ_KY7Oj6hBxsyAWeEuhbO0eYMh2_28b6ysvS_U4ns3KJFMc3ag19qT4XlaL9CpE_c1rVjcUGogX1B_2uCpohCG-D4UYzq1YuXmdkMhy8Pj6xlUcCK1GnhhU6RP8cMGASpXWaomCZjoyKZSHLJFSpy59KcK_EEIXx3VeJXlWFCWJItUnic9Kpba0vCE24gMSFCb3SORgt3ZksYhNHAUiAxFySyMcnn7U6GHmreBzlGMZ8Hca8Nxhl69bVfzpdk_0IbXY9OPqGdJqvhb51d38Dd356fwD8m6hG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgDMCA-BTfeGCNmjiObcYWtSrQVB1aiS2KYxsioaTQFKn_Hp_ThrKy2ZKT4exzXk7v3kPoXviK-Q-ae5Kr1KOcSU-E0veoUAHNmMqEI2PGIzaY0ufXaM0mhF6YWh-iKbhBZrj7GhIcCtLtX9XQVBfQSg6CcgET22iHMsLBvYHQcVNmsQA48J2hvIU21GP2AK-lG33S_vuKv_jUfWD6h-hghQxxp97KI7Sli2O0v6EXeIJktyznwFPG4_eyKl3pZWmX4-ksW0KP4xsuDR7mn4tc4W4O1J85zouqhAnQBfUH_s5THAMLb6PFDcelWtl4naJpvzd5HHgrkwQvA6EaL9UBGOhII02ktOYcFMs0MSoUqciiQHELoDJpfxMDUMa3owzMqlLjh5JrE4VnqFWUhT5HOKJMRjZMYJZOpdHCXsosNCHxpZAyMheIuPgks1oII6klj0kCYUyaMCad3ihuZpf_eegO7Q4m8TAZPo1ertAeAc9dx5S-Rq3qa6FvLBCo5K3b6h8sQKuy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgSAgGxFO88cBqNQ_HMWMLrQo0VQcqdYvi2IZIKC40Rerf4-uUUFa2WIo9XL9Obs49B6Fb7knm3amYiFhmhMZMEB4Kj1AufZozmXNHxkxGbDChT9NoulbFX-tDNAk32BnuvIYNPpO6_SsamqkSKslBT85nfBNtwR8_WOMBHTdZFot_fc_5yVtkQwmz6_dHudEL2n-H-AtP3f3S30d7K2CIO_VMHqANVR6i3TW5wCMkusbMgaaMx2-mMi7zsrSv48ksX0KJ4ys2Gg-Lj0UhcbcA5s8cF2VloAFsQfWOv4oMJ0DCW6tww4mRKxevYzTp917uB2TlkUBy0KkhmfLBP0dooSOpVByDYJkKtAx5xvPIl7HFT7mwX4k-COPbpxy8qjLthSJWOgpPUKs0pTpFOKJMRDZM4JVOhVbcnsks1GHgCS5EpM9Q4OKTzmodjLRWPA5SCGPahDHt9EZJ0zr_T6cbtD1-6KfDx9HzBdoJwHHX8aQvUav6XKgrCwMqce1m-htyIqrk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Photocatalytic+Upcycling+of+Liquid+Biomass+into+Biodiesel+via+Microenvironment+Modulation&rft.jtitle=Advanced+energy+materials&rft.au=He%2C+Lijuan&rft.au=Zhang%2C+Li%E2%80%90Long&rft.au=Zhou%2C+Heng&rft.au=Nie%2C+Yingxia&rft.date=2025-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=15&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202403168&rft.externalDBID=10.1002%252Faenm.202403168&rft.externalDocID=AENM202403168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon