Design, Fabrication, and Screening of Environmental‐Thermal Barrier Coatings Prepared by Ultrafast High‐Temperature Sintering
The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating mate...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems.
A fast development strategy of environmental‐thermal barrier coatings is presented by integrating the coating design, synthesis, and screening using an ultrafast high‐temperature sintering technique to accelerate improvements in coating performance. This accelerated strategy offers cost savings for ETBC screening, due to reduced capital expenses and great throughput. Meanwhile, this approach holds promise for the rapid optimization of broader material systems. |
---|---|
AbstractList | The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems. The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems. A fast development strategy of environmental‐thermal barrier coatings is presented by integrating the coating design, synthesis, and screening using an ultrafast high‐temperature sintering technique to accelerate improvements in coating performance. This accelerated strategy offers cost savings for ETBC screening, due to reduced capital expenses and great throughput. Meanwhile, this approach holds promise for the rapid optimization of broader material systems. The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems. |
Author | Zhong, Wei Hu, Liangbing Clarke, David R. Xie, Hua Zhao, Ji‐Cheng Clifford, Bryson Champagne, Victor K. Liu, Shufeng |
Author_xml | – sequence: 1 givenname: Hua surname: Xie fullname: Xie, Hua organization: University of Maryland – sequence: 2 givenname: Victor K. surname: Champagne fullname: Champagne, Victor K. organization: Harvard University – sequence: 3 givenname: Wei surname: Zhong fullname: Zhong, Wei organization: University of Maryland – sequence: 4 givenname: Bryson surname: Clifford fullname: Clifford, Bryson organization: University of Maryland – sequence: 5 givenname: Shufeng surname: Liu fullname: Liu, Shufeng organization: University of Maryland – sequence: 6 givenname: Liangbing orcidid: 0000-0002-9456-9315 surname: Hu fullname: Hu, Liangbing email: binghu@umd.edu organization: University of Maryland – sequence: 7 givenname: Ji‐Cheng surname: Zhao fullname: Zhao, Ji‐Cheng email: jczhao@umd.edu organization: University of Maryland – sequence: 8 givenname: David R. surname: Clarke fullname: Clarke, David R. email: clarke@seas.harvard.edu organization: Harvard University |
BookMark | eNqFkE1Lw0AQhhepoFWvnhe8mrofSdMctR8qVBSq4C3sZid1JdnE2VTpTf-Bv9FfYmqlgiCeZgbeZ4Z5uqTjKgeEHHLW44yJE2XysieYkCxJ4sEW2eV93g8kE4POpuf3O6Tr_SNjPI5luEveRuDt3B3TidJoM9XYqh2UM3SWIYCzbk6rnI7ds8XKleAaVXy8vt8-AJaqoGcK0QLSYdWSbu7pDUKtEAzVS3pXNKhy5Rt6YecPKwrKGlA1CwQ6s64BbJl9sp2rwsPBd90jd5Px7fAimF6fXw5Pp0Emo3gQhFGYsxg4N8ponuVCaK6ZkUbKQSYiDoYzqaXRJk76EDIADUK2QSZlHkZa7pGj9d4aq6cF-CZ9rBbo2pOpSGQsWRwx3qZ661SGlfcIeVqjLRUuU87SleZ0pTndaG6B8BeQ2eZLY_u8Lf7GkjX2YgtY_nMkPR1Nrn7YTzs8mL4 |
CitedBy_id | crossref_primary_10_1002_adma_202412139 crossref_primary_10_1002_smtd_202400680 crossref_primary_10_1007_s44210_024_00046_y crossref_primary_10_1016_j_matdes_2025_113878 |
Cites_doi | 10.1017/9781316443606 10.1016/S0257-8972(02)00593-5 10.1111/j.1151-2916.1993.tb03684.x 10.1007/BF00774193 10.1007/978-1-4757-1622-1_6 10.1111/j.1151-2916.2003.tb03466.x 10.1007/s10853-015-9358-5 10.1111/j.1744-7402.2008.02289.x 10.1038/s41598-020-70648-0 10.1126/science.aaz7681 10.1016/j.jmst.2019.04.025 10.1016/S0257-8972(00)00871-9 10.1016/j.scriptamat.2009.11.019 10.1111/j.1151-2916.1995.tb08236.x 10.1016/j.actamat.2020.06.012 10.1179/1743280413Y.0000000019 10.1016/j.ceramint.2018.06.064 10.1016/j.surfcoat.2021.127783 10.1016/j.jnucmat.2018.09.052 10.1103/PhysRevLett.101.085901 10.1016/j.optmat.2014.10.030 10.1016/S0257-8972(00)00889-6 10.2109/jcersj1950.92.1065_233 10.1111/j.1551-2916.2004.00089.x 10.1016/0257-8972(87)90003-X 10.1146/annurev-matsci-071312-121636 10.1016/S0065-2156(08)70164-9 10.3390/coatings9100609 10.1063/1.340168 10.1111/j.1151-2916.1997.tb03074.x 10.1111/j.1151-2916.2003.tb03459.x 10.1016/j.mtla.2020.100793 10.1007/978-1-4757-1631-3_1 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202309978 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202309978 ADFM202309978 |
Genre | article |
GrantInformation_xml | – fundername: Advanced Research Projects Agency ‐ Energy funderid: DE‐AR0001424 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3578-454f07e11dadb1cf22b1b0d3d338c251ed103b3dbd796e40eebe231cf033f45b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:36:24 EDT 2025 Tue Jul 01 00:30:52 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Wed Jan 22 16:14:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3578-454f07e11dadb1cf22b1b0d3d338c251ed103b3dbd796e40eebe231cf033f45b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9456-9315 |
OpenAccessLink | https://www.osti.gov/biblio/2222991 |
PQID | 2937307501 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2937307501 crossref_primary_10_1002_adfm_202309978 crossref_citationtrail_10_1002_adfm_202309978 wiley_primary_10_1002_adfm_202309978_ADFM202309978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 80 2004; 87 1964; 2 2019; 9 1987; 30 2013; 43 2003; 163–164 2015; 50 2019; 35 1995; 78 2021; 426 2020; 368 1975 2006 2020; 12 2000; 133 2020; 10 2008; 101 2018; 44 2010; 62 1977 1991; 29 2013; 58 1984; 92 2020; 195 2001 2018; 512 1993; 76 2014; 38 2017 2009; 6 1988; 63 2003; 86 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_27_1 Fritsch M. (e_1_2_12_13_1) 2006 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 29 start-page: 63 year: 1991 publication-title: Adv. Appl. Mech. – volume: 50 start-page: 7939 year: 2015 publication-title: J. Mater. Sci. – volume: 63 start-page: 4476 year: 1988 publication-title: J. Appl. Phys. – volume: 92 start-page: 233 year: 1984 publication-title: J. Ceram. Assoc. – start-page: 148 year: 2006 end-page: 159 – year: 2001 – volume: 62 start-page: 282 year: 2010 publication-title: Scr. Mater. – volume: 76 start-page: 3 year: 1993 publication-title: J. Am. Ceram. Soc. – year: 1975 – volume: 43 start-page: 559 year: 2013 publication-title: Annu. Rev. Mater. Res. – volume: 133 start-page: 40 year: 2000 publication-title: Surface Coat. Technol. – volume: 10 year: 2020 publication-title: Scientific Rep. – volume: 86 start-page: 1299 year: 2003 publication-title: J. Am. Ceram. Soc. – volume: 80 start-page: 1919 year: 1997 publication-title: J. Am. Ceram. Soc. – volume: 512 start-page: 169 year: 2018 publication-title: J. Nucl. Mater. – volume: 58 start-page: 315 year: 2013 publication-title: Int. Mater. Rev. – year: 1977 – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 368 start-page: 521 year: 2020 publication-title: Science – volume: 38 start-page: 204 year: 2014 publication-title: Optical mater. – volume: 163–164 start-page: 67 year: 2003 publication-title: Surface Coatings Technol. – volume: 86 start-page: 1238 year: 2003 publication-title: J. Am. Ceram. Soc. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1 year: 1987 publication-title: Surface Coat. Technol. – volume: 195 start-page: 698 year: 2020 publication-title: Acta Mater. – volume: 2 start-page: 468 year: 1964 publication-title: Soviet Powder Metall. Metal Ceram. – volume: 78 start-page: 705 year: 1995 publication-title: J. Am. Ceram. Soc. – volume: 426 year: 2021 publication-title: Surface Coat. Technol. – volume: 87 start-page: 89 year: 2004 publication-title: J. Am. Ceram. Soc. – volume: 133 start-page: 1 year: 2000 publication-title: Surface Coat. Technol. – year: 2017 – volume: 6 start-page: 485 year: 2009 publication-title: Int. J. Appl. Ceram. Technol. – volume: 12 year: 2020 publication-title: Materialia – volume: 9 start-page: 609 year: 2019 publication-title: Coatings – volume: 35 start-page: 2064 year: 2019 publication-title: J. Mater. Sci. Technol. – ident: e_1_2_12_6_1 doi: 10.1017/9781316443606 – ident: e_1_2_12_15_1 doi: 10.1016/S0257-8972(02)00593-5 – ident: e_1_2_12_11_1 doi: 10.1111/j.1151-2916.1993.tb03684.x – ident: e_1_2_12_34_1 doi: 10.1007/BF00774193 – ident: e_1_2_12_16_1 doi: 10.1007/978-1-4757-1622-1_6 – ident: e_1_2_12_9_1 doi: 10.1111/j.1151-2916.2003.tb03466.x – ident: e_1_2_12_21_1 doi: 10.1007/s10853-015-9358-5 – ident: e_1_2_12_27_1 doi: 10.1111/j.1744-7402.2008.02289.x – ident: e_1_2_12_28_1 doi: 10.1038/s41598-020-70648-0 – ident: e_1_2_12_4_1 doi: 10.1126/science.aaz7681 – ident: e_1_2_12_36_1 doi: 10.1016/j.jmst.2019.04.025 – ident: e_1_2_12_18_1 – ident: e_1_2_12_3_1 doi: 10.1016/S0257-8972(00)00871-9 – ident: e_1_2_12_29_1 doi: 10.1016/j.scriptamat.2009.11.019 – start-page: 148 volume-title: The Water‐Vapour hot Gas Corrosion Behavior of Al2O3‐Y2O3 Materials, Y2Si05 and Y3Al5O12‐Coated Alumina in a Combustion Environment year: 2006 ident: e_1_2_12_13_1 – ident: e_1_2_12_7_1 doi: 10.1111/j.1151-2916.1995.tb08236.x – ident: e_1_2_12_24_1 doi: 10.1016/j.actamat.2020.06.012 – ident: e_1_2_12_1_1 doi: 10.1179/1743280413Y.0000000019 – ident: e_1_2_12_26_1 doi: 10.1016/j.ceramint.2018.06.064 – ident: e_1_2_12_35_1 doi: 10.1016/j.surfcoat.2021.127783 – ident: e_1_2_12_33_1 doi: 10.1016/j.jnucmat.2018.09.052 – ident: e_1_2_12_31_1 doi: 10.1103/PhysRevLett.101.085901 – ident: e_1_2_12_22_1 doi: 10.1016/j.optmat.2014.10.030 – ident: e_1_2_12_8_1 doi: 10.1016/S0257-8972(00)00889-6 – ident: e_1_2_12_23_1 doi: 10.2109/jcersj1950.92.1065_233 – ident: e_1_2_12_20_1 doi: 10.1111/j.1551-2916.2004.00089.x – ident: e_1_2_12_2_1 doi: 10.1016/0257-8972(87)90003-X – ident: e_1_2_12_12_1 doi: 10.1146/annurev-matsci-071312-121636 – ident: e_1_2_12_37_1 – ident: e_1_2_12_5_1 doi: 10.1016/S0065-2156(08)70164-9 – ident: e_1_2_12_14_1 doi: 10.3390/coatings9100609 – ident: e_1_2_12_32_1 doi: 10.1063/1.340168 – ident: e_1_2_12_19_1 doi: 10.1111/j.1151-2916.1997.tb03074.x – ident: e_1_2_12_30_1 – ident: e_1_2_12_10_1 doi: 10.1111/j.1151-2916.2003.tb03459.x – ident: e_1_2_12_25_1 doi: 10.1016/j.mtla.2020.100793 – ident: e_1_2_12_17_1 doi: 10.1007/978-1-4757-1631-3_1 |
SSID | ssj0017734 |
Score | 2.5407898 |
Snippet | The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Coatings coefficient of thermal expansion Composition environmental‐thermal barrier coatings Gas turbines High temperature high temperature refractory alloys multilayer structures Protective coatings Room temperature Screening Sintering (powder metallurgy) Substrates Synthesis Tape casting Temperature Temperature dependence Thermal barrier coatings Thermal cycling Thermal cycling tests Thermal expansion Thermal mismatch Thickness Turbine blades ultrafast high‐temperature sintering |
Title | Design, Fabrication, and Screening of Environmental‐Thermal Barrier Coatings Prepared by Ultrafast High‐Temperature Sintering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202309978 https://www.proquest.com/docview/2937307501 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6MXvTgbyOKpAcTLwzadbBwRH6EGDFGJOG2tGt7kYAZ46An_Q_8G_1LfG8bA0yMid62pV269vX1e933vhJy2fABQzc85mhrElFt35HcVY5vtNYW1iBrMXe4f1fvDb2bUW20ksWf6kPkG244MxJ_jRNcqll1KRoqtcVMcoDQDYiEwAkjYQtR0UOuH8V9P_2tXOdI8OKjhWojc6vr1ddXpSXUXAWsyYrT3SNy0daUaPJUmceqEr5-k3H8z8fsk90MjtJmaj8HZMNMDsnOikjhEXlvJySPMu1KFWU7fGUqJ5oOQiTtQCE6tbSzzJiT48-3D7A_8Pljei0jPBSPtqYSGdYzeh-ZhPVO1QsdjuNIWjmLKfJNsJYBGJ_KPNMBSllgG47JsNt5bPWc7OAGJ0TxHBxyy3zDuZZa8dC6ruKKaaEhHg4BUBnNmVBCKw2WYjxmwJIAZ4aWCWG9mhInZHMynZhTQrm2Sit4VuPCY6oO4Y9gusatcRvWF6pAnMXABWGmao6Ha4yDVI_ZDbBrg7xrC-QqL_-c6nn8WLK4sIMgm9ezAMARuERAWbxA3GRAf3lL0Gx3-_nd2V8qnZNtuPZS4luRbMbR3FwAEopViWw12_3bQSmx-i9C2gXH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6JQwAckLgTsJG3UIxSqshQhoBK3yI7tC1WL0vQAJ_gDvpEvYSZbAQkhwTGWHTmesf3svHkDsNsIEEM3fO5oa1JR7cCRwlVOYLTWFvcgayl2uHNVb3f98_tawSakWJhMH6K8cKOZka7XNMHpQvpwrBoqtaVQcsTQDTwKTcI0pfVOT1U3pYKUCILsx3JdEMVL3Be6jdw9_Nr-6740BpufIWu657QWQBW9zagmDwejRB1Ez9-EHP_1OYswnyNSdpS50BJMmP4yzH3SKVyB15OU57HPWlLF-SXfPpN9zW4j4u1gJTaw7HQcNCd77y9v6IK47PfYsYwpLx5rDiSRrIfsOjYp8Z2pJ9btJbG0cpgwopxQK4NIPlN6ZrekZkF9WIVu6_Su2Xby3A1ORPo5ZHXLAyOEllqJyLquEoprT-OROEJMZbTgnvK00ugsxucGnQmhZmS551m_prw1mOoP-mYdmNBWaYVlaF2fqzqegDyua8Iat2EDT1XAKSwXRrmwOeXX6IWZJLMb0tCG5dBWYK-s_5hJevxYs1o4QphP7WGI-AhXRQRaogJuatFf3hIenbQ65dPGXxrtwEz7rnMZXp5dXWzCLJb7GQ-uClNJPDJbCIwStZ26_gdQZQhO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5iIE3bAbYxRBlsPkzahYAdpw09AiWCbSA0Vqm3yM6zL1RtlYbDdhr_gN_IL9l7SZqWSQiJHWPZkWN_tj873_sM8LkbE4fuRjJA70pT7TgwKrRB7BDR0xrkPccOn190TvvR10F7sBDFX_lDNAduPDLK-ZoH-AT9_tw01KDnSHKi0F3aCb2AlagjDxjXvR-NgZSK4-q_ckexwksNZraNMtx_WP7hsjTnmouMtVxykjUws8pWSpPrvZvC7mW___Fx_J-veQOrNR8VhxWA3sKSG72D1wsuhetw2ytVHrsiMTavj_h2hRmhuMpYtUOZxNiLk3nInBne_7kjANKkPxRHJudb8cTx2LDEeiouc1fK3oX9JfrDIjfeTAvBghMu5YjHVz7P4oq9LLgO76GfnPw8Pg3qmxuCjN1zuM-9jJ1SaNCqzIehVVaiRtoQZ8SoHCqprUaLBBUXSUdQIqKZeam1j9pWb8DyaDxymyAUeouW0tpKR9J2aP-jJbaVd2HXx9q2IJh1XJrVtuZ8u8YwrQyZw5SbNm2atgVfmvyTytDj0ZzbMxyk9cCepsSOaE4kmqVaEJYd-sRb0sNect48bT2n0Cd4edlL0u9nF98-wCtKjioR3DYsF_mN2yFWVNiPJfD_AlEcBwY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Fabrication%2C+and+Screening+of+Environmental%E2%80%90Thermal+Barrier+Coatings+Prepared+by+Ultrafast+High%E2%80%90Temperature+Sintering&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Hua&rft.au=Champagne%2C+Victor+K.&rft.au=Zhong%2C+Wei&rft.au=Clifford%2C+Bryson&rft.date=2024-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202309978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202309978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |