Design, Fabrication, and Screening of Environmental‐Thermal Barrier Coatings Prepared by Ultrafast High‐Temperature Sintering

The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating mate...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 10
Main Authors Xie, Hua, Champagne, Victor K., Zhong, Wei, Clifford, Bryson, Liu, Shufeng, Hu, Liangbing, Zhao, Ji‐Cheng, Clarke, David R.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems. A fast development strategy of environmental‐thermal barrier coatings is presented by integrating the coating design, synthesis, and screening using an ultrafast high‐temperature sintering technique to accelerate improvements in coating performance. This accelerated strategy offers cost savings for ETBC screening, due to reduced capital expenses and great throughput. Meanwhile, this approach holds promise for the rapid optimization of broader material systems.
AbstractList The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems.
The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems. A fast development strategy of environmental‐thermal barrier coatings is presented by integrating the coating design, synthesis, and screening using an ultrafast high‐temperature sintering technique to accelerate improvements in coating performance. This accelerated strategy offers cost savings for ETBC screening, due to reduced capital expenses and great throughput. Meanwhile, this approach holds promise for the rapid optimization of broader material systems.
The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still uncertainty about which alloys and composites will be used for the next generation of turbine blades, as well as the most promising coating materials. Herein, an ETBCs development strategy is presented by integrating the coating design, synthesis, and screening using an ultrafast high temperature sintering (UHS) technique to accelerate coating improvements. The initial basis for composition selection is their thermal expansion mismatch with the substrate alloys; for which a temperature‐dependent coefficient of thermal expansion database is created. By combining tape casting method with the UHS technique a high‐throughput synthesis of single and multi‐layer coatings are realized with different compositions, layer stacking sequences, and layer thicknesses. To evaluate the coatings, thermal cycling tests from room temperature to 1300 °C are conducted. The approach enabled coatings on objects with complex geometries, multi‐layer ETBCs, and porosity tailoring by using staged UHS that runs with different temperatures and durations. The fast iteration strategy is more cost‐effective for the screening of ETBCs compared to conventional methods and greater throughput which can be further extended for rapid optimization of other materials systems.
Author Zhong, Wei
Hu, Liangbing
Clarke, David R.
Xie, Hua
Zhao, Ji‐Cheng
Clifford, Bryson
Champagne, Victor K.
Liu, Shufeng
Author_xml – sequence: 1
  givenname: Hua
  surname: Xie
  fullname: Xie, Hua
  organization: University of Maryland
– sequence: 2
  givenname: Victor K.
  surname: Champagne
  fullname: Champagne, Victor K.
  organization: Harvard University
– sequence: 3
  givenname: Wei
  surname: Zhong
  fullname: Zhong, Wei
  organization: University of Maryland
– sequence: 4
  givenname: Bryson
  surname: Clifford
  fullname: Clifford, Bryson
  organization: University of Maryland
– sequence: 5
  givenname: Shufeng
  surname: Liu
  fullname: Liu, Shufeng
  organization: University of Maryland
– sequence: 6
  givenname: Liangbing
  orcidid: 0000-0002-9456-9315
  surname: Hu
  fullname: Hu, Liangbing
  email: binghu@umd.edu
  organization: University of Maryland
– sequence: 7
  givenname: Ji‐Cheng
  surname: Zhao
  fullname: Zhao, Ji‐Cheng
  email: jczhao@umd.edu
  organization: University of Maryland
– sequence: 8
  givenname: David R.
  surname: Clarke
  fullname: Clarke, David R.
  email: clarke@seas.harvard.edu
  organization: Harvard University
BookMark eNqFkE1Lw0AQhhepoFWvnhe8mrofSdMctR8qVBSq4C3sZid1JdnE2VTpTf-Bv9FfYmqlgiCeZgbeZ4Z5uqTjKgeEHHLW44yJE2XysieYkCxJ4sEW2eV93g8kE4POpuf3O6Tr_SNjPI5luEveRuDt3B3TidJoM9XYqh2UM3SWIYCzbk6rnI7ds8XKleAaVXy8vt8-AJaqoGcK0QLSYdWSbu7pDUKtEAzVS3pXNKhy5Rt6YecPKwrKGlA1CwQ6s64BbJl9sp2rwsPBd90jd5Px7fAimF6fXw5Pp0Emo3gQhFGYsxg4N8ponuVCaK6ZkUbKQSYiDoYzqaXRJk76EDIADUK2QSZlHkZa7pGj9d4aq6cF-CZ9rBbo2pOpSGQsWRwx3qZ661SGlfcIeVqjLRUuU87SleZ0pTndaG6B8BeQ2eZLY_u8Lf7GkjX2YgtY_nMkPR1Nrn7YTzs8mL4
CitedBy_id crossref_primary_10_1002_adma_202412139
crossref_primary_10_1002_smtd_202400680
crossref_primary_10_1007_s44210_024_00046_y
crossref_primary_10_1016_j_matdes_2025_113878
Cites_doi 10.1017/9781316443606
10.1016/S0257-8972(02)00593-5
10.1111/j.1151-2916.1993.tb03684.x
10.1007/BF00774193
10.1007/978-1-4757-1622-1_6
10.1111/j.1151-2916.2003.tb03466.x
10.1007/s10853-015-9358-5
10.1111/j.1744-7402.2008.02289.x
10.1038/s41598-020-70648-0
10.1126/science.aaz7681
10.1016/j.jmst.2019.04.025
10.1016/S0257-8972(00)00871-9
10.1016/j.scriptamat.2009.11.019
10.1111/j.1151-2916.1995.tb08236.x
10.1016/j.actamat.2020.06.012
10.1179/1743280413Y.0000000019
10.1016/j.ceramint.2018.06.064
10.1016/j.surfcoat.2021.127783
10.1016/j.jnucmat.2018.09.052
10.1103/PhysRevLett.101.085901
10.1016/j.optmat.2014.10.030
10.1016/S0257-8972(00)00889-6
10.2109/jcersj1950.92.1065_233
10.1111/j.1551-2916.2004.00089.x
10.1016/0257-8972(87)90003-X
10.1146/annurev-matsci-071312-121636
10.1016/S0065-2156(08)70164-9
10.3390/coatings9100609
10.1063/1.340168
10.1111/j.1151-2916.1997.tb03074.x
10.1111/j.1151-2916.2003.tb03459.x
10.1016/j.mtla.2020.100793
10.1007/978-1-4757-1631-3_1
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202309978
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202309978
ADFM202309978
Genre article
GrantInformation_xml – fundername: Advanced Research Projects Agency ‐ Energy
  funderid: DE‐AR0001424
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3578-454f07e11dadb1cf22b1b0d3d338c251ed103b3dbd796e40eebe231cf033f45b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:36:24 EDT 2025
Tue Jul 01 00:30:52 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Wed Jan 22 16:14:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-454f07e11dadb1cf22b1b0d3d338c251ed103b3dbd796e40eebe231cf033f45b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9456-9315
OpenAccessLink https://www.osti.gov/biblio/2222991
PQID 2937307501
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2937307501
crossref_primary_10_1002_adfm_202309978
crossref_citationtrail_10_1002_adfm_202309978
wiley_primary_10_1002_adfm_202309978_ADFM202309978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 80
2004; 87
1964; 2
2019; 9
1987; 30
2013; 43
2003; 163–164
2015; 50
2019; 35
1995; 78
2021; 426
2020; 368
1975
2006
2020; 12
2000; 133
2020; 10
2008; 101
2018; 44
2010; 62
1977
1991; 29
2013; 58
1984; 92
2020; 195
2001
2018; 512
1993; 76
2014; 38
2017
2009; 6
1988; 63
2003; 86
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_27_1
Fritsch M. (e_1_2_12_13_1) 2006
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 29
  start-page: 63
  year: 1991
  publication-title: Adv. Appl. Mech.
– volume: 50
  start-page: 7939
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 63
  start-page: 4476
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 92
  start-page: 233
  year: 1984
  publication-title: J. Ceram. Assoc.
– start-page: 148
  year: 2006
  end-page: 159
– year: 2001
– volume: 62
  start-page: 282
  year: 2010
  publication-title: Scr. Mater.
– volume: 76
  start-page: 3
  year: 1993
  publication-title: J. Am. Ceram. Soc.
– year: 1975
– volume: 43
  start-page: 559
  year: 2013
  publication-title: Annu. Rev. Mater. Res.
– volume: 133
  start-page: 40
  year: 2000
  publication-title: Surface Coat. Technol.
– volume: 10
  year: 2020
  publication-title: Scientific Rep.
– volume: 86
  start-page: 1299
  year: 2003
  publication-title: J. Am. Ceram. Soc.
– volume: 80
  start-page: 1919
  year: 1997
  publication-title: J. Am. Ceram. Soc.
– volume: 512
  start-page: 169
  year: 2018
  publication-title: J. Nucl. Mater.
– volume: 58
  start-page: 315
  year: 2013
  publication-title: Int. Mater. Rev.
– year: 1977
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 368
  start-page: 521
  year: 2020
  publication-title: Science
– volume: 38
  start-page: 204
  year: 2014
  publication-title: Optical mater.
– volume: 163–164
  start-page: 67
  year: 2003
  publication-title: Surface Coatings Technol.
– volume: 86
  start-page: 1238
  year: 2003
  publication-title: J. Am. Ceram. Soc.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1
  year: 1987
  publication-title: Surface Coat. Technol.
– volume: 195
  start-page: 698
  year: 2020
  publication-title: Acta Mater.
– volume: 2
  start-page: 468
  year: 1964
  publication-title: Soviet Powder Metall. Metal Ceram.
– volume: 78
  start-page: 705
  year: 1995
  publication-title: J. Am. Ceram. Soc.
– volume: 426
  year: 2021
  publication-title: Surface Coat. Technol.
– volume: 87
  start-page: 89
  year: 2004
  publication-title: J. Am. Ceram. Soc.
– volume: 133
  start-page: 1
  year: 2000
  publication-title: Surface Coat. Technol.
– year: 2017
– volume: 6
  start-page: 485
  year: 2009
  publication-title: Int. J. Appl. Ceram. Technol.
– volume: 12
  year: 2020
  publication-title: Materialia
– volume: 9
  start-page: 609
  year: 2019
  publication-title: Coatings
– volume: 35
  start-page: 2064
  year: 2019
  publication-title: J. Mater. Sci. Technol.
– ident: e_1_2_12_6_1
  doi: 10.1017/9781316443606
– ident: e_1_2_12_15_1
  doi: 10.1016/S0257-8972(02)00593-5
– ident: e_1_2_12_11_1
  doi: 10.1111/j.1151-2916.1993.tb03684.x
– ident: e_1_2_12_34_1
  doi: 10.1007/BF00774193
– ident: e_1_2_12_16_1
  doi: 10.1007/978-1-4757-1622-1_6
– ident: e_1_2_12_9_1
  doi: 10.1111/j.1151-2916.2003.tb03466.x
– ident: e_1_2_12_21_1
  doi: 10.1007/s10853-015-9358-5
– ident: e_1_2_12_27_1
  doi: 10.1111/j.1744-7402.2008.02289.x
– ident: e_1_2_12_28_1
  doi: 10.1038/s41598-020-70648-0
– ident: e_1_2_12_4_1
  doi: 10.1126/science.aaz7681
– ident: e_1_2_12_36_1
  doi: 10.1016/j.jmst.2019.04.025
– ident: e_1_2_12_18_1
– ident: e_1_2_12_3_1
  doi: 10.1016/S0257-8972(00)00871-9
– ident: e_1_2_12_29_1
  doi: 10.1016/j.scriptamat.2009.11.019
– start-page: 148
  volume-title: The Water‐Vapour hot Gas Corrosion Behavior of Al2O3‐Y2O3 Materials, Y2Si05 and Y3Al5O12‐Coated Alumina in a Combustion Environment
  year: 2006
  ident: e_1_2_12_13_1
– ident: e_1_2_12_7_1
  doi: 10.1111/j.1151-2916.1995.tb08236.x
– ident: e_1_2_12_24_1
  doi: 10.1016/j.actamat.2020.06.012
– ident: e_1_2_12_1_1
  doi: 10.1179/1743280413Y.0000000019
– ident: e_1_2_12_26_1
  doi: 10.1016/j.ceramint.2018.06.064
– ident: e_1_2_12_35_1
  doi: 10.1016/j.surfcoat.2021.127783
– ident: e_1_2_12_33_1
  doi: 10.1016/j.jnucmat.2018.09.052
– ident: e_1_2_12_31_1
  doi: 10.1103/PhysRevLett.101.085901
– ident: e_1_2_12_22_1
  doi: 10.1016/j.optmat.2014.10.030
– ident: e_1_2_12_8_1
  doi: 10.1016/S0257-8972(00)00889-6
– ident: e_1_2_12_23_1
  doi: 10.2109/jcersj1950.92.1065_233
– ident: e_1_2_12_20_1
  doi: 10.1111/j.1551-2916.2004.00089.x
– ident: e_1_2_12_2_1
  doi: 10.1016/0257-8972(87)90003-X
– ident: e_1_2_12_12_1
  doi: 10.1146/annurev-matsci-071312-121636
– ident: e_1_2_12_37_1
– ident: e_1_2_12_5_1
  doi: 10.1016/S0065-2156(08)70164-9
– ident: e_1_2_12_14_1
  doi: 10.3390/coatings9100609
– ident: e_1_2_12_32_1
  doi: 10.1063/1.340168
– ident: e_1_2_12_19_1
  doi: 10.1111/j.1151-2916.1997.tb03074.x
– ident: e_1_2_12_30_1
– ident: e_1_2_12_10_1
  doi: 10.1111/j.1151-2916.2003.tb03459.x
– ident: e_1_2_12_25_1
  doi: 10.1016/j.mtla.2020.100793
– ident: e_1_2_12_17_1
  doi: 10.1007/978-1-4757-1631-3_1
SSID ssj0017734
Score 2.5407898
Snippet The demand for more efficient gas turbines relies heavily on the development of new environmental‐thermal barrier coatings (ETBCs). However, there is still...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Coatings
coefficient of thermal expansion
Composition
environmental‐thermal barrier coatings
Gas turbines
High temperature
high temperature refractory alloys
multilayer structures
Protective coatings
Room temperature
Screening
Sintering (powder metallurgy)
Substrates
Synthesis
Tape casting
Temperature
Temperature dependence
Thermal barrier coatings
Thermal cycling
Thermal cycling tests
Thermal expansion
Thermal mismatch
Thickness
Turbine blades
ultrafast high‐temperature sintering
Title Design, Fabrication, and Screening of Environmental‐Thermal Barrier Coatings Prepared by Ultrafast High‐Temperature Sintering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202309978
https://www.proquest.com/docview/2937307501
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6MXvTgbyOKpAcTLwzadbBwRH6EGDFGJOG2tGt7kYAZ46An_Q_8G_1LfG8bA0yMid62pV269vX1e933vhJy2fABQzc85mhrElFt35HcVY5vtNYW1iBrMXe4f1fvDb2bUW20ksWf6kPkG244MxJ_jRNcqll1KRoqtcVMcoDQDYiEwAkjYQtR0UOuH8V9P_2tXOdI8OKjhWojc6vr1ddXpSXUXAWsyYrT3SNy0daUaPJUmceqEr5-k3H8z8fsk90MjtJmaj8HZMNMDsnOikjhEXlvJySPMu1KFWU7fGUqJ5oOQiTtQCE6tbSzzJiT48-3D7A_8Pljei0jPBSPtqYSGdYzeh-ZhPVO1QsdjuNIWjmLKfJNsJYBGJ_KPNMBSllgG47JsNt5bPWc7OAGJ0TxHBxyy3zDuZZa8dC6ruKKaaEhHg4BUBnNmVBCKw2WYjxmwJIAZ4aWCWG9mhInZHMynZhTQrm2Sit4VuPCY6oO4Y9gusatcRvWF6pAnMXABWGmao6Ha4yDVI_ZDbBrg7xrC-QqL_-c6nn8WLK4sIMgm9ezAMARuERAWbxA3GRAf3lL0Gx3-_nd2V8qnZNtuPZS4luRbMbR3FwAEopViWw12_3bQSmx-i9C2gXH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6JQwAckLgTsJG3UIxSqshQhoBK3yI7tC1WL0vQAJ_gDvpEvYSZbAQkhwTGWHTmesf3svHkDsNsIEEM3fO5oa1JR7cCRwlVOYLTWFvcgayl2uHNVb3f98_tawSakWJhMH6K8cKOZka7XNMHpQvpwrBoqtaVQcsTQDTwKTcI0pfVOT1U3pYKUCILsx3JdEMVL3Be6jdw9_Nr-6740BpufIWu657QWQBW9zagmDwejRB1Ez9-EHP_1OYswnyNSdpS50BJMmP4yzH3SKVyB15OU57HPWlLF-SXfPpN9zW4j4u1gJTaw7HQcNCd77y9v6IK47PfYsYwpLx5rDiSRrIfsOjYp8Z2pJ9btJbG0cpgwopxQK4NIPlN6ZrekZkF9WIVu6_Su2Xby3A1ORPo5ZHXLAyOEllqJyLquEoprT-OROEJMZbTgnvK00ugsxucGnQmhZmS551m_prw1mOoP-mYdmNBWaYVlaF2fqzqegDyua8Iat2EDT1XAKSwXRrmwOeXX6IWZJLMb0tCG5dBWYK-s_5hJevxYs1o4QphP7WGI-AhXRQRaogJuatFf3hIenbQ65dPGXxrtwEz7rnMZXp5dXWzCLJb7GQ-uClNJPDJbCIwStZ26_gdQZQhO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5iIE3bAbYxRBlsPkzahYAdpw09AiWCbSA0Vqm3yM6zL1RtlYbDdhr_gN_IL9l7SZqWSQiJHWPZkWN_tj873_sM8LkbE4fuRjJA70pT7TgwKrRB7BDR0xrkPccOn190TvvR10F7sBDFX_lDNAduPDLK-ZoH-AT9_tw01KDnSHKi0F3aCb2AlagjDxjXvR-NgZSK4-q_ckexwksNZraNMtx_WP7hsjTnmouMtVxykjUws8pWSpPrvZvC7mW___Fx_J-veQOrNR8VhxWA3sKSG72D1wsuhetw2ytVHrsiMTavj_h2hRmhuMpYtUOZxNiLk3nInBne_7kjANKkPxRHJudb8cTx2LDEeiouc1fK3oX9JfrDIjfeTAvBghMu5YjHVz7P4oq9LLgO76GfnPw8Pg3qmxuCjN1zuM-9jJ1SaNCqzIehVVaiRtoQZ8SoHCqprUaLBBUXSUdQIqKZeam1j9pWb8DyaDxymyAUeouW0tpKR9J2aP-jJbaVd2HXx9q2IJh1XJrVtuZ8u8YwrQyZw5SbNm2atgVfmvyTytDj0ZzbMxyk9cCepsSOaE4kmqVaEJYd-sRb0sNect48bT2n0Cd4edlL0u9nF98-wCtKjioR3DYsF_mN2yFWVNiPJfD_AlEcBwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Fabrication%2C+and+Screening+of+Environmental%E2%80%90Thermal+Barrier+Coatings+Prepared+by+Ultrafast+High%E2%80%90Temperature+Sintering&rft.jtitle=Advanced+functional+materials&rft.au=Xie%2C+Hua&rft.au=Champagne%2C+Victor+K.&rft.au=Zhong%2C+Wei&rft.au=Clifford%2C+Bryson&rft.date=2024-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202309978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202309978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon