Effect of imperfect interface on the effective properties of elastic micropolar multilaminated nanostructures

In this paper, the problem of a heterogeneous elastic micropolar nanostructure with a periodic structure subject to imperfect contact conditions is analyzed through the two‐scale asymptotic homogenization method (AHM). The imperfect interface is modeled as a generalization of the well‐known spring m...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 103; no. 8
Main Authors Espinosa‐Almeyda, Yoanh, Yanes, Victor, Rodríguez‐Ramos, Reinaldo, Otero, José A., Sánchez‐Valdés, César F., Camacho‐Montes, Héctor, Longoria, Pablo Padilla, Sabina, Federico J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the problem of a heterogeneous elastic micropolar nanostructure with a periodic structure subject to imperfect contact conditions is analyzed through the two‐scale asymptotic homogenization method (AHM). The imperfect interface is modeled as a generalization of the well‐known spring model; that is, the homogeneous imperfect interface is described by the following conditions: tractions and coupled stress are continuous, but displacements and microrotations are discontinuous across the imperfect interface. The jumps in displacements and microrotations are proportional to the interface traction and coupled stress components, respectively. In particular, micropolar multilaminated nanocomposites with centro‐symmetric isotropic constituents and imperfect contact conditions are studied. From AHM, the solutions for the displacement and microrotation fields are found by means of two‐scale series expansions depending on a local (microscopic) variable and a global (macroscopic) variable. The local problem statements and the corresponding effective properties are explicitly described. The formulation depends on the constituent physical properties, the imperfection parameters, the cell length in the y3‐direction, and the phase's volume fractions. Numerical results are illustrated and discussed. We concluded that the effective moduli are affected by the imperfections and the cell length in the y3‐direction. In this paper, the problem of a heterogeneous elastic micropolar nanostructure with a periodic structure subject to imperfect contact conditions is analyzed through the two‐scale asymptotic homogenization method (AHM). The imperfect interface is modeled as a generalization of the well‐known spring model; that is, the homogeneous imperfect interface is described by the following conditions: tractions and coupled stress are continuous, but displacements and microrotations are discontinuous across the imperfect interface.…
Bibliography:SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ISSN:0044-2267
1521-4001
DOI:10.1002/zamm.202200368