Self‐Adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities
Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In thi...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 48 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation.
Polydimethylsiloxanes (PDMS) foam usually exhibits poor surface adhesion and limited functionality, restricting the potential applications. Here, self‐adhesive PDMS foams with worm‐like rough structure and reactive groups are fabricated by a facile silicone foaming approach. Decorating with MXene/cellulose nanofiber interconnected network and using silane modification, exceptional multifunctionalities PDMS nanocomposites are prepared, showing versatile applications in thermal insulating and smart sensing fields. |
---|---|
AbstractList | Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159
o
), tunable electrical conductivity (from 10
−8
to 10 S m
−1
), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200
o
C) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation. Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation. Polydimethylsiloxanes (PDMS) foam usually exhibits poor surface adhesion and limited functionality, restricting the potential applications. Here, self‐adhesive PDMS foams with worm‐like rough structure and reactive groups are fabricated by a facile silicone foaming approach. Decorating with MXene/cellulose nanofiber interconnected network and using silane modification, exceptional multifunctionalities PDMS nanocomposites are prepared, showing versatile applications in thermal insulating and smart sensing fields. Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation. |
Author | Chen, Zuan‐Yu Zhang, Guo‐Dong Zhao, Li Gao, Jie‐Feng Chen, Hai‐Yang Gong, Li‐Xiu Cao, Cheng‐Fei Shi, Yong‐Qian Cao, Kun Yang, Fan Song, Pingan Wu, Yu‐Yue Tang, Long‐Cheng Mao, Min |
Author_xml | – sequence: 1 givenname: Hai‐Yang surname: Chen fullname: Chen, Hai‐Yang organization: Hangzhou Normal University – sequence: 2 givenname: Zuan‐Yu surname: Chen fullname: Chen, Zuan‐Yu organization: Hangzhou Normal University – sequence: 3 givenname: Min surname: Mao fullname: Mao, Min organization: Nanjing Normal University – sequence: 4 givenname: Yu‐Yue surname: Wu fullname: Wu, Yu‐Yue organization: Hangzhou Normal University – sequence: 5 givenname: Fan surname: Yang fullname: Yang, Fan organization: Hangzhou Normal University – sequence: 6 givenname: Li‐Xiu surname: Gong fullname: Gong, Li‐Xiu organization: Hangzhou Normal University – sequence: 7 givenname: Li surname: Zhao fullname: Zhao, Li organization: Hangzhou Normal University – sequence: 8 givenname: Cheng‐Fei surname: Cao fullname: Cao, Cheng‐Fei organization: University of Southern Queensland – sequence: 9 givenname: Pingan surname: Song fullname: Song, Pingan organization: University of Southern Queensland – sequence: 10 givenname: Jie‐Feng surname: Gao fullname: Gao, Jie‐Feng organization: Yangzhou University – sequence: 11 givenname: Guo‐Dong surname: Zhang fullname: Zhang, Guo‐Dong organization: Hangzhou Normal University – sequence: 12 givenname: Yong‐Qian surname: Shi fullname: Shi, Yong‐Qian organization: Fuzhou University – sequence: 13 givenname: Kun surname: Cao fullname: Cao, Kun organization: Zhejiang University – sequence: 14 givenname: Long‐Cheng orcidid: 0000-0002-2382-8850 surname: Tang fullname: Tang, Long‐Cheng email: lctang@hznu.edu.cn organization: Hangzhou Normal University |
BookMark | eNqFkMtKAzEUhoMoeN26Drhum0s7mVmWalWwKnjB3ZDJnNBommiSWrvzEfQVfRJnqCgI4ur8B_7vXP5ttO68A4T2KelSQlhP1nrWZYRx0i-YWENbNKNZhxOWr39rereJtmO8J4QKwftb6P0KrP54fRvWU4jmGfClt8vazCBNlzYa61-kAzz2coYnMkEw0kZ8CMqHpqvxwqQpntyBg94IrJ1bHwGfS-e1qSDgU9cgyjsHqnWfQ1r48IC1D_gWQpTJ2Gb43KlkvJPWJANxF23oZgnsfdUddDM-uh6ddM4ujk9Hw7OO4gMhOpKSohoMcqBZUWdUCpnJSuUAwGtBalJJrXmVaVHQnLJWc1pxUmW5UloXnO-gg9Xcx-Cf5hBTee_nobkiliwv2ED0ScYaV3flUsHHGECXj8HMZFiWlJRt7GUbe_kdewP0fwHKJNn-l4I09m-sWGGLJpLlP0vK4eF48sN-AqL2ny8 |
CitedBy_id | crossref_primary_10_1002_adfm_202400288 crossref_primary_10_1021_acsomega_3c05413 crossref_primary_10_1007_s12598_024_02890_8 crossref_primary_10_1021_acsanm_4c02850 crossref_primary_10_1007_s11431_024_2710_5 crossref_primary_10_1016_j_compstruct_2024_118820 crossref_primary_10_1002_smll_202309272 crossref_primary_10_1002_adfm_202413362 crossref_primary_10_1021_acsnano_4c04135 crossref_primary_10_1016_j_compositesb_2025_112374 crossref_primary_10_1109_JSEN_2024_3507087 crossref_primary_10_1016_j_cej_2024_154149 crossref_primary_10_1021_acs_biomac_4c01286 crossref_primary_10_1016_j_seppur_2023_125317 crossref_primary_10_1016_j_mtchem_2024_102058 crossref_primary_10_1002_sia_7379 crossref_primary_10_1515_polyeng_2024_0110 crossref_primary_10_1016_j_compositesa_2024_108373 crossref_primary_10_3390_ma18050984 crossref_primary_10_1002_pat_6463 crossref_primary_10_1007_s12598_024_03157_y crossref_primary_10_1021_acsaelm_4c01350 crossref_primary_10_1002_pol_20240962 crossref_primary_10_1002_pat_6217 crossref_primary_10_1021_acsaelm_4c01355 crossref_primary_10_1109_LED_2024_3474909 crossref_primary_10_1007_s10853_024_10303_5 crossref_primary_10_1021_acsanm_4c00959 crossref_primary_10_3390_coatings14010035 crossref_primary_10_1002_adsr_202300140 crossref_primary_10_1021_acs_jpcc_4c05934 crossref_primary_10_1021_acsaelm_4c00668 crossref_primary_10_1021_acssuschemeng_4c04986 crossref_primary_10_1002_pat_6577 crossref_primary_10_1021_acsapm_4c03563 crossref_primary_10_1021_acsapm_3c03130 crossref_primary_10_1039_D3TC04776H crossref_primary_10_1109_JSEN_2024_3509494 crossref_primary_10_1021_acsanm_4c04636 crossref_primary_10_1039_D4TA02688H crossref_primary_10_1002_pc_28976 crossref_primary_10_1016_j_nanoso_2024_101328 crossref_primary_10_1007_s40820_025_01646_y crossref_primary_10_1021_acsami_4c04719 crossref_primary_10_1016_j_polymdegradstab_2024_110823 crossref_primary_10_1016_j_porgcoat_2024_108373 crossref_primary_10_1080_25740881_2023_2267097 crossref_primary_10_1021_acsanm_3c04723 crossref_primary_10_1002_pen_27015 crossref_primary_10_1007_s41365_024_01599_8 crossref_primary_10_1016_j_cej_2024_152183 crossref_primary_10_1021_acsaelm_4c01563 crossref_primary_10_1002_smll_202406102 crossref_primary_10_1021_acsami_3c16614 crossref_primary_10_1016_j_seppur_2024_126580 crossref_primary_10_1021_acs_energyfuels_4c04232 crossref_primary_10_1016_j_ijbiomac_2024_138968 crossref_primary_10_1002_adfm_202410304 crossref_primary_10_1021_acsapm_4c03111 crossref_primary_10_1039_D3TA03415A crossref_primary_10_1007_s40820_024_01571_6 crossref_primary_10_1007_s10853_024_09776_1 crossref_primary_10_1039_D4TC04700A crossref_primary_10_1002_macp_202300436 crossref_primary_10_1039_D4NR03233K crossref_primary_10_1039_D4MH01778A crossref_primary_10_1021_acsapm_4c02926 crossref_primary_10_1021_acs_iecr_3c03319 crossref_primary_10_1016_j_apmt_2024_102191 crossref_primary_10_1089_soro_2023_0147 crossref_primary_10_1021_acsapm_4c00479 crossref_primary_10_1080_1023666X_2024_2311452 crossref_primary_10_1002_pat_70005 crossref_primary_10_1039_D4QM00286E crossref_primary_10_1080_17480272_2024_2437507 crossref_primary_10_1016_j_desal_2025_118703 crossref_primary_10_1002_smll_202410283 crossref_primary_10_1109_ACCESS_2024_3434550 crossref_primary_10_1016_j_ijbiomac_2025_140131 crossref_primary_10_1021_acsaenm_4c00236 crossref_primary_10_1515_gps_2023_0128 crossref_primary_10_1177_07316844241242875 crossref_primary_10_1021_acs_jpcb_4c03008 crossref_primary_10_1016_j_ijbiomac_2024_139086 crossref_primary_10_1002_pat_6552 crossref_primary_10_1021_acsaelm_4c01780 crossref_primary_10_1039_D4TC01845A crossref_primary_10_1016_j_compositesb_2024_111998 crossref_primary_10_1021_acsami_4c16924 crossref_primary_10_1039_D4NJ01650E crossref_primary_10_1021_acsami_4c13774 crossref_primary_10_1021_acssuschemeng_4c03622 crossref_primary_10_1039_D4MA00725E crossref_primary_10_3390_polym16172442 crossref_primary_10_1002_pc_29358 crossref_primary_10_1002_cjce_25278 crossref_primary_10_1021_acssuschemeng_4c05363 crossref_primary_10_1016_j_cej_2024_158091 crossref_primary_10_1186_s11671_024_03971_4 crossref_primary_10_1021_acsanm_4c01299 crossref_primary_10_1039_D3MA01090B crossref_primary_10_1021_acsapm_4c00803 crossref_primary_10_1016_j_nanoen_2024_110261 crossref_primary_10_1016_j_cej_2025_159369 crossref_primary_10_1016_j_porgcoat_2024_108622 crossref_primary_10_1016_j_seppur_2024_127371 crossref_primary_10_1177_07316844241278136 crossref_primary_10_3390_gels10020121 crossref_primary_10_1007_s13399_025_06493_w crossref_primary_10_1080_25740881_2024_2365294 crossref_primary_10_1002_pc_28251 crossref_primary_10_1016_j_jhazmat_2024_133489 crossref_primary_10_1016_j_nantod_2025_102719 crossref_primary_10_1021_acsmaterialslett_4c01113 crossref_primary_10_26599_NR_2025_94907013 crossref_primary_10_1002_admt_202500013 crossref_primary_10_1021_acsapm_4c03245 crossref_primary_10_1016_j_cej_2023_146382 crossref_primary_10_1002_pi_6759 crossref_primary_10_1021_acsnano_4c11945 crossref_primary_10_1016_j_apmt_2024_102218 crossref_primary_10_1016_j_compositesa_2023_107939 crossref_primary_10_1002_smll_202410067 crossref_primary_10_1039_D4SU00568F crossref_primary_10_1002_advs_202309392 crossref_primary_10_1007_s10570_024_06157_4 crossref_primary_10_1016_j_nanoso_2024_101253 crossref_primary_10_1016_j_nanoms_2024_08_007 crossref_primary_10_1109_JLT_2024_3473944 crossref_primary_10_1039_D4TC03626C crossref_primary_10_1515_ijfe_2024_0172 crossref_primary_10_1021_acsapm_3c01884 crossref_primary_10_1002_pc_29134 crossref_primary_10_1002_marc_202400145 crossref_primary_10_1039_D4NJ02971B crossref_primary_10_1016_j_indcrop_2024_118724 crossref_primary_10_1039_D4NR03363A crossref_primary_10_3390_en18051223 crossref_primary_10_1016_j_cej_2024_159040 crossref_primary_10_1016_j_desal_2024_118053 crossref_primary_10_1080_19475411_2023_2258830 crossref_primary_10_3390_polym15204159 crossref_primary_10_1007_s42114_024_01152_6 crossref_primary_10_1016_j_apsusc_2023_159210 crossref_primary_10_1039_D3TA08044G crossref_primary_10_1007_s11804_025_00648_x crossref_primary_10_1021_acs_nanolett_4c04401 crossref_primary_10_1016_j_cej_2024_154033 crossref_primary_10_1021_acsaelm_4c01498 crossref_primary_10_1109_JSEN_2024_3499972 crossref_primary_10_1002_adma_202311993 crossref_primary_10_1021_acsapm_4c00314 crossref_primary_10_1039_D4SM00383G crossref_primary_10_1002_pat_6312 crossref_primary_10_1002_pat_6435 crossref_primary_10_1002_adfm_202418336 crossref_primary_10_1109_LED_2024_3496859 crossref_primary_10_1080_1023666X_2024_2421816 crossref_primary_10_1360_nso_20240049 crossref_primary_10_1080_09276440_2024_2442170 crossref_primary_10_1039_D4DT00979G |
Cites_doi | 10.1039/b805943h 10.1039/C5NJ00971E 10.1021/acs.iecr.6b00532 10.1073/pnas.192252799 10.1002/adma.202000870 10.1016/j.compositesb.2019.03.053 10.1039/C6TB02762H 10.1016/j.nanoen.2021.106442 10.1016/j.cej.2020.124724 10.1021/acsami.1c03272 10.1126/science.abm6459 10.1016/j.jmst.2020.12.073 10.1002/adma.201603115 10.1002/pi.6292 10.1002/adfm.201909604 10.1039/C6GC03558B 10.1002/adma.201700898 10.1016/j.ensm.2022.12.036 10.1002/app.49191 10.1016/j.compositesb.2020.108017 10.1021/acsnano.1c09925 10.1016/j.ensm.2022.05.033 10.1016/j.cej.2017.11.054 10.1021/acs.langmuir.1c03043 10.1021/acsbiomaterials.0c01608 10.1038/s41586-020-2594-0 10.1002/adma.201702675 10.1126/science.aad2688 10.1016/j.cej.2021.131615 10.1016/j.jcis.2023.05.119 10.1021/acsnano.7b06590 10.1016/j.nanoen.2018.11.093 10.1016/j.compositesb.2022.110290 10.1002/app.52255 10.1016/j.compositesb.2022.109907 10.1021/acsnano.2c08368 10.1016/j.coco.2022.101402 10.1002/app.47679 10.1021/acsnano.9b06283 10.1016/j.mser.2022.100690 10.1126/sciadv.abd9410 10.1002/adma.201506446 10.1088/2053-1591/ab9250 10.1016/j.jmst.2021.11.012 10.1016/j.nanoen.2021.106502 10.3390/polym14081628 10.1002/adfm.202211613 10.1002/adfm.201401886 10.1039/C8NJ02361A 10.1039/C9SM01984G 10.1002/adfm.202211199 10.1002/admt.201600117 10.1002/adfm.202212124 10.1039/C9TA09372A 10.1038/s41560-019-0390-6 10.1021/acsami.7b00847 10.1038/nmat4635 10.1002/app.32852 10.1016/j.matt.2021.12.009 10.1016/j.compositesb.2021.109243 10.1002/smll.202106108 10.1039/C7TA02202F |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202304927 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202304927 ADFM202304927 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 51973047; 12002113 – fundername: Science and Technology Key Project of Zhejiang Province funderid: Z22E035302 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3577-a109b558e169d61a7a6abc8eee3d70d0baff3b6f791812ff3b31b30b68ccff933 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:49:43 EDT 2025 Tue Jul 01 00:30:46 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Sun Jul 06 04:46:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3577-a109b558e169d61a7a6abc8eee3d70d0baff3b6f791812ff3b31b30b68ccff933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2382-8850 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202304927 |
PQID | 2892574062 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2892574062 crossref_primary_10_1002_adfm_202304927 crossref_citationtrail_10_1002_adfm_202304927 wiley_primary_10_1002_adfm_202304927_ADFM202304927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2016; 13 28 2021 2022; 85 114 2017 2022; 5 14 2017 2019 2020; 29 58 32 2019; 4 2016 2021; 4 7 2023; 33 2022; 150 2014 2017; 24 29 2002 2021; 99 7 2018; 42 2016; 15 2016 2020 2022; 351 584 376 2022 2023 2021; 16 33 90 2016; 55 2017 2016; 9 1 2020; 393 2023 2022; 55 50 2018; 334 2019 2022 2022; 7 18 38 2019; 137 2022 2022; 427 16 2008 2011 2021 2020 2022 2020; 18 119 71 7 139 137 2017; 19 2022 2022 2023 2023; 238 5 37 647 2017 2020 2020 2021 2021; 29 14 30 89 225 2022; 247 2018 2019 2020; 12 168 193 2015 2019; 39 15 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_29_4 e_1_2_8_29_5 e_1_2_8_29_6 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 150 year: 2022 publication-title: Mater. Sci. Eng., R – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 427 16 year: 2022 2022 publication-title: Chem. Eng. J. ACS Nano – volume: 29 14 30 89 225 start-page: 1520 year: 2017 2020 2020 2021 2021 publication-title: Adv. Mater. ACS Nano Adv. Funct. Mater. Nano Energy Composites, Part B – volume: 334 start-page: 2154 year: 2018 publication-title: Chem. Eng. J. – volume: 19 start-page: 2925 year: 2017 publication-title: Green Chem. – volume: 16 33 90 start-page: 1734 year: 2022 2023 2021 publication-title: ACS Nano Adv. Funct. Mater. Nano Energy – volume: 55 start-page: 7239 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 85 114 start-page: 194 131 year: 2021 2022 publication-title: J. Mater. Sci. Technol. J. Mater. Sci. Technol. – volume: 7 18 38 start-page: 1853 year: 2019 2022 2022 publication-title: J. Mater. Chem. A Small Langmuir – volume: 351 584 376 start-page: 58 387 308 year: 2016 2020 2022 publication-title: Science Nature Science – volume: 29 58 32 start-page: 852 year: 2017 2019 2020 publication-title: Adv. Mater. Nano Energy Adv. Mater. – volume: 5 14 start-page: 1628 year: 2017 2022 publication-title: J. Mater. Chem. A Polymers – volume: 39 15 start-page: 6823 9224 year: 2015 2019 publication-title: New J. Chem. Soft Matter – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 18 119 71 7 139 137 start-page: 3933 1696 124 year: 2008 2011 2021 2020 2022 2020 publication-title: J. Mater. Chem. J. Appl. Polym. Sci. Polym. Int. Mater. Res. Express J. Appl. Polym. Sci. J. Appl. Polym. Sci. – volume: 24 29 start-page: 7548 year: 2014 2017 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 137 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 911 year: 2016 publication-title: Nat. Mater. – volume: 238 5 37 647 start-page: 911 467 year: 2022 2022 2023 2023 publication-title: Composites, Part B Matter Compos. Commun. J. Colloid Interface Sci. – volume: 55 50 start-page: 754 444 year: 2023 2022 publication-title: Energy Storage Mater. Energy Storage Mater. – volume: 9 1 year: 2017 2016 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Technol. – volume: 247 year: 2022 publication-title: Compos B Eng – volume: 99 7 year: 2002 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. Sci. Adv. – volume: 13 28 start-page: 3677 year: 2021 2016 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. – volume: 12 168 193 start-page: 416 413 year: 2018 2019 2020 publication-title: ACS Nano Composites, Part B Composites, Part B – volume: 4 7 start-page: 7415 180 year: 2016 2021 publication-title: J. Mater. Chem. B ACS Biomater. Sci. Eng. – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – ident: e_1_2_8_29_1 doi: 10.1039/b805943h – ident: e_1_2_8_13_1 doi: 10.1039/C5NJ00971E – ident: e_1_2_8_14_1 doi: 10.1021/acs.iecr.6b00532 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.192252799 – ident: e_1_2_8_4_3 doi: 10.1002/adma.202000870 – ident: e_1_2_8_17_2 doi: 10.1016/j.compositesb.2019.03.053 – ident: e_1_2_8_8_1 doi: 10.1039/C6TB02762H – ident: e_1_2_8_2_4 doi: 10.1016/j.nanoen.2021.106442 – ident: e_1_2_8_16_1 doi: 10.1016/j.cej.2020.124724 – ident: e_1_2_8_24_1 doi: 10.1021/acsami.1c03272 – ident: e_1_2_8_1_3 doi: 10.1126/science.abm6459 – ident: e_1_2_8_26_1 doi: 10.1016/j.jmst.2020.12.073 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201603115 – ident: e_1_2_8_29_3 doi: 10.1002/pi.6292 – ident: e_1_2_8_2_3 doi: 10.1002/adfm.201909604 – ident: e_1_2_8_7_1 doi: 10.1039/C6GC03558B – ident: e_1_2_8_3_2 doi: 10.1002/adma.201700898 – ident: e_1_2_8_22_1 doi: 10.1016/j.ensm.2022.12.036 – ident: e_1_2_8_29_6 doi: 10.1002/app.49191 – ident: e_1_2_8_17_3 doi: 10.1016/j.compositesb.2020.108017 – ident: e_1_2_8_30_1 doi: 10.1021/acsnano.1c09925 – ident: e_1_2_8_22_2 doi: 10.1016/j.ensm.2022.05.033 – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2017.11.054 – ident: e_1_2_8_9_3 doi: 10.1021/acs.langmuir.1c03043 – ident: e_1_2_8_8_2 doi: 10.1021/acsbiomaterials.0c01608 – ident: e_1_2_8_1_2 doi: 10.1038/s41586-020-2594-0 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201702675 – ident: e_1_2_8_1_1 doi: 10.1126/science.aad2688 – ident: e_1_2_8_21_1 doi: 10.1016/j.cej.2021.131615 – ident: e_1_2_8_28_4 doi: 10.1016/j.jcis.2023.05.119 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.7b06590 – ident: e_1_2_8_4_2 doi: 10.1016/j.nanoen.2018.11.093 – ident: e_1_2_8_15_1 doi: 10.1016/j.compositesb.2022.110290 – ident: e_1_2_8_29_5 doi: 10.1002/app.52255 – ident: e_1_2_8_28_1 doi: 10.1016/j.compositesb.2022.109907 – ident: e_1_2_8_21_2 doi: 10.1021/acsnano.2c08368 – ident: e_1_2_8_28_3 doi: 10.1016/j.coco.2022.101402 – ident: e_1_2_8_12_1 doi: 10.1002/app.47679 – ident: e_1_2_8_2_2 doi: 10.1021/acsnano.9b06283 – ident: e_1_2_8_27_1 doi: 10.1016/j.mser.2022.100690 – ident: e_1_2_8_20_2 doi: 10.1126/sciadv.abd9410 – ident: e_1_2_8_24_2 doi: 10.1002/adma.201506446 – ident: e_1_2_8_29_4 doi: 10.1088/2053-1591/ab9250 – ident: e_1_2_8_26_2 doi: 10.1016/j.jmst.2021.11.012 – ident: e_1_2_8_30_3 doi: 10.1016/j.nanoen.2021.106502 – ident: e_1_2_8_5_2 doi: 10.3390/polym14081628 – ident: e_1_2_8_30_2 doi: 10.1002/adfm.202211613 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201401886 – ident: e_1_2_8_11_1 doi: 10.1039/C8NJ02361A – ident: e_1_2_8_13_2 doi: 10.1039/C9SM01984G – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202211199 – ident: e_1_2_8_10_2 doi: 10.1002/admt.201600117 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202212124 – ident: e_1_2_8_9_1 doi: 10.1039/C9TA09372A – ident: e_1_2_8_6_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.7b00847 – ident: e_1_2_8_19_1 doi: 10.1038/nmat4635 – ident: e_1_2_8_29_2 doi: 10.1002/app.32852 – ident: e_1_2_8_28_2 doi: 10.1016/j.matt.2021.12.009 – ident: e_1_2_8_2_5 doi: 10.1016/j.compositesb.2021.109243 – ident: e_1_2_8_9_2 doi: 10.1002/smll.202106108 – ident: e_1_2_8_5_1 doi: 10.1039/C7TA02202F |
SSID | ssj0017734 |
Score | 2.7012448 |
Snippet | Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adhesive strength Adhesives Cellulose Cellulose fibers Contact angle Electric contacts Electrical resistivity Fire resistance Hydrophobicity Immersion coating Materials science multifunctionality MXenes MXene‐based coating Nanocomposites Nanofibers Polydimethylsiloxane silicone foams surfaces and interfaces Thermal insulation |
Title | Self‐Adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304927 https://www.proquest.com/docview/2892574062 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZQucAByk9FaKl8QOK0yXq96909Rg1RhdgKESrltvKvGmGyqEmktqc-Arxin4SZdbJJkRAS3GzJtnbtmfHn8cxnQt5mljtubBllJsmiVCobSZfmUWzSQgC-d1kb8l-didPz9MM0m-5k8Qd-iM7hhprR2mtUcKkWgy1pqDQOM8nbe6IE08kxYAtR0eeOP4rlebhWFgwDvNh0w9oYJ4P73e_vSluouQtY2x1n_JTIzbeGQJOv_dVS9fXNbzSO__Mz--TJGo7SYZCfZ-SBnT8nj3dICl-QnxPr3d3tj6G5sBjrTj81_trM8Onpa7-Y-eZKzi0dN_IbreQyCDQd4akWaoaio5dWUzCpgxPr_co3C0vBpoNQK3tJW4-kxmgbja3PQlQ6BShN0ZUHcuNhcNh8g8-y5X99Sc7H77-cnEbrhxwizWGtI8niUmVZYZkojWAyl0IqXVhrucljEyvpHFfC5SXiDSxzpnisRKG1cyXnB2Rv3sztK0INnL9KCf0SOJe6Uqg0jTXLC8kMjClVj0Sbhaz1muUcH9vwdeBnTmqc6rqb6h5517X_Hvg9_tjyaCMX9VrPFzUcV8HmAShKeiRpF_gvo9TD0bjqaq__pdMheYTlkBB5RPaWlyv7BpDRUh2Th8NR9XFy3GrBL8iJDAw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsgAWlKc6tIAXIFbpxHk4yYLFqMNoSpsRglaaXfBTVIQJ6swIhhWf0H4Kv8In8CXcGydpi4SQkLpgF0e2E9n37etzCXkam9CG2mRerIPYi4Q0nrBR4vk6SjnY9zauU_7zCR8fRa-m8XSNfG_vwjh8iC7ghpxRy2tkcAxI989RQ4W2eJW8PigKkiavct-sPoPXNn-xN4QtfhYEo5eHu2OvKSzgqRC-7QnmZzKOU8N4pjkTieBCqtQYE-rE174U1oaS2yRD_YfPIZOhL3mqlLUZxkBB6l_DMuII1z980yFWsSRxB9mcYUoZm7Y4kX7Qv_y_l_XguXF70USuddxog_xoV8eltnzYWS7kjvr6G3Dkf7V8t8mtxuKmA8cid8iamd0lNy_gMN4jZ29NaX9-Ox3o9wbT-enrqlzpY6yuvSrnx2X1RcwMHVXiI83FwvEsHaLjDi1NMZZN8ylojf6uKctlWc0NBbUFfCvNCa2DrgoTihT2nrjEewreAsVoJbBGCZODfeHCsjXE7X1ydCVr8oCsz6qZ2SRUg4uZCRgXgOttMy6jyFcsSQXTMKeQPeK1lFOoBsgd64mUhYOgDgrc2qLb2h553vX_5CBM_thzuyXEohFl8wI8chDrYPcFPRLUFPWXWYrBcJR3rYf_MugJuT4-zA-Kg73J_ha5ge_d_c9tsr44WZpHYAgu5OOa9Sh5d9XE-gsP1GqL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFLaqIiFY8I86bQEvQKzSiZ3ESRYsRg1RS5lRBVSaXfCvqDCTqjMjGFYcAW7CVbgCJ-E5TtIWCSEhdcEujmwnst-_n7-H0ONERyZSOg8SRZMg5kIH3MRpEKo4Y2Dfm6RJ-R9P2N5R_GKaTNfQ9-4ujMeH6ANujjMaee0Y_ESZ4RloKFfG3SRvzolo2qZVHujVR3Da5s_2C9jhJ5SWz9_s7gVtXYFARvDpgJMwF0mSacJyxQhPOeNCZlrrSKWhCgU3JhLMpLlTf-45IiIKBcukNCZ3IVAQ-ldiFuauWETxqgesImnqz7EZcRllZNrBRIZ0ePF_L6rBM9v2vIXcqLjyJvrRLY7PbHm_s1yIHfn5N9zI_2n1bqEbrb2NR55BbqM1PbuDrp9DYbyLvr3W1vz88nWk3mmXzI8Pa7tSx6629srOj239ic80Lmv-AY_5wnMsLpzbDi2FXSQbj6egM4a72tqlrecag9ICrhX6FDchV-nSiaTrPfFp9xh8BexilcAYFiYH68IHZRuA23vo6FLW5D5an9UzvYGwAgcz5zCOguNtcibiOJQkzThRMCcXAxR0hFPJFsbdVROxlQegppXb2qrf2gF62vc_8QAmf-y53dFh1QqyeQX-OAh1sProANGGoP4ySzUqynHf2vyXQY_Q1cOirF7uTw620DX32l_-3Ebri9OlfgBW4EI8bBgPo7eXTau_AFpFaTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Adhesive+Polydimethylsiloxane+Foam+Materials+Decorated+with+MXene%2FCellulose+Nanofiber+Interconnected+Network+for+Versatile+Functionalities&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Hai%E2%80%90Yang&rft.au=Chen%2C+Zuan%E2%80%90Yu&rft.au=Mao%2C+Min&rft.au=Wu%2C+Yu%E2%80%90Yue&rft.date=2023-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=48&rft_id=info:doi/10.1002%2Fadfm.202304927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |