Self‐Adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities

Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In thi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 48
Main Authors Chen, Hai‐Yang, Chen, Zuan‐Yu, Mao, Min, Wu, Yu‐Yue, Yang, Fan, Gong, Li‐Xiu, Zhao, Li, Cao, Cheng‐Fei, Song, Pingan, Gao, Jie‐Feng, Zhang, Guo‐Dong, Shi, Yong‐Qian, Cao, Kun, Tang, Long‐Cheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation. Polydimethylsiloxanes (PDMS) foam usually exhibits poor surface adhesion and limited functionality, restricting the potential applications. Here, self‐adhesive PDMS foams with worm‐like rough structure and reactive groups are fabricated by a facile silicone foaming approach. Decorating with MXene/cellulose nanofiber interconnected network and using silane modification, exceptional multifunctionalities PDMS nanocomposites are prepared, showing versatile applications in thermal insulating and smart sensing fields.
AbstractList Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159 o ), tunable electrical conductivity (from 10 −8 to 10 S m −1 ), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200  o C) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation.
Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation. Polydimethylsiloxanes (PDMS) foam usually exhibits poor surface adhesion and limited functionality, restricting the potential applications. Here, self‐adhesive PDMS foams with worm‐like rough structure and reactive groups are fabricated by a facile silicone foaming approach. Decorating with MXene/cellulose nanofiber interconnected network and using silane modification, exceptional multifunctionalities PDMS nanocomposites are prepared, showing versatile applications in thermal insulating and smart sensing fields.
Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self‐adhesive PDMS foam materials are reported with worm‐like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip‐coating strategy followed by silane surface modification. Interestingly, such self‐adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano‐coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super‐hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide‐temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire‐safe thermal insulation.
Author Chen, Zuan‐Yu
Zhang, Guo‐Dong
Zhao, Li
Gao, Jie‐Feng
Chen, Hai‐Yang
Gong, Li‐Xiu
Cao, Cheng‐Fei
Shi, Yong‐Qian
Cao, Kun
Yang, Fan
Song, Pingan
Wu, Yu‐Yue
Tang, Long‐Cheng
Mao, Min
Author_xml – sequence: 1
  givenname: Hai‐Yang
  surname: Chen
  fullname: Chen, Hai‐Yang
  organization: Hangzhou Normal University
– sequence: 2
  givenname: Zuan‐Yu
  surname: Chen
  fullname: Chen, Zuan‐Yu
  organization: Hangzhou Normal University
– sequence: 3
  givenname: Min
  surname: Mao
  fullname: Mao, Min
  organization: Nanjing Normal University
– sequence: 4
  givenname: Yu‐Yue
  surname: Wu
  fullname: Wu, Yu‐Yue
  organization: Hangzhou Normal University
– sequence: 5
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Hangzhou Normal University
– sequence: 6
  givenname: Li‐Xiu
  surname: Gong
  fullname: Gong, Li‐Xiu
  organization: Hangzhou Normal University
– sequence: 7
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: Hangzhou Normal University
– sequence: 8
  givenname: Cheng‐Fei
  surname: Cao
  fullname: Cao, Cheng‐Fei
  organization: University of Southern Queensland
– sequence: 9
  givenname: Pingan
  surname: Song
  fullname: Song, Pingan
  organization: University of Southern Queensland
– sequence: 10
  givenname: Jie‐Feng
  surname: Gao
  fullname: Gao, Jie‐Feng
  organization: Yangzhou University
– sequence: 11
  givenname: Guo‐Dong
  surname: Zhang
  fullname: Zhang, Guo‐Dong
  organization: Hangzhou Normal University
– sequence: 12
  givenname: Yong‐Qian
  surname: Shi
  fullname: Shi, Yong‐Qian
  organization: Fuzhou University
– sequence: 13
  givenname: Kun
  surname: Cao
  fullname: Cao, Kun
  organization: Zhejiang University
– sequence: 14
  givenname: Long‐Cheng
  orcidid: 0000-0002-2382-8850
  surname: Tang
  fullname: Tang, Long‐Cheng
  email: lctang@hznu.edu.cn
  organization: Hangzhou Normal University
BookMark eNqFkMtKAzEUhoMoeN26Drhum0s7mVmWalWwKnjB3ZDJnNBommiSWrvzEfQVfRJnqCgI4ur8B_7vXP5ttO68A4T2KelSQlhP1nrWZYRx0i-YWENbNKNZhxOWr39rereJtmO8J4QKwftb6P0KrP54fRvWU4jmGfClt8vazCBNlzYa61-kAzz2coYnMkEw0kZ8CMqHpqvxwqQpntyBg94IrJ1bHwGfS-e1qSDgU9cgyjsHqnWfQ1r48IC1D_gWQpTJ2Gb43KlkvJPWJANxF23oZgnsfdUddDM-uh6ddM4ujk9Hw7OO4gMhOpKSohoMcqBZUWdUCpnJSuUAwGtBalJJrXmVaVHQnLJWc1pxUmW5UloXnO-gg9Xcx-Cf5hBTee_nobkiliwv2ED0ScYaV3flUsHHGECXj8HMZFiWlJRt7GUbe_kdewP0fwHKJNn-l4I09m-sWGGLJpLlP0vK4eF48sN-AqL2ny8
CitedBy_id crossref_primary_10_1002_adfm_202400288
crossref_primary_10_1021_acsomega_3c05413
crossref_primary_10_1007_s12598_024_02890_8
crossref_primary_10_1021_acsanm_4c02850
crossref_primary_10_1007_s11431_024_2710_5
crossref_primary_10_1016_j_compstruct_2024_118820
crossref_primary_10_1002_smll_202309272
crossref_primary_10_1002_adfm_202413362
crossref_primary_10_1021_acsnano_4c04135
crossref_primary_10_1016_j_compositesb_2025_112374
crossref_primary_10_1109_JSEN_2024_3507087
crossref_primary_10_1016_j_cej_2024_154149
crossref_primary_10_1021_acs_biomac_4c01286
crossref_primary_10_1016_j_seppur_2023_125317
crossref_primary_10_1016_j_mtchem_2024_102058
crossref_primary_10_1002_sia_7379
crossref_primary_10_1515_polyeng_2024_0110
crossref_primary_10_1016_j_compositesa_2024_108373
crossref_primary_10_3390_ma18050984
crossref_primary_10_1002_pat_6463
crossref_primary_10_1007_s12598_024_03157_y
crossref_primary_10_1021_acsaelm_4c01350
crossref_primary_10_1002_pol_20240962
crossref_primary_10_1002_pat_6217
crossref_primary_10_1021_acsaelm_4c01355
crossref_primary_10_1109_LED_2024_3474909
crossref_primary_10_1007_s10853_024_10303_5
crossref_primary_10_1021_acsanm_4c00959
crossref_primary_10_3390_coatings14010035
crossref_primary_10_1002_adsr_202300140
crossref_primary_10_1021_acs_jpcc_4c05934
crossref_primary_10_1021_acsaelm_4c00668
crossref_primary_10_1021_acssuschemeng_4c04986
crossref_primary_10_1002_pat_6577
crossref_primary_10_1021_acsapm_4c03563
crossref_primary_10_1021_acsapm_3c03130
crossref_primary_10_1039_D3TC04776H
crossref_primary_10_1109_JSEN_2024_3509494
crossref_primary_10_1021_acsanm_4c04636
crossref_primary_10_1039_D4TA02688H
crossref_primary_10_1002_pc_28976
crossref_primary_10_1016_j_nanoso_2024_101328
crossref_primary_10_1007_s40820_025_01646_y
crossref_primary_10_1021_acsami_4c04719
crossref_primary_10_1016_j_polymdegradstab_2024_110823
crossref_primary_10_1016_j_porgcoat_2024_108373
crossref_primary_10_1080_25740881_2023_2267097
crossref_primary_10_1021_acsanm_3c04723
crossref_primary_10_1002_pen_27015
crossref_primary_10_1007_s41365_024_01599_8
crossref_primary_10_1016_j_cej_2024_152183
crossref_primary_10_1021_acsaelm_4c01563
crossref_primary_10_1002_smll_202406102
crossref_primary_10_1021_acsami_3c16614
crossref_primary_10_1016_j_seppur_2024_126580
crossref_primary_10_1021_acs_energyfuels_4c04232
crossref_primary_10_1016_j_ijbiomac_2024_138968
crossref_primary_10_1002_adfm_202410304
crossref_primary_10_1021_acsapm_4c03111
crossref_primary_10_1039_D3TA03415A
crossref_primary_10_1007_s40820_024_01571_6
crossref_primary_10_1007_s10853_024_09776_1
crossref_primary_10_1039_D4TC04700A
crossref_primary_10_1002_macp_202300436
crossref_primary_10_1039_D4NR03233K
crossref_primary_10_1039_D4MH01778A
crossref_primary_10_1021_acsapm_4c02926
crossref_primary_10_1021_acs_iecr_3c03319
crossref_primary_10_1016_j_apmt_2024_102191
crossref_primary_10_1089_soro_2023_0147
crossref_primary_10_1021_acsapm_4c00479
crossref_primary_10_1080_1023666X_2024_2311452
crossref_primary_10_1002_pat_70005
crossref_primary_10_1039_D4QM00286E
crossref_primary_10_1080_17480272_2024_2437507
crossref_primary_10_1016_j_desal_2025_118703
crossref_primary_10_1002_smll_202410283
crossref_primary_10_1109_ACCESS_2024_3434550
crossref_primary_10_1016_j_ijbiomac_2025_140131
crossref_primary_10_1021_acsaenm_4c00236
crossref_primary_10_1515_gps_2023_0128
crossref_primary_10_1177_07316844241242875
crossref_primary_10_1021_acs_jpcb_4c03008
crossref_primary_10_1016_j_ijbiomac_2024_139086
crossref_primary_10_1002_pat_6552
crossref_primary_10_1021_acsaelm_4c01780
crossref_primary_10_1039_D4TC01845A
crossref_primary_10_1016_j_compositesb_2024_111998
crossref_primary_10_1021_acsami_4c16924
crossref_primary_10_1039_D4NJ01650E
crossref_primary_10_1021_acsami_4c13774
crossref_primary_10_1021_acssuschemeng_4c03622
crossref_primary_10_1039_D4MA00725E
crossref_primary_10_3390_polym16172442
crossref_primary_10_1002_pc_29358
crossref_primary_10_1002_cjce_25278
crossref_primary_10_1021_acssuschemeng_4c05363
crossref_primary_10_1016_j_cej_2024_158091
crossref_primary_10_1186_s11671_024_03971_4
crossref_primary_10_1021_acsanm_4c01299
crossref_primary_10_1039_D3MA01090B
crossref_primary_10_1021_acsapm_4c00803
crossref_primary_10_1016_j_nanoen_2024_110261
crossref_primary_10_1016_j_cej_2025_159369
crossref_primary_10_1016_j_porgcoat_2024_108622
crossref_primary_10_1016_j_seppur_2024_127371
crossref_primary_10_1177_07316844241278136
crossref_primary_10_3390_gels10020121
crossref_primary_10_1007_s13399_025_06493_w
crossref_primary_10_1080_25740881_2024_2365294
crossref_primary_10_1002_pc_28251
crossref_primary_10_1016_j_jhazmat_2024_133489
crossref_primary_10_1016_j_nantod_2025_102719
crossref_primary_10_1021_acsmaterialslett_4c01113
crossref_primary_10_26599_NR_2025_94907013
crossref_primary_10_1002_admt_202500013
crossref_primary_10_1021_acsapm_4c03245
crossref_primary_10_1016_j_cej_2023_146382
crossref_primary_10_1002_pi_6759
crossref_primary_10_1021_acsnano_4c11945
crossref_primary_10_1016_j_apmt_2024_102218
crossref_primary_10_1016_j_compositesa_2023_107939
crossref_primary_10_1002_smll_202410067
crossref_primary_10_1039_D4SU00568F
crossref_primary_10_1002_advs_202309392
crossref_primary_10_1007_s10570_024_06157_4
crossref_primary_10_1016_j_nanoso_2024_101253
crossref_primary_10_1016_j_nanoms_2024_08_007
crossref_primary_10_1109_JLT_2024_3473944
crossref_primary_10_1039_D4TC03626C
crossref_primary_10_1515_ijfe_2024_0172
crossref_primary_10_1021_acsapm_3c01884
crossref_primary_10_1002_pc_29134
crossref_primary_10_1002_marc_202400145
crossref_primary_10_1039_D4NJ02971B
crossref_primary_10_1016_j_indcrop_2024_118724
crossref_primary_10_1039_D4NR03363A
crossref_primary_10_3390_en18051223
crossref_primary_10_1016_j_cej_2024_159040
crossref_primary_10_1016_j_desal_2024_118053
crossref_primary_10_1080_19475411_2023_2258830
crossref_primary_10_3390_polym15204159
crossref_primary_10_1007_s42114_024_01152_6
crossref_primary_10_1016_j_apsusc_2023_159210
crossref_primary_10_1039_D3TA08044G
crossref_primary_10_1007_s11804_025_00648_x
crossref_primary_10_1021_acs_nanolett_4c04401
crossref_primary_10_1016_j_cej_2024_154033
crossref_primary_10_1021_acsaelm_4c01498
crossref_primary_10_1109_JSEN_2024_3499972
crossref_primary_10_1002_adma_202311993
crossref_primary_10_1021_acsapm_4c00314
crossref_primary_10_1039_D4SM00383G
crossref_primary_10_1002_pat_6312
crossref_primary_10_1002_pat_6435
crossref_primary_10_1002_adfm_202418336
crossref_primary_10_1109_LED_2024_3496859
crossref_primary_10_1080_1023666X_2024_2421816
crossref_primary_10_1360_nso_20240049
crossref_primary_10_1080_09276440_2024_2442170
crossref_primary_10_1039_D4DT00979G
Cites_doi 10.1039/b805943h
10.1039/C5NJ00971E
10.1021/acs.iecr.6b00532
10.1073/pnas.192252799
10.1002/adma.202000870
10.1016/j.compositesb.2019.03.053
10.1039/C6TB02762H
10.1016/j.nanoen.2021.106442
10.1016/j.cej.2020.124724
10.1021/acsami.1c03272
10.1126/science.abm6459
10.1016/j.jmst.2020.12.073
10.1002/adma.201603115
10.1002/pi.6292
10.1002/adfm.201909604
10.1039/C6GC03558B
10.1002/adma.201700898
10.1016/j.ensm.2022.12.036
10.1002/app.49191
10.1016/j.compositesb.2020.108017
10.1021/acsnano.1c09925
10.1016/j.ensm.2022.05.033
10.1016/j.cej.2017.11.054
10.1021/acs.langmuir.1c03043
10.1021/acsbiomaterials.0c01608
10.1038/s41586-020-2594-0
10.1002/adma.201702675
10.1126/science.aad2688
10.1016/j.cej.2021.131615
10.1016/j.jcis.2023.05.119
10.1021/acsnano.7b06590
10.1016/j.nanoen.2018.11.093
10.1016/j.compositesb.2022.110290
10.1002/app.52255
10.1016/j.compositesb.2022.109907
10.1021/acsnano.2c08368
10.1016/j.coco.2022.101402
10.1002/app.47679
10.1021/acsnano.9b06283
10.1016/j.mser.2022.100690
10.1126/sciadv.abd9410
10.1002/adma.201506446
10.1088/2053-1591/ab9250
10.1016/j.jmst.2021.11.012
10.1016/j.nanoen.2021.106502
10.3390/polym14081628
10.1002/adfm.202211613
10.1002/adfm.201401886
10.1039/C8NJ02361A
10.1039/C9SM01984G
10.1002/adfm.202211199
10.1002/admt.201600117
10.1002/adfm.202212124
10.1039/C9TA09372A
10.1038/s41560-019-0390-6
10.1021/acsami.7b00847
10.1038/nmat4635
10.1002/app.32852
10.1016/j.matt.2021.12.009
10.1016/j.compositesb.2021.109243
10.1002/smll.202106108
10.1039/C7TA02202F
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202304927
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202304927
ADFM202304927
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 51973047; 12002113
– fundername: Science and Technology Key Project of Zhejiang Province
  funderid: Z22E035302
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3577-a109b558e169d61a7a6abc8eee3d70d0baff3b6f791812ff3b31b30b68ccff933
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:49:43 EDT 2025
Tue Jul 01 00:30:46 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Sun Jul 06 04:46:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3577-a109b558e169d61a7a6abc8eee3d70d0baff3b6f791812ff3b31b30b68ccff933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2382-8850
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202304927
PQID 2892574062
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2892574062
crossref_primary_10_1002_adfm_202304927
crossref_citationtrail_10_1002_adfm_202304927
wiley_primary_10_1002_adfm_202304927_ADFM202304927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2016; 13 28
2021 2022; 85 114
2017 2022; 5 14
2017 2019 2020; 29 58 32
2019; 4
2016 2021; 4 7
2023; 33
2022; 150
2014 2017; 24 29
2002 2021; 99 7
2018; 42
2016; 15
2016 2020 2022; 351 584 376
2022 2023 2021; 16 33 90
2016; 55
2017 2016; 9 1
2020; 393
2023 2022; 55 50
2018; 334
2019 2022 2022; 7 18 38
2019; 137
2022 2022; 427 16
2008 2011 2021 2020 2022 2020; 18 119 71 7 139 137
2017; 19
2022 2022 2023 2023; 238 5 37 647
2017 2020 2020 2021 2021; 29 14 30 89 225
2022; 247
2018 2019 2020; 12 168 193
2015 2019; 39 15
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_29_4
e_1_2_8_29_5
e_1_2_8_29_6
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 150
  year: 2022
  publication-title: Mater. Sci. Eng., R
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 427 16
  year: 2022 2022
  publication-title: Chem. Eng. J. ACS Nano
– volume: 29 14 30 89 225
  start-page: 1520
  year: 2017 2020 2020 2021 2021
  publication-title: Adv. Mater. ACS Nano Adv. Funct. Mater. Nano Energy Composites, Part B
– volume: 334
  start-page: 2154
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 2925
  year: 2017
  publication-title: Green Chem.
– volume: 16 33 90
  start-page: 1734
  year: 2022 2023 2021
  publication-title: ACS Nano Adv. Funct. Mater. Nano Energy
– volume: 55
  start-page: 7239
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 85 114
  start-page: 194 131
  year: 2021 2022
  publication-title: J. Mater. Sci. Technol. J. Mater. Sci. Technol.
– volume: 7 18 38
  start-page: 1853
  year: 2019 2022 2022
  publication-title: J. Mater. Chem. A Small Langmuir
– volume: 351 584 376
  start-page: 58 387 308
  year: 2016 2020 2022
  publication-title: Science Nature Science
– volume: 29 58 32
  start-page: 852
  year: 2017 2019 2020
  publication-title: Adv. Mater. Nano Energy Adv. Mater.
– volume: 5 14
  start-page: 1628
  year: 2017 2022
  publication-title: J. Mater. Chem. A Polymers
– volume: 39 15
  start-page: 6823 9224
  year: 2015 2019
  publication-title: New J. Chem. Soft Matter
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 18 119 71 7 139 137
  start-page: 3933 1696 124
  year: 2008 2011 2021 2020 2022 2020
  publication-title: J. Mater. Chem. J. Appl. Polym. Sci. Polym. Int. Mater. Res. Express J. Appl. Polym. Sci. J. Appl. Polym. Sci.
– volume: 24 29
  start-page: 7548
  year: 2014 2017
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 137
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 911
  year: 2016
  publication-title: Nat. Mater.
– volume: 238 5 37 647
  start-page: 911 467
  year: 2022 2022 2023 2023
  publication-title: Composites, Part B Matter Compos. Commun. J. Colloid Interface Sci.
– volume: 55 50
  start-page: 754 444
  year: 2023 2022
  publication-title: Energy Storage Mater. Energy Storage Mater.
– volume: 9 1
  year: 2017 2016
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Technol.
– volume: 247
  year: 2022
  publication-title: Compos B Eng
– volume: 99 7
  year: 2002 2021
  publication-title: Proc. Natl. Acad. Sci. U. S. A. Sci. Adv.
– volume: 13 28
  start-page: 3677
  year: 2021 2016
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 12 168 193
  start-page: 416 413
  year: 2018 2019 2020
  publication-title: ACS Nano Composites, Part B Composites, Part B
– volume: 4 7
  start-page: 7415 180
  year: 2016 2021
  publication-title: J. Mater. Chem. B ACS Biomater. Sci. Eng.
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– ident: e_1_2_8_29_1
  doi: 10.1039/b805943h
– ident: e_1_2_8_13_1
  doi: 10.1039/C5NJ00971E
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.iecr.6b00532
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.192252799
– ident: e_1_2_8_4_3
  doi: 10.1002/adma.202000870
– ident: e_1_2_8_17_2
  doi: 10.1016/j.compositesb.2019.03.053
– ident: e_1_2_8_8_1
  doi: 10.1039/C6TB02762H
– ident: e_1_2_8_2_4
  doi: 10.1016/j.nanoen.2021.106442
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2020.124724
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.1c03272
– ident: e_1_2_8_1_3
  doi: 10.1126/science.abm6459
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jmst.2020.12.073
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201603115
– ident: e_1_2_8_29_3
  doi: 10.1002/pi.6292
– ident: e_1_2_8_2_3
  doi: 10.1002/adfm.201909604
– ident: e_1_2_8_7_1
  doi: 10.1039/C6GC03558B
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.201700898
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ensm.2022.12.036
– ident: e_1_2_8_29_6
  doi: 10.1002/app.49191
– ident: e_1_2_8_17_3
  doi: 10.1016/j.compositesb.2020.108017
– ident: e_1_2_8_30_1
  doi: 10.1021/acsnano.1c09925
– ident: e_1_2_8_22_2
  doi: 10.1016/j.ensm.2022.05.033
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2017.11.054
– ident: e_1_2_8_9_3
  doi: 10.1021/acs.langmuir.1c03043
– ident: e_1_2_8_8_2
  doi: 10.1021/acsbiomaterials.0c01608
– ident: e_1_2_8_1_2
  doi: 10.1038/s41586-020-2594-0
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201702675
– ident: e_1_2_8_1_1
  doi: 10.1126/science.aad2688
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cej.2021.131615
– ident: e_1_2_8_28_4
  doi: 10.1016/j.jcis.2023.05.119
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.7b06590
– ident: e_1_2_8_4_2
  doi: 10.1016/j.nanoen.2018.11.093
– ident: e_1_2_8_15_1
  doi: 10.1016/j.compositesb.2022.110290
– ident: e_1_2_8_29_5
  doi: 10.1002/app.52255
– ident: e_1_2_8_28_1
  doi: 10.1016/j.compositesb.2022.109907
– ident: e_1_2_8_21_2
  doi: 10.1021/acsnano.2c08368
– ident: e_1_2_8_28_3
  doi: 10.1016/j.coco.2022.101402
– ident: e_1_2_8_12_1
  doi: 10.1002/app.47679
– ident: e_1_2_8_2_2
  doi: 10.1021/acsnano.9b06283
– ident: e_1_2_8_27_1
  doi: 10.1016/j.mser.2022.100690
– ident: e_1_2_8_20_2
  doi: 10.1126/sciadv.abd9410
– ident: e_1_2_8_24_2
  doi: 10.1002/adma.201506446
– ident: e_1_2_8_29_4
  doi: 10.1088/2053-1591/ab9250
– ident: e_1_2_8_26_2
  doi: 10.1016/j.jmst.2021.11.012
– ident: e_1_2_8_30_3
  doi: 10.1016/j.nanoen.2021.106502
– ident: e_1_2_8_5_2
  doi: 10.3390/polym14081628
– ident: e_1_2_8_30_2
  doi: 10.1002/adfm.202211613
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201401886
– ident: e_1_2_8_11_1
  doi: 10.1039/C8NJ02361A
– ident: e_1_2_8_13_2
  doi: 10.1039/C9SM01984G
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.202211199
– ident: e_1_2_8_10_2
  doi: 10.1002/admt.201600117
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202212124
– ident: e_1_2_8_9_1
  doi: 10.1039/C9TA09372A
– ident: e_1_2_8_6_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.7b00847
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat4635
– ident: e_1_2_8_29_2
  doi: 10.1002/app.32852
– ident: e_1_2_8_28_2
  doi: 10.1016/j.matt.2021.12.009
– ident: e_1_2_8_2_5
  doi: 10.1016/j.compositesb.2021.109243
– ident: e_1_2_8_9_2
  doi: 10.1002/smll.202106108
– ident: e_1_2_8_5_1
  doi: 10.1039/C7TA02202F
SSID ssj0017734
Score 2.7012448
Snippet Polydimethylsiloxanes (PDMS) foam as one of next‐generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adhesive strength
Adhesives
Cellulose
Cellulose fibers
Contact angle
Electric contacts
Electrical resistivity
Fire resistance
Hydrophobicity
Immersion coating
Materials science
multifunctionality
MXenes
MXene‐based coating
Nanocomposites
Nanofibers
Polydimethylsiloxane
silicone foams
surfaces and interfaces
Thermal insulation
Title Self‐Adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304927
https://www.proquest.com/docview/2892574062
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZQucAByk9FaKl8QOK0yXq96909Rg1RhdgKESrltvKvGmGyqEmktqc-Arxin4SZdbJJkRAS3GzJtnbtmfHn8cxnQt5mljtubBllJsmiVCobSZfmUWzSQgC-d1kb8l-didPz9MM0m-5k8Qd-iM7hhprR2mtUcKkWgy1pqDQOM8nbe6IE08kxYAtR0eeOP4rlebhWFgwDvNh0w9oYJ4P73e_vSluouQtY2x1n_JTIzbeGQJOv_dVS9fXNbzSO__Mz--TJGo7SYZCfZ-SBnT8nj3dICl-QnxPr3d3tj6G5sBjrTj81_trM8Onpa7-Y-eZKzi0dN_IbreQyCDQd4akWaoaio5dWUzCpgxPr_co3C0vBpoNQK3tJW4-kxmgbja3PQlQ6BShN0ZUHcuNhcNh8g8-y5X99Sc7H77-cnEbrhxwizWGtI8niUmVZYZkojWAyl0IqXVhrucljEyvpHFfC5SXiDSxzpnisRKG1cyXnB2Rv3sztK0INnL9KCf0SOJe6Uqg0jTXLC8kMjClVj0Sbhaz1muUcH9vwdeBnTmqc6rqb6h5517X_Hvg9_tjyaCMX9VrPFzUcV8HmAShKeiRpF_gvo9TD0bjqaq__pdMheYTlkBB5RPaWlyv7BpDRUh2Th8NR9XFy3GrBL8iJDAw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqsgAWlKc6tIAXIFbpxHk4yYLFqMNoSpsRglaaXfBTVIQJ6swIhhWf0H4Kv8In8CXcGydpi4SQkLpgF0e2E9n37etzCXkam9CG2mRerIPYi4Q0nrBR4vk6SjnY9zauU_7zCR8fRa-m8XSNfG_vwjh8iC7ghpxRy2tkcAxI989RQ4W2eJW8PigKkiavct-sPoPXNn-xN4QtfhYEo5eHu2OvKSzgqRC-7QnmZzKOU8N4pjkTieBCqtQYE-rE174U1oaS2yRD_YfPIZOhL3mqlLUZxkBB6l_DMuII1z980yFWsSRxB9mcYUoZm7Y4kX7Qv_y_l_XguXF70USuddxog_xoV8eltnzYWS7kjvr6G3Dkf7V8t8mtxuKmA8cid8iamd0lNy_gMN4jZ29NaX9-Ox3o9wbT-enrqlzpY6yuvSrnx2X1RcwMHVXiI83FwvEsHaLjDi1NMZZN8ylojf6uKctlWc0NBbUFfCvNCa2DrgoTihT2nrjEewreAsVoJbBGCZODfeHCsjXE7X1ydCVr8oCsz6qZ2SRUg4uZCRgXgOttMy6jyFcsSQXTMKeQPeK1lFOoBsgd64mUhYOgDgrc2qLb2h553vX_5CBM_thzuyXEohFl8wI8chDrYPcFPRLUFPWXWYrBcJR3rYf_MugJuT4-zA-Kg73J_ha5ge_d_c9tsr44WZpHYAgu5OOa9Sh5d9XE-gsP1GqL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFLaqIiFY8I86bQEvQKzSiZ3ESRYsRg1RS5lRBVSaXfCvqDCTqjMjGFYcAW7CVbgCJ-E5TtIWCSEhdcEujmwnst-_n7-H0ONERyZSOg8SRZMg5kIH3MRpEKo4Y2Dfm6RJ-R9P2N5R_GKaTNfQ9-4ujMeH6ANujjMaee0Y_ESZ4RloKFfG3SRvzolo2qZVHujVR3Da5s_2C9jhJ5SWz9_s7gVtXYFARvDpgJMwF0mSacJyxQhPOeNCZlrrSKWhCgU3JhLMpLlTf-45IiIKBcukNCZ3IVAQ-ldiFuauWETxqgesImnqz7EZcRllZNrBRIZ0ePF_L6rBM9v2vIXcqLjyJvrRLY7PbHm_s1yIHfn5N9zI_2n1bqEbrb2NR55BbqM1PbuDrp9DYbyLvr3W1vz88nWk3mmXzI8Pa7tSx6629srOj239ic80Lmv-AY_5wnMsLpzbDi2FXSQbj6egM4a72tqlrecag9ICrhX6FDchV-nSiaTrPfFp9xh8BexilcAYFiYH68IHZRuA23vo6FLW5D5an9UzvYGwAgcz5zCOguNtcibiOJQkzThRMCcXAxR0hFPJFsbdVROxlQegppXb2qrf2gF62vc_8QAmf-y53dFh1QqyeQX-OAh1sProANGGoP4ySzUqynHf2vyXQY_Q1cOirF7uTw620DX32l_-3Ebri9OlfgBW4EI8bBgPo7eXTau_AFpFaTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Adhesive+Polydimethylsiloxane+Foam+Materials+Decorated+with+MXene%2FCellulose+Nanofiber+Interconnected+Network+for+Versatile+Functionalities&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Hai%E2%80%90Yang&rft.au=Chen%2C+Zuan%E2%80%90Yu&rft.au=Mao%2C+Min&rft.au=Wu%2C+Yu%E2%80%90Yue&rft.date=2023-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=48&rft_id=info:doi/10.1002%2Fadfm.202304927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon