Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2− Breast Cancer Quantified With 21‐Gene Recurrence Score

Background While the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by cost and availability. Purpose To develop a multiparametric MRI‐based radiomics model for assessing ER+/HER2− breast cancer patients' 21‐...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 58; no. 2; pp. 444 - 453
Main Authors Chen, Yang, Tang, Wei, Liu, Wei, Li, Ruimin, Wang, Qifeng, Shen, Xigang, Gong, Jing, Gu, Yajia, Peng, Weijun
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background While the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by cost and availability. Purpose To develop a multiparametric MRI‐based radiomics model for assessing ER+/HER2− breast cancer patients' 21‐gene RS. Study Type Retrospective. Subjects A total of 151 patients with pathologically confirmed ER+/HER2− breast cancers, who underwent preoperative breast MR examinations and 21‐gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts. Field Strength/Sequence T2‐weighted imaging (T2WI), diffusion‐weighted imaging (DWI), and dynamic contrast‐enhancement (DCE) sequence at 1.5 T or 3 T. Assessment A total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built. Statistical Tests Receiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant. Results The area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively). Data Conclusion The proposed multiparametric MRI‐based radiomics models may have potential to help distinguish ER+/HER2− breast cancer patients' recurrence risk. Evidence Level 3. Technical Efficacy Stage 2.
AbstractList BackgroundWhile the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by cost and availability.PurposeTo develop a multiparametric MRI‐based radiomics model for assessing ER+/HER2− breast cancer patients' 21‐gene RS.Study TypeRetrospective.SubjectsA total of 151 patients with pathologically confirmed ER+/HER2− breast cancers, who underwent preoperative breast MR examinations and 21‐gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts.Field Strength/SequenceT2‐weighted imaging (T2WI), diffusion‐weighted imaging (DWI), and dynamic contrast‐enhancement (DCE) sequence at 1.5 T or 3 T.AssessmentA total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built.Statistical TestsReceiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant.ResultsThe area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively).Data ConclusionThe proposed multiparametric MRI‐based radiomics models may have potential to help distinguish ER+/HER2− breast cancer patients' recurrence risk.Evidence Level3.Technical EfficacyStage 2.
Background While the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by cost and availability. Purpose To develop a multiparametric MRI‐based radiomics model for assessing ER+/HER2− breast cancer patients' 21‐gene RS. Study Type Retrospective. Subjects A total of 151 patients with pathologically confirmed ER+/HER2− breast cancers, who underwent preoperative breast MR examinations and 21‐gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts. Field Strength/Sequence T2‐weighted imaging (T2WI), diffusion‐weighted imaging (DWI), and dynamic contrast‐enhancement (DCE) sequence at 1.5 T or 3 T. Assessment A total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built. Statistical Tests Receiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant. Results The area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively). Data Conclusion The proposed multiparametric MRI‐based radiomics models may have potential to help distinguish ER+/HER2− breast cancer patients' recurrence risk. Evidence Level 3. Technical Efficacy Stage 2.
While the Oncotype DX 21-gene recurrence score (RS) has been recommended for guiding ER+/HER2- breast cancer treatment decisions, it is limited by cost and availability.BACKGROUNDWhile the Oncotype DX 21-gene recurrence score (RS) has been recommended for guiding ER+/HER2- breast cancer treatment decisions, it is limited by cost and availability.To develop a multiparametric MRI-based radiomics model for assessing ER+/HER2- breast cancer patients' 21-gene RS.PURPOSETo develop a multiparametric MRI-based radiomics model for assessing ER+/HER2- breast cancer patients' 21-gene RS.Retrospective.STUDY TYPERetrospective.A total of 151 patients with pathologically confirmed ER+/HER2- breast cancers, who underwent preoperative breast MR examinations and 21-gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts.SUBJECTSA total of 151 patients with pathologically confirmed ER+/HER2- breast cancers, who underwent preoperative breast MR examinations and 21-gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts.T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhancement (DCE) sequence at 1.5 T or 3 T.FIELD STRENGTH/SEQUENCET2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhancement (DCE) sequence at 1.5 T or 3 T.A total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built.ASSESSMENTA total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built.Receiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant.STATISTICAL TESTSReceiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant.The area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively).RESULTSThe area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively).The proposed multiparametric MRI-based radiomics models may have potential to help distinguish ER+/HER2- breast cancer patients' recurrence risk.DATA CONCLUSIONThe proposed multiparametric MRI-based radiomics models may have potential to help distinguish ER+/HER2- breast cancer patients' recurrence risk.3.EVIDENCE LEVEL3.Stage 2.TECHNICAL EFFICACYStage 2.
While the Oncotype DX 21-gene recurrence score (RS) has been recommended for guiding ER+/HER2- breast cancer treatment decisions, it is limited by cost and availability. To develop a multiparametric MRI-based radiomics model for assessing ER+/HER2- breast cancer patients' 21-gene RS. Retrospective. A total of 151 patients with pathologically confirmed ER+/HER2- breast cancers, who underwent preoperative breast MR examinations and 21-gene expression assays, divided into training (n = 106) and validation (n = 45) cohorts. T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhancement (DCE) sequence at 1.5 T or 3 T. A total of 1046 radiomics features were extracted from each MRI sequence with a manual lesion segmentation method. After feature dimension reduction by the recursive feature elimination method and dataset balance by the synthetic minority oversampling technique, linear support vector machine classifier models were built to distinguish high RS (RS ≥ 26) from low RS (RS < 26) from T2WI, DWI apparent diffusion coefficient (ADC) maps, DCE and their combination (multiparametric). A model based on clinical characteristics and a fusion model combining clinical characteristics and multiparametric MRI were also built. Receiver operating characteristic (ROC) curve analysis and De Long's test with Bonferroni correction were used. A P value <0.01 was considered statistically significant. The area under the ROC curve (AUC) value of multiparametric radiomics model was 0.92, significantly higher than DCE (0.83), T2WI (0.78), and ADC (0.77) models in the training cohort. The radiomics model also achieved good performance in the validation cohort (AUC = 0.77). The fusion model had significantly higher performance than the clinical model in both the training (AUC = 0.92 and 0.64, respectively) and validation cohorts (AUC = 0.78 and 0.62, respectively). The proposed multiparametric MRI-based radiomics models may have potential to help distinguish ER+/HER2- breast cancer patients' recurrence risk. 3. Stage 2.
Author Tang, Wei
Li, Ruimin
Gong, Jing
Liu, Wei
Shen, Xigang
Chen, Yang
Peng, Weijun
Gu, Yajia
Wang, Qifeng
Author_xml – sequence: 1
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: Fudan University
– sequence: 2
  givenname: Wei
  surname: Tang
  fullname: Tang, Wei
  organization: Fudan University
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Fudan University
– sequence: 4
  givenname: Ruimin
  surname: Li
  fullname: Li, Ruimin
  organization: Fudan University
– sequence: 5
  givenname: Qifeng
  surname: Wang
  fullname: Wang, Qifeng
  organization: Fudan University Shanghai Cancer Center
– sequence: 6
  givenname: Xigang
  surname: Shen
  fullname: Shen, Xigang
  organization: Fudan University
– sequence: 7
  givenname: Jing
  surname: Gong
  fullname: Gong, Jing
  email: jing_gong_2020@163.com
  organization: Fudan University
– sequence: 8
  givenname: Yajia
  surname: Gu
  fullname: Gu, Yajia
  email: yajia_gu_2020@163.com
  organization: Fudan University
– sequence: 9
  givenname: Weijun
  orcidid: 0000-0002-2764-3044
  surname: Peng
  fullname: Peng, Weijun
  email: weijun_2020@163.com
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36440706$$D View this record in MEDLINE/PubMed
BookMark eNp90ctu1DAUBmALFdELbHgAZIkNAqX1LbGzLKOhHdQRIgWxjBznZOohsQfbEeqOJUvEjtfrk5BhChIVYuWz-P5fRz6HaM95Bwg9puSYEsJO1kOwx0zlQt5DBzRnLGO5KvammeQ8o4rIfXQY45oQUpYif4D2eSEEkaQ4QD-WY5_sRgc9QArW4GWFF4NeWbfClW6tH6yJ-NKunE5jgIg7H_BpjBDjlqQrwBWYMQRwZhpt_Ih9h-fVi5PzecVuvn7HLwPomPBMTyDgt6N2yXYWWvzBpivM6M2Xb2fg_qq5ND7AQ3S_032ER7fvEXr_av5udp5dvDlbzE4vMsNzKTPZlG1DgFIlhGlzqjnJc2gE4abUjSGi0FoWWipoueSiaQzjTFJdANWtUR0_Qs92vZvgP40QUz3YaKDvtQM_xppJQUpKBFcTfXqHrv0Y3LRdzRQXKi8LRSb15FaNzQBtvQl20OG6_v3pE3i-Ayb4GAN0fwgl9fai9fai9a-LTpjcwcYmnax3KWjb_ztCd5HPtofr_5TXr5fVYpf5CcCatOs
CitedBy_id crossref_primary_10_1007_s10278_023_00781_5
crossref_primary_10_1088_1361_6560_acfade
crossref_primary_10_1016_j_acra_2024_07_048
Cites_doi 10.1158/0008-5472.CAN-17-0339
10.1007/s00330-019-06510-3
10.1109/TMI.1983.4307610
10.1148/radiol.2017162333
10.1007/s00330-019-06383-6
10.1007/s00330-020-06662-7
10.1056/NEJMra0801289
10.1056/NEJMoa1510764
10.1002/jmri.27604
10.1002/jmri.28286
10.1002/jmri.25909
10.1002/jmri.24890
10.1038/35021093
10.1148/radiol.2016151149
10.1016/S1064-9689(21)00077-5
10.1007/s11547-021-01423-y
10.1007/s00330-021-07816-x
10.1148/radiol.2016152110
10.1016/j.ejrad.2008.03.025
10.1056/NEJMoa041588
10.1158/1078-0432.CCR-18-3190
10.1016/j.mri.2018.03.012
10.1148/radiol.2017171157
10.1073/pnas.191367098
10.1148/radiol.14131375
10.1007/s40995-022-01292-8
10.3389/fonc.2020.531476
10.1016/j.rcl.2010.06.011
10.3390/cancers12102772
10.6004/jnccn.2021.0023
10.1007/s12282-021-01294-1
10.1056/NEJMoa1804710
10.2214/AJR.20.23195
10.1002/jmri.25796
10.1148/radiol.2017170143
10.1016/j.jacr.2015.04.019
10.1007/s00432-018-2595-7
10.1002/jmri.26244
10.1148/radiol.2015151169
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine.
2023 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine.
– notice: 2023 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.28547
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 453
ExternalDocumentID 36440706
10_1002_jmri_28547
JMRI28547
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shanghai Anticancer Association SOAR PROJECT
  funderid: SACA‐AX‐201903
– fundername: Scientific Research Project of Shanghai Health and Family Planning Commission
  funderid: 20174Y0242
– fundername: Clinical Research Plan of SHDC
  funderid: SHDC2020CR2008A
– fundername: Shanghai Science and Technology Foundation
  funderid: 19DZ1930502
– fundername: National Natural Science Foundation of China
  funderid: NSFC 82071878
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3577-7b9db0e11844cd51a3055eb403c9abc046aa76a78ed3734bbc23271a6e1adc8f3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 09:52:38 EDT 2025
Sun Jul 13 05:00:53 EDT 2025
Mon Jul 21 06:00:37 EDT 2025
Tue Jul 01 03:56:56 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 16:21:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords genomics
neoplasm recurrence
breast neoplasms
image interpretation
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3577-7b9db0e11844cd51a3055eb403c9abc046aa76a78ed3734bbc23271a6e1adc8f3
Notes Yang Chen and Wei Tang contributed equally to this work and are co‐first authors for this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2764-3044
PMID 36440706
PQID 2834859680
PQPubID 1006400
PageCount 10
ParticipantIDs proquest_miscellaneous_2740910438
proquest_journals_2834859680
pubmed_primary_36440706
crossref_primary_10_1002_jmri_28547
crossref_citationtrail_10_1002_jmri_28547
wiley_primary_10_1002_jmri_28547_JMRI28547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 12
2018; 144
2018; 287
2018; 286
2023; 57
1983; 2
2022; 46
2014; 272
2020; 12
2020; 10
2016; 281
2016; 280
2018; 48
2018; 47
2022; 29
2004; 351
2021; 54
2010; 48
2021; 31
2020; 30
2009; 71
2015; 42
2017; 77
2018; 379
2001; 9
2000; 406
2015; 373
2021; 19
2021; 217
2019; 25
2016; 278
2019; 49
2009; 360
2018; 50
2013
2022; 127
2001; 98
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Morris EA (e_1_2_6_25_1) 2013
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 54
  start-page: 751
  year: 2021
  end-page: 760
  article-title: Intravoxel incoherent motion and dynamic contrast‐enhanced magnetic resonance imaging to early detect tissue injury and microcirculation alteration in hepatic injury induced by intestinal ischemia‐reperfusion in a rat model
  publication-title: J Magn Reson Imaging
– volume: 127
  start-page: 39
  year: 2022
  end-page: 56
  article-title: Radiomics in breast MRI: Current progress toward clinical application in the era of artificial intelligence
  publication-title: Radiol Med
– volume: 373
  start-page: 2005
  year: 2015
  end-page: 2014
  article-title: Prospective validation of a 21‐gene expression assay in breast cancer
  publication-title: New Engl J Med
– volume: 9
  start-page: 321
  year: 2001
  end-page: 331
  article-title: Vascularity assessment of breast lesions with gadolinium‐enhanced Mr imaging
  publication-title: Magn Reson Imaging Clin N Am
– volume: 287
  start-page: 68
  year: 2018
  end-page: 75
  article-title: Invasive breast cancer: Prognostic value of peritumoral edema identified at preoperative MR imaging
  publication-title: Radiology
– volume: 46
  start-page: 731
  year: 2022
  end-page: 738
  article-title: A method for cancer genomics feature selection based on LASSO‐RFE
  publication-title: Iran J Sci Technol Trans
– volume: 217
  start-page: 664
  year: 2021
  end-page: 675
  article-title: Development of MRI‐based radiomics model to predict the risk of recurrence in patients with advanced high‐grade serous ovarian carcinoma
  publication-title: AJR Am J Roentgenol
– volume: 25
  start-page: 3538
  year: 2019
  end-page: 3547
  article-title: Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to Neoadjuvant chemotherapy in breast cancer: A multicenter study
  publication-title: Clin Cancer Res
– volume: 286
  start-page: 60
  year: 2018
  end-page: 70
  article-title: Qualitative radiogenomics: Association between Oncotype DX test recurrence score and BI‐RADS mammographic and breast MR imaging features
  publication-title: Radiology
– volume: 71
  start-page: 96
  year: 2009
  end-page: 101
  article-title: Breast MRI: Are T2 IR sequences useful in the evaluation of breast lesions?
  publication-title: Eur J Radiol
– volume: 12
  start-page: 862
  year: 2015
  end-page: 866
  article-title: Radiogenomics: What it is and why it is important
  publication-title: J Am Coll Radiol
– volume: 406
  start-page: 747
  year: 2000
  end-page: 752
  article-title: Molecular portraits of human breast tumours
  publication-title: Nature
– volume: 57
  start-page: 633
  issue: 2
  year: 2023
  end-page: 645
  article-title: Pretreatment multiparametric MRI‐based radiomics analysis for the diagnosis of breast phyllodes tumors
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 164
  year: 2022
  end-page: 173
  article-title: Features from MRI texture analysis associated with survival outcomes in triple‐negative breast cancer patients
  publication-title: Breast Cancer
– volume: 48
  start-page: 226
  year: 2018
  end-page: 236
  article-title: Diffusion‐weighted MRI characteristics associated with prognostic pathological factors and recurrence risk in invasive ER+/HER2− breast cancers
  publication-title: J Magn Reson Imaging
– volume: 280
  start-page: 370
  year: 2016
  end-page: 378
  article-title: Prediction of low versus high recurrence scores in estrogen receptor‐positive, lymph node‐negative invasive breast cancer on the basis of radiologic‐pathologic features: Comparison with Oncotype DX test recurrence scores
  publication-title: Radiology
– volume: 19
  start-page: 484
  year: 2021
  end-page: 493
  article-title: NCCN guidelines(R) insights: Breast cancer, version 4.2021
  publication-title: J Natl Compr Canc Netw
– volume: 49
  start-page: 518
  year: 2019
  end-page: 524
  article-title: Convolutional neural network using a breast MRI tumor dataset can predict Oncotype dx recurrence score
  publication-title: J Magn Reson Imaging
– volume: 10
  year: 2020
  article-title: Application of MRI radiomics‐based machine learning model to improve contralateral BI‐RADS 4 lesion assessment
  publication-title: Front Oncol
– volume: 2
  start-page: 31
  year: 1983
  end-page: 39
  article-title: Comparison of interpolating methods for image resampling
  publication-title: IEEE Trans Med Imaging
– volume: 379
  start-page: 111
  year: 2018
  end-page: 121
  article-title: Adjuvant chemotherapy guided by a 21‐gene expression assay in breast cancer
  publication-title: New Engl J Med
– volume: 30
  start-page: 1436
  year: 2020
  end-page: 1450
  article-title: Diffusion‐weighted imaging of the breast‐a consensus and mission statement from the EUSOBI International Breast Diffusion‐Weighted Imaging working group
  publication-title: Eur Radiol
– volume: 351
  start-page: 2817
  year: 2004
  end-page: 2826
  article-title: A multigene assay to predict recurrence of tamoxifen‐treated, node‐negative breast cancer
  publication-title: New Engl J Med
– volume: 281
  start-page: 382
  year: 2016
  end-page: 391
  article-title: MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays
  publication-title: Radiology
– volume: 48
  start-page: 1013
  year: 2010
  end-page: 1042
  article-title: Breast MR imaging: Current indications and advanced imaging techniques
  publication-title: Radiol Clin North Am
– volume: 12
  start-page: 2772
  year: 2020
  article-title: Integrated multiparametric radiomics and informatics system for characterizing breast tumor characteristics with the OncotypeDX gene assay
  publication-title: Cancers (Basel)
– volume: 42
  start-page: 1398
  year: 2015
  end-page: 1406
  article-title: Breast cancer subtype intertumor heterogeneity: MRI‐based features predict results of a genomic assay
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 6916
  year: 2021
  end-page: 6928
  article-title: Texture analysis using machine learning‐based 3‐T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy
  publication-title: Eur Radiol
– volume: 50
  start-page: 38
  year: 2018
  end-page: 44
  article-title: Differentiating benign and malignant inflammatory breast lesions: Value of T2 weighted and diffusion weighted MR images
  publication-title: Magn Reson Imaging
– volume: 30
  start-page: 3363
  year: 2020
  end-page: 3370
  article-title: Is the presence of edema and necrosis on T2WI pretreatment breast MRI the key to predict pCR of triple negative breast cancer?
  publication-title: Eur Radiol
– volume: 47
  start-page: 401
  year: 2018
  end-page: 409
  article-title: Apparent diffusion coefficient in estrogen receptor‐positive and lymph node‐negative invasive breast cancers at 3.0T DW‐MRI: A potential predictor for an oncotype Dx test recurrence score
  publication-title: J Magn Reson Imaging
– volume: 272
  start-page: 374
  year: 2014
  end-page: 384
  article-title: Identification of intrinsic imaging phenotypes for breast cancer tumors: Preliminary associations with gene expression profiles
  publication-title: Radiology
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
– volume: 286
  start-page: 412
  year: 2018
  end-page: 420
  article-title: Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy
  publication-title: Radiology
– volume: 144
  start-page: 799
  year: 2018
  end-page: 807
  article-title: A study of association of Oncotype DX recurrence score with DCE‐MRI characteristics using multivariate machine learning models
  publication-title: J Cancer Res Clin Oncol
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  article-title: Radiomics: Images are more than pictures they are data
  publication-title: Radiology
– volume: 30
  start-page: 66
  year: 2020
  end-page: 76
  article-title: Diffusion‐weighted MRI of estrogen receptor‐positive, HER2‐negative, node‐negative breast cancer: Association between intratumoral heterogeneity and recurrence risk
  publication-title: Eur Radiol
– volume: 360
  start-page: 790
  year: 2009
  end-page: 800
  article-title: Gene‐expression signatures in breast cancer
  publication-title: New Engl J Med
– volume: 98
  start-page: 10869
  year: 2001
  end-page: 10874
  article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications
  publication-title: Proc Natl Acad Sci U S A
– year: 2013
– ident: e_1_2_6_27_1
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: e_1_2_6_37_1
  doi: 10.1007/s00330-019-06510-3
– ident: e_1_2_6_26_1
  doi: 10.1109/TMI.1983.4307610
– ident: e_1_2_6_34_1
  doi: 10.1148/radiol.2017162333
– ident: e_1_2_6_9_1
  doi: 10.1007/s00330-019-06383-6
– ident: e_1_2_6_23_1
  doi: 10.1007/s00330-020-06662-7
– ident: e_1_2_6_3_1
  doi: 10.1056/NEJMra0801289
– ident: e_1_2_6_7_1
  doi: 10.1056/NEJMoa1510764
– ident: e_1_2_6_24_1
  doi: 10.1002/jmri.27604
– ident: e_1_2_6_29_1
  doi: 10.1002/jmri.28286
– ident: e_1_2_6_13_1
  doi: 10.1002/jmri.25909
– volume-title: ACR BI‐RADS® magnetic resonance imaging. ACR BI‐RADS® atlas, breast imaging reporting and data system
  year: 2013
  ident: e_1_2_6_25_1
– ident: e_1_2_6_15_1
  doi: 10.1002/jmri.24890
– ident: e_1_2_6_2_1
  doi: 10.1038/35021093
– ident: e_1_2_6_31_1
  doi: 10.1148/radiol.2016151149
– ident: e_1_2_6_35_1
  doi: 10.1016/S1064-9689(21)00077-5
– ident: e_1_2_6_11_1
  doi: 10.1007/s11547-021-01423-y
– ident: e_1_2_6_40_1
  doi: 10.1007/s00330-021-07816-x
– ident: e_1_2_6_14_1
  doi: 10.1148/radiol.2016152110
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ejrad.2008.03.025
– ident: e_1_2_6_5_1
  doi: 10.1056/NEJMoa041588
– ident: e_1_2_6_32_1
  doi: 10.1158/1078-0432.CCR-18-3190
– ident: e_1_2_6_21_1
  doi: 10.1016/j.mri.2018.03.012
– ident: e_1_2_6_22_1
  doi: 10.1148/radiol.2017171157
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.191367098
– ident: e_1_2_6_16_1
  doi: 10.1148/radiol.14131375
– ident: e_1_2_6_28_1
  doi: 10.1007/s40995-022-01292-8
– ident: e_1_2_6_41_1
  doi: 10.3389/fonc.2020.531476
– ident: e_1_2_6_36_1
  doi: 10.1016/j.rcl.2010.06.011
– ident: e_1_2_6_19_1
  doi: 10.3390/cancers12102772
– ident: e_1_2_6_8_1
  doi: 10.6004/jnccn.2021.0023
– ident: e_1_2_6_38_1
  doi: 10.1007/s12282-021-01294-1
– ident: e_1_2_6_6_1
  doi: 10.1056/NEJMoa1804710
– ident: e_1_2_6_30_1
  doi: 10.2214/AJR.20.23195
– ident: e_1_2_6_12_1
  doi: 10.1002/jmri.25796
– ident: e_1_2_6_39_1
  doi: 10.1148/radiol.2017170143
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jacr.2015.04.019
– ident: e_1_2_6_18_1
  doi: 10.1007/s00432-018-2595-7
– ident: e_1_2_6_17_1
  doi: 10.1002/jmri.26244
– ident: e_1_2_6_33_1
  doi: 10.1148/radiol.2015151169
SSID ssj0009945
Score 2.432051
Snippet Background While the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by...
While the Oncotype DX 21-gene recurrence score (RS) has been recommended for guiding ER+/HER2- breast cancer treatment decisions, it is limited by cost and...
BackgroundWhile the Oncotype DX 21‐gene recurrence score (RS) has been recommended for guiding ER+/HER2− breast cancer treatment decisions, it is limited by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 444
SubjectTerms Breast cancer
breast neoplasms
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - genetics
Cancer therapies
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
ErbB-2 protein
Female
Field strength
Gene expression
Gene mapping
genomics
Health risks
Humans
image interpretation
Image processing
Image segmentation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Multiparametric Magnetic Resonance Imaging - methods
neoplasm recurrence
Patients
Radiomics
Retrospective Studies
Statistical analysis
Statistical tests
Support vector machines
Training
Title Multiparametric MR Imaging Radiomics Signatures for Assessing the Recurrence Risk of ER+/HER2− Breast Cancer Quantified With 21‐Gene Recurrence Score
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28547
https://www.ncbi.nlm.nih.gov/pubmed/36440706
https://www.proquest.com/docview/2834859680
https://www.proquest.com/docview/2740910438
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o9Ai4zgAii7SezEjtQLVFttKy0SKRW9oMivlFB2F22yF049ckS98ff6S_DY2SwFhAS3RJ68nBn7G3vmG4SeUuB8q3Id5lRbB6VKo1BaryPUiglODQeWJ4i2eJ2Nj-jBcXq8gXZWuTCeH6JfcAPLcOM1GLiQzXBNGvpxuqgHkP8HqeQQrAWIqFhzR-W5q1Bs8QMJYx6xnps0Ga4vvTwb_QYxLyNWN-XsXUfvVy_rI01OB8tWDtSXX3gc__drbqBrHRbFL73y3EQbZnYLXZl0u-230XeXnQvk4FOou6XwpMD7U1fWCBdC15DQ3ODD-sSzgzbYAmDsd5FBxEJLXMByvksoxEXdnOJ5hUfFi-F4VCQXX8_xKwiJb_EuqN4Cv1kKF7pkNH5Xtx9wEl-cfQNe7J9vcwi8m3fQ0d7o7e447Eo5hIqkjIVM5lpGxnozlCqdxgKIxoykEVG5kMo66UKwTDBuNGGESqks0mOxyEwstOIVuYs2Z_OZuY9wZk-zilGT8YqmigilqbIwUKVJpao0D9Cz1S8tVcdzDuU2PpWeoTkpoa9L19cBetLLfvbsHn-U2lppRtlZeGNbCOVpnvEoQI_7ZmubsOEiZma-tDKMAhyjhAfonteo_jHEAlE73GYBeu704i_PLw8mxb47evAvwg_R1cQiMh-tuIU228XSbFsE1cpHzlJ-AFs1GTU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYyAA6Ds5seJkwMHaLfabbuVSFvRW3BsB0LZXbTJCsGJI0fEjYfgVXiIPgkeJ5ulgJA49MAtUUZ2ZM_Y39gz3wDco8j5lsfSjqnUDkoeOHamvQ5bCsYjqiJkecJoi-2wv0c39oP9Jfg2z4Wp-SHaAze0DLNeo4HjgXR3wRr6ejQtOpgAyJqYyk31_p322MrHgzU9vfc9b723u9q3m6ICtvADxmyWxTJzlMbVlAoZuBwpr1RGHV_EPBPaXeSchZxFSvrMp1kmNOZgLg-Vy6WIcl-3ewJOYglxpOpfSxZsVXFsaiJrxOLbbuSwlg3V6y7-9ej-9xuoPYqRzSa3fg6-z4enjm056MyqrCM-_MIc-d-M33k428Bt8qS2jwuwpMYX4dSwCSi4BF9NAjLyn4-wtJggw4QMRqZyE0m4LDBnuyQ7xcuaALUkGuOT-qIcRTR6JgneWJicSZIU5QGZ5KSXPOr2e4l3-OkLeYpR_xVZReuakmczbqKzlCTPi-oV8dzDj5-R-vvnZnaQWvQy7B3LwFyB5fFkrK4BCfVrmDOqwiingfC5kFRopCsCLxd5EFvwYK5DqWio3LGiyJu0JqH2Upzb1MytBXdb2bc1gckfpVbmqpg2i1ipv_g0CuIwciy4037Wyw_eKfGxmsy0DKOIOKkfWXC1VuG2G19jbb2jhBY8NIr4l_7TjWEyME_X_0X4Npzu7w630q3B9uYNOONpAFoHZ67AcjWdqZsaMFbZLWOmBF4ct17_AGJJd9c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4ti7Tiwv9PYAEj4AAobX6cODlwgG2rdpeuIMuKvQXHdiAsbVdNKwQnjhwRN96BV-El9knwOGnKAkLisAduiTyyI3vG_iae-QbgDkXOtzyWdkyldlDywLEz7XXYUjAeURUhyxNGW2yH_V26uRfsrcC3RS5MxQ_R_HBDyzD7NRr4gczbS9LQN6Np0cL8P1aHVG6p9--0w1Y-HHT06t71vF73-UbfrmsK2MIPGLNZFsvMURpWUypk4HJkvFIZdXwR80xob5FzFnIWKekzn2aZ0JCDuTxULpciyn3d7wk4SUMnxkIRnWRJVhXHpiSyBiy-7UYOa8hQvfbyW48ef79h2qMQ2ZxxvTPwfTE7VWjLfms-y1riwy_Ekf_L9J2F0zXYJo8q6zgHK2p8HtaGdTjBBfhq0o-R_XyEhcUEGSZkMDJ1m0jCZYEZ2yXZKV5V9Kcl0QifVNfkKKKxM0nwvsJkTJKkKPfJJCfd5EG73028w09fyGOM-Z-RDbStKXk25yY2S0nyopi9Jp57-PEzEn__3M0OEotehN1jmZhLsDqejNUVIKF-DXNGVRjlNBA-F5IKjXNF4OUiD2IL7i1UKBU1kTvWE3mbVhTUXoprm5q1teB2I3tQ0Zf8UWp9oYlpvYWVusWnURCHkWPBraZZbz54o8THajLXMowi3qR-ZMHlSoObYXyNtPV5Elpw3-jhX8ZPN4fJwDxd_Rfhm7D2tNNLnwy2t67BKU-jzyoycx1WZ9O5uq7R4iy7YYyUwMvjVusfee52hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparametric+MR+Imaging+Radiomics+Signatures+for+Assessing+the+Recurrence+Risk+of+ER%2B%2FHER2-+Breast+Cancer+Quantified+With+21-Gene+Recurrence+Score&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Chen%2C+Yang&rft.au=Tang%2C+Wei&rft.au=Liu%2C+Wei&rft.au=Li%2C+Ruimin&rft.date=2023-08-01&rft.eissn=1522-2586&rft.volume=58&rft.issue=2&rft.spage=444&rft_id=info:doi/10.1002%2Fjmri.28547&rft_id=info%3Apmid%2F36440706&rft.externalDocID=36440706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon