Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases

The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐g...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 8; no. 5
Main Authors Imran, Omar Q., Kim, Na Kyung, Bodkin, Lauren N., Dwulet, Gregory E., Feng, Xunda, Kawabata, Kohsuke, Elimelech, Menachem, Gin, Douglas L., Osuji, Chinedum O.
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications. Frontal photopolymerization is introduced as an alternative to spin‐coating for directionally growing cross‐linked films of discotic supramolecular assemblies at unprecedented high‐resolution growth rates of ≈5 nm s−1. Proof‐of‐concept of this technique is provided by the fabrication of sub‐micrometer thin‐film nanoporous membranes which exhibit an expected water permeability scaling with film thickness.
AbstractList The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications.
The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications. Frontal photopolymerization is introduced as an alternative to spin‐coating for directionally growing cross‐linked films of discotic supramolecular assemblies at unprecedented high‐resolution growth rates of ≈5 nm s−1. Proof‐of‐concept of this technique is provided by the fabrication of sub‐micrometer thin‐film nanoporous membranes which exhibit an expected water permeability scaling with film thickness.
Abstract The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation science. New thin‐film fabrication methods are sought to harness the emerging potential of self‐assembled nanostructured materials as next‐generation membranes. Here, the authors show that nanometer‐scale control over the thickness of self‐assembled mesophases can be enacted by directional photopolymerization in the presence of highly photo‐attenuating molecular species. Metrology reveals average film growth rates below ten nanometers per second, indicating that high‐resolution fabrication is possible with this approach. The trends in experimental data are reproduced well in numerical simulations of mean‐field frontal photopolymerization modeled in a highly photo‐attenuating and photo‐bleaching medium. These simulation results connect the experimentally observed nanometer‐scale control of film growth to the strong photo‐attenuating nature of the mesophase, which originates from its high‐aromatic‐ring content. Water permeability measurements conducted on the fabricated thin films show the expected linear scaling of permeability with film thickness. Film permeabilities compare favorably with current state‐of‐the‐art nanofiltration and reverse osmosis membranes, suggesting that the current approach may be utilized to prepare new nanoporous membranes for such applications.
Author Bodkin, Lauren N.
Elimelech, Menachem
Kawabata, Kohsuke
Osuji, Chinedum O.
Imran, Omar Q.
Dwulet, Gregory E.
Kim, Na Kyung
Feng, Xunda
Gin, Douglas L.
Author_xml – sequence: 1
  givenname: Omar Q.
  orcidid: 0000-0002-6166-1246
  surname: Imran
  fullname: Imran, Omar Q.
  organization: Yale University
– sequence: 2
  givenname: Na Kyung
  surname: Kim
  fullname: Kim, Na Kyung
  organization: University of Pennsylvania
– sequence: 3
  givenname: Lauren N.
  surname: Bodkin
  fullname: Bodkin, Lauren N.
  organization: University of Colorado
– sequence: 4
  givenname: Gregory E.
  orcidid: 0000-0002-4962-6528
  surname: Dwulet
  fullname: Dwulet, Gregory E.
  organization: University of Colorado
– sequence: 5
  givenname: Xunda
  orcidid: 0000-0002-2845-8414
  surname: Feng
  fullname: Feng, Xunda
  organization: Donghua University
– sequence: 6
  givenname: Kohsuke
  orcidid: 0000-0002-8687-0781
  surname: Kawabata
  fullname: Kawabata, Kohsuke
  organization: Tohoku University
– sequence: 7
  givenname: Menachem
  orcidid: 0000-0003-4186-1563
  surname: Elimelech
  fullname: Elimelech, Menachem
  organization: Yale University
– sequence: 8
  givenname: Douglas L.
  orcidid: 0000-0002-6215-668X
  surname: Gin
  fullname: Gin, Douglas L.
  organization: University of Colorado
– sequence: 9
  givenname: Chinedum O.
  orcidid: 0000-0003-0261-3065
  surname: Osuji
  fullname: Osuji, Chinedum O.
  email: cosuji@seas.upenn.edu
  organization: University of Pennsylvania
BookMark eNqFkE1LAzEQhoNUsNZePQc8b02yH-keS2u10KqH3pdsMqGp2c2abJX117u1ot6EgRmY5x2G5xINalcDQteUTCgh7FaoykwYYYTQnPMzNGQ0zyIep2TwZ75A4xD2pIcoo2waD5F-FLULUljA252RLzWEgOeubr2z2Gl8XDfOu0PAS2OrgBfgzRsorL2r8MJ4kK1xtbC2w8871_aw7aqe-eiZDQTX7ESAcIXOtbABxt99hLbLu-38IVo_3a_ms3Uk45TziHMlBIuZ4lDGRIOSsoSMgNSKTcuypJL2VbKMZ5AkCkClaa6YTmUpFCfxCN2czjbevR4gtMXeHXz_XShYkucxS-gXNTlR0rsQPOii8aYSvisoKY42i6PN4sdmH8hPgXdjofuHLmaLzeo3-wkk5n3f
CitedBy_id crossref_primary_10_1016_j_polymer_2022_125625
crossref_primary_10_1002_marc_202100235
crossref_primary_10_1016_j_memsci_2021_120097
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1039_D3SM00269A
crossref_primary_10_1002_admi_202201761
crossref_primary_10_1002_smll_202307885
crossref_primary_10_3390_ma14174881
crossref_primary_10_1021_acsami_2c10106
crossref_primary_10_3390_ma17112597
Cites_doi 10.1021/acs.iecr.7b04648
10.1021/acsnano.8b01822
10.1002/marc.200700707
10.1039/c0ee00541j
10.1021/acs.macromol.7b00013
10.1021/jp0276855
10.1080/02678292.2013.854418
10.1021/ma9901947
10.1002/adma.201502607
10.1016/j.polymer.2005.02.052
10.1039/B312789C
10.1016/j.apenergy.2010.09.030
10.1021/acsnano.7b00304
10.1002/adfm.201502071
10.1007/s10118-020-2431-9
10.1021/acsnano.5b06130
10.1038/s41563-019-0389-1
10.1126/science.aab0530
10.1016/j.nanoen.2020.104480
10.1103/PhysRevE.92.022403
10.1002/adfm.201603408
10.1126/sciadv.aav9308
10.1088/2053-1583/ab6e88
10.1021/acs.langmuir.7b02467
10.1140/epje/i2010-10586-2
10.1016/j.pmatsci.2019.100619
10.1016/j.memsci.2016.03.051
10.1103/PhysRevE.72.051715
10.1002/anie.201711163
10.1103/PhysRevE.72.021801
10.1016/j.watres.2015.11.045
10.1002/adfm.201906022
10.1021/acsmacrolett.9b00513
10.1039/C9QM00337A
10.1088/0022-3727/42/2/025102
10.1080/19443994.2014.926839
10.1007/s11947-012-0806-9
10.1039/c3sm50320h
10.1002/advs.201700405
10.1016/j.desal.2011.04.004
10.1002/adfm.200400182
10.1126/sciadv.1602326
10.1039/C4EE01432D
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202001977
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202001977
ADMI202001977
Genre article
GrantInformation_xml – fundername: NSF
  funderid: CBET‐1703494; PFI:AIR‐TT IIP‐1640375; NNCI‐1542153; DMR‐1720530; DMR‐1945966
– fundername: JSPS
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3577-77daa232d7eb30fedccbe60ecfd28bbb1c11c1b2676e44deed559d2f5cbad703
ISSN 2196-7350
IngestDate Sat Jul 27 16:31:24 EDT 2024
Thu Sep 12 17:39:25 EDT 2024
Sat Aug 24 01:02:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3577-77daa232d7eb30fedccbe60ecfd28bbb1c11c1b2676e44deed559d2f5cbad703
ORCID 0000-0003-0261-3065
0000-0003-4186-1563
0000-0002-2845-8414
0000-0002-6215-668X
0000-0002-4962-6528
0000-0002-6166-1246
0000-0002-8687-0781
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/admi.202001977
PQID 2499324170
PQPubID 2034582
PageCount 7
ParticipantIDs proquest_journals_2499324170
crossref_primary_10_1002_admi_202001977
wiley_primary_10_1002_admi_202001977_ADMI202001977
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 8
2010; 31
2012; 287
2019; 3
2017; 3
2019; 5
2015; 92
2010
2013; 40
2015; 55
2016; 10
2020; 38
2019; 18
2005
2011; 4
2017; 356
2013; 9
2005; 46
2020; 7
2017; 50
2015; 27
2003; 107
2018; 5
2020; 30
2020; 110
2008; 29
2004; 14
2017; 11
2017; 33
2020; 70
2011; 88
1999; 32
2016; 511
2005; 72
2008; 42
2018; 12
2014; 7
2016; 26
2012; 5
2016; 89
2018; 57
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
Dolgov L. (e_1_2_4_44_1) 2010
References_xml – volume: 8
  start-page: 1303
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 18
  start-page: 1235
  year: 2019
  publication-title: Nat. Mater.
– volume: 110
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 356
  year: 2017
  publication-title: Science
– volume: 29
  start-page: 367
  year: 2008
  publication-title: Macromol. Rapid Commun.
– volume: 26
  start-page: 8023
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 89
  start-page: 210
  year: 2016
  publication-title: Water Res.
– volume: 88
  start-page: 981
  year: 2011
  publication-title: Appl. Energy
– year: 2005
– volume: 5
  start-page: 1143
  year: 2012
  publication-title: Food Bioprocess Technol.
– volume: 10
  start-page: 150
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 3857
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 107
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 31
  start-page: 343
  year: 2010
  publication-title: Eur. Phys. J. E
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 11
  start-page: 3911
  year: 2017
  publication-title: ACS Nano
– volume: 27
  start-page: 6118
  year: 2015
  publication-title: Adv. Mater.
– volume: 40
  start-page: 1769
  year: 2013
  publication-title: Liq. Cryst.
– volume: 4
  start-page: 1946
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 2777
  year: 2017
  publication-title: Macromolecules
– volume: 12
  start-page: 6714
  year: 2018
  publication-title: ACS Nano
– volume: 92
  year: 2015
  publication-title: Phys. Rev. E
– year: 2010
– volume: 14
  start-page: 494
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 7
  year: 2020
  publication-title: 2D Mater.
– volume: 3
  start-page: 1671
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 55
  start-page: 845
  year: 2015
  publication-title: Desalin. Water Treat.
– volume: 57
  start-page: 532
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. E
– volume: 9
  start-page: 7106
  year: 2013
  publication-title: Soft Matter
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 4355
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 10
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 511
  start-page: 180
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 42
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 46
  start-page: 4230
  year: 2005
  publication-title: Polymer
– volume: 287
  start-page: 190
  year: 2012
  publication-title: Desalination
– volume: 14
  start-page: 1053
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2017
  publication-title: Langmuir
– volume: 38
  start-page: 1185
  year: 2020
  publication-title: Chin. J. Polym. Sci.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 32
  start-page: 6552
  year: 1999
  publication-title: Macromolecules
– ident: e_1_2_4_35_1
  doi: 10.1021/acs.iecr.7b04648
– ident: e_1_2_4_17_1
  doi: 10.1021/acsnano.8b01822
– ident: e_1_2_4_14_1
  doi: 10.1002/marc.200700707
– ident: e_1_2_4_6_1
  doi: 10.1039/c0ee00541j
– ident: e_1_2_4_28_1
  doi: 10.1021/acs.macromol.7b00013
– ident: e_1_2_4_40_1
  doi: 10.1021/jp0276855
– ident: e_1_2_4_45_1
  doi: 10.1080/02678292.2013.854418
– ident: e_1_2_4_38_1
  doi: 10.1021/ma9901947
– ident: e_1_2_4_37_1
  doi: 10.1002/adma.201502607
– ident: e_1_2_4_31_1
  doi: 10.1016/j.polymer.2005.02.052
– ident: e_1_2_4_21_1
  doi: 10.1039/B312789C
– ident: e_1_2_4_11_1
  doi: 10.1016/j.apenergy.2010.09.030
– ident: e_1_2_4_24_1
  doi: 10.1021/acsnano.7b00304
– ident: e_1_2_4_3_1
  doi: 10.1002/adfm.201502071
– ident: e_1_2_4_33_1
  doi: 10.1007/s10118-020-2431-9
– ident: e_1_2_4_27_1
  doi: 10.1021/acsnano.5b06130
– ident: e_1_2_4_34_1
– ident: e_1_2_4_36_1
  doi: 10.1038/s41563-019-0389-1
– ident: e_1_2_4_13_1
  doi: 10.1126/science.aab0530
– ident: e_1_2_4_2_1
  doi: 10.1016/j.nanoen.2020.104480
– ident: e_1_2_4_39_1
  doi: 10.1103/PhysRevE.92.022403
– ident: e_1_2_4_29_1
  doi: 10.1002/adfm.201603408
– ident: e_1_2_4_19_1
  doi: 10.1126/sciadv.aav9308
– ident: e_1_2_4_5_1
  doi: 10.1088/2053-1583/ab6e88
– ident: e_1_2_4_25_1
  doi: 10.1021/acs.langmuir.7b02467
– ident: e_1_2_4_20_1
  doi: 10.1140/epje/i2010-10586-2
– ident: e_1_2_4_1_1
  doi: 10.1016/j.pmatsci.2019.100619
– ident: e_1_2_4_12_1
  doi: 10.1016/j.memsci.2016.03.051
– ident: e_1_2_4_43_1
  doi: 10.1103/PhysRevE.72.051715
– ident: e_1_2_4_23_1
  doi: 10.1002/anie.201711163
– ident: e_1_2_4_41_1
  doi: 10.1103/PhysRevE.72.021801
– ident: e_1_2_4_7_1
  doi: 10.1016/j.watres.2015.11.045
– ident: e_1_2_4_4_1
  doi: 10.1002/adfm.201906022
– ident: e_1_2_4_18_1
  doi: 10.1021/acsmacrolett.9b00513
– ident: e_1_2_4_30_1
  doi: 10.1039/C9QM00337A
– ident: e_1_2_4_42_1
  doi: 10.1088/0022-3727/42/2/025102
– ident: e_1_2_4_8_1
  doi: 10.1080/19443994.2014.926839
– ident: e_1_2_4_9_1
  doi: 10.1007/s11947-012-0806-9
– ident: e_1_2_4_15_1
  doi: 10.1039/c3sm50320h
– ident: e_1_2_4_26_1
  doi: 10.1002/advs.201700405
– ident: e_1_2_4_16_1
  doi: 10.1016/j.desal.2011.04.004
– ident: e_1_2_4_22_1
  doi: 10.1002/adfm.200400182
– ident: e_1_2_4_32_1
  doi: 10.1126/sciadv.1602326
– ident: e_1_2_4_10_1
  doi: 10.1039/C4EE01432D
– volume-title: Carbon Nanotubes
  year: 2010
  ident: e_1_2_4_44_1
  contributor:
    fullname: Dolgov L.
SSID ssj0001121283
Score 2.2953672
Snippet The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to separation...
Abstract The preparation of thin films of nanostructured functional materials is a critical step in a diverse array of applications ranging from photonics to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Attenuation
Bleaching
Film growth
Film thickness
frontal photopolymerization
Functional materials
Mathematical models
Membranes
Mesophase
Nanofiltration
nanoporous films
Nanostructure
Nanostructured materials
Permeability
Photopolymerization
Reverse osmosis
templated mesophase
thickness control
Thin films
Title Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202001977
https://www.proquest.com/docview/2499324170/abstract/
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbpLoW-lJ403W3RQ6EPxqktH7Ifwx5sW7JtISlLX4xOujTHYieU7H_pf-3IUny0S4-FYIIsK3jmy1wazSD0SmkW5JkifigE8WOthM9pnvhMC5bzRLGkDg1MztOzWfzuIrkYDH50spY2az4S1zeeK7kNV2EM-GpOyf4HZ5tFYQC-A3_hChyG6z_xGETjqgIiK9N-U3yrpdaRyz03kQC4Dea1SXI9vZwvKhAuJQg3ac-UOGFnLPH51vv4dbU2_RK2ZgfnGuZMlGlwADqu6tqv413KABi69g3rghOlNpldDcwWpQ2rfliw0vs0avf5LfiY9367cRrTZiq6nmDmkLZaeufNE8ffN3O7W-LO0ngno26cgnQStaw4A9GY-jSyZWZH6oYxJ4-zDuySjmJu1NZvUt9WkWVycQkOv0kSy11rmF557WZm8ue5thrw8eRtc_8O2icAYPDt98efZ19mbRAvBM1fl3pt3mRXGDQgb_o_0jd8Wm-m6xPVRs30AbrvvBE8ttB6iAZq-QjdrbOCRfUY6QZguAEYdgDDK41bgOEaYNgBDBuA4R7A8K8Awy3AnqDp6cn06Mx3jTl8ESWUgkcmGQNTXFLFo0ArKQRXaaCEliTjnIcihA8nKU1VHEsww8BvlUQngjMJKuYp2luuluoZwkwnQcrBqM-ZjKM4yXjEY6Up4SQTNKJD9HpHtOLKll8pbKFtUhjyFg15h-hwR9PC_UWrAtYF_yQOaTBEpKbzX1Ypenx_fpuHDtC9Fv6HaG9dbtQLMFzX_KWDz0_TtpgE
link.rule.ids 315,786,790,27957,27958,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfQiPrFadQ-Cp9Bkk82mx9Ja6qPioRXxEvaJRW3FVEF_vbNJ2tqTIOQSksxhsjPzzezsNwBnxgq_mRjqBUpRL7JGeZI3mSesEk3JjGB5aaB_G_eG0dUDm3UTurMwBT_EvODmLCP3187AXUG6sWANFfp1hAmeawpCELMKVYx9LKlAtXU_fBwuCi0BeuecjhONM_Z4yPwZeaNPG8tCloPTAnH-xq154OluwWaJGEmr-MXbsGLGO7CWd26qbBcs-sdJhpo2ZPA0Us_OdZF20YBOJpa4x4ixMcEn3dHLa0Y6uOY-jSbuYAkpPZ6D4y9f5O5pMnVDE77cNs43vtM3bsoBBrpsDwbdi0G755XDEzwVMs4RNWshEC5pjumyb41WSprYN8pqmkgpAxXgJWnMYxNFGkMl5haaWqak0OgG9qEynozNARBhmR9LBF5NoaMwYokMZWQsp5Imioe8BuczpaVvBUVGWpAh09SpN52rtwb1mU7T0lSyFOUihowC7teA5nr-Q0ra6vQv53eH__noFNZ7g_5NenN5e30EG9T1qeR9ZXWoTN8_zDECjak8KZfSDxD_zd4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60RfEiPrE-9yB4Ck02u9n2WFqLVVt6aKV4CfukxT7EVEF_vbNJ-joJQi4hyRwm8_hmd_YbhG6NFX61YogXKEU8ao3yJK8yT1glqpIZwdKlgXYneujTxwEbrJ3iz_ghlgtuzjPSeO0c_F3b8oo0VOjJCOo71xMEGGYbFQFqULDrYu2l_9pfrbMEEJxTNk7wzcjjIfMX3I0-KW8K2cxNK8C5DlvTvNM8QPs5YMS17A8foi0zPUI7aeOmSo6RhfA4S0DRBveGI_XmIheuZ_3neGaxewwQG-p73ByNJwlugMl9GY3duRKcBzyHxsffuDuczd3MhG-3i_MD77SNG3IAeS45Qb3mfa_-4OWzEzwVMs4BNGshAC1pDtWyb41WSprIN8pqUpFSBiqAS5KIR4ZSDZkSSgtNLFNSaIgCp6gwnU3NGcLCMj-SgLuqQtOQsooMJTWWE0kqioe8hO4WSovfM4aMOONCJrFTb7xUbwldLnQa556SxCAXICQNuF9CJNXzH1LiWqPdWt6d_-ejG7TbbTTj51bn6QLtEdelknaVXaLC_OPTXAHMmMvr3JJ-AfMnzQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+Thickness+Control+of+Nanoporous+Films+Derived+from+Directionally+Photopolymerized+Mesophases&rft.jtitle=Advanced+materials+interfaces&rft.au=Imran%2C+Omar+Q.&rft.au=Kim%2C+Na+Kyung&rft.au=Bodkin%2C+Lauren+N.&rft.au=Dwulet%2C+Gregory+E.&rft.date=2021-03-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=8&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202001977&rft.externalDBID=10.1002%252Fadmi.202001977&rft.externalDocID=ADMI202001977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon