Excitation‐Dependent Long Afterglow Room‐Temperature Phosphorescence Material Activated by Doping Boric Acid Matrix
Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic a...
Saved in:
Published in | Advanced optical materials Vol. 11; no. 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202300207 |
Cover
Loading…
Abstract | Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting.
A long afterglow excitation‐dependent emission room‐temperature phosphorescence material is reported, emitting dark blue and green phosphorescence upon UV excitation at 310 and 365 nm with lifetimes of 1.97 and 0.62 s, respectively, and absolute photoluminescence quantum yields of 17.4% and 15.6%, with potential promise for information encoding and phosphorescence anti‐counterfeiting. |
---|---|
AbstractList | Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting. Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting. A long afterglow excitation‐dependent emission room‐temperature phosphorescence material is reported, emitting dark blue and green phosphorescence upon UV excitation at 310 and 365 nm with lifetimes of 1.97 and 0.62 s, respectively, and absolute photoluminescence quantum yields of 17.4% and 15.6%, with potential promise for information encoding and phosphorescence anti‐counterfeiting. Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting. |
Author | Chen, Zhengjie Li, Houbin Deng, Junjie Liu, Xinghai Guan, Zhihao Fu, Donglei Zheng, Yuewei |
Author_xml | – sequence: 1 givenname: Junjie orcidid: 0000-0003-0420-6535 surname: Deng fullname: Deng, Junjie organization: Wuhan University – sequence: 2 givenname: Zhihao surname: Guan fullname: Guan, Zhihao organization: Wuhan University – sequence: 3 givenname: Donglei surname: Fu fullname: Fu, Donglei organization: Wuhan University – sequence: 4 givenname: Yuewei surname: Zheng fullname: Zheng, Yuewei organization: Wuhan University – sequence: 5 givenname: Zhengjie surname: Chen fullname: Chen, Zhengjie organization: Wuhan University – sequence: 6 givenname: Houbin surname: Li fullname: Li, Houbin organization: Wuhan University – sequence: 7 givenname: Xinghai orcidid: 0000-0001-5873-2173 surname: Liu fullname: Liu, Xinghai email: liuxh@whu.edu.cn organization: Wuhan University |
BookMark | eNqFkN1OwjAYhhuDiYicerzEY7BdO7odTsCfBIIxeNx0a4GSrZ3tEDjzErxGr8Qu-BcT41H79nuer8l7ClraaAnAOYJ9BGF4yYUp-yEMsQ-QHoF2iJKohyBFrR_3E9B1bg0h9AEnhLbBdrzLVc1rZfTby-tIVlILqetgYvQySBe1tMvCbIMHY0o_n8uykpbXGyuD-5Vx1cpY6XKpcxlMuYcVL4I0r9WzDyLI9sHIVMpvujJW5X6iRMNZtTsDxwteONn9ODvg8Xo8H972JrObu2E66eU4orRHsignKIIcCkqxICHHVA4oJZRy6h_jLPSAgDyBXAiBUZxlWQRJTDnhmGDcAReHvZU1TxvparY2G6v9lyyMcTxo2NBT5EDl1jhn5YJ9llJbrgqGIGtaZk3L7Ktlr_V_aZVVJbf7v4XkIGxVIff_0Cwdzabf7jt_zJSV |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215987 crossref_primary_10_1002_adom_202401966 crossref_primary_10_1002_adma_202305126 crossref_primary_10_1039_D4TC00059E crossref_primary_10_1021_acs_nanolett_4c05187 crossref_primary_10_1039_D4NR05190D crossref_primary_10_1021_acs_jpcc_4c01257 crossref_primary_10_1021_acsanm_3c04995 crossref_primary_10_1021_acs_jpcc_4c00285 crossref_primary_10_1021_acs_jpclett_3c03060 crossref_primary_10_1002_adfm_202306956 crossref_primary_10_1021_acsmaterialslett_4c02116 crossref_primary_10_1002_adom_202401399 crossref_primary_10_1021_acsami_4c01531 crossref_primary_10_1002_cjoc_202400546 crossref_primary_10_1016_j_cej_2023_146178 |
Cites_doi | 10.1016/j.cej.2021.129175 10.1002/anie.201509224 10.1038/s41377-022-00767-y 10.1002/advs.202104278 10.1002/anie.200504391 10.1002/anie.202108696 10.1002/anie.201814629 10.1016/j.matlet.2020.128226 10.1016/j.cej.2022.136179 10.1002/anie.202101923 10.1126/sciadv.abf9668 10.1038/s41467-018-03236-6 10.1002/adom.201700116 10.1039/D2TC00804A 10.1002/adma.202006781 10.1002/anie.201915433 10.1002/agt2.38 10.1002/adfm.202101312 10.1038/nchem.984 10.1002/adfm.201802657 10.1038/s41563-020-0797-2 10.1021/ma901001b 10.1021/acs.jpclett.0c03614 10.1007/s10717-007-0010-y 10.31635/ccschem.020.202000433 10.1002/anie.202207104 10.1002/adom.202100704 10.1002/anie.201800834 10.1002/anie.201710279 10.1021/jacs.6b11984 10.1002/anie.202104361 10.1038/s41467-019-10033-2 10.1021/ja064396b 10.1016/j.cej.2020.127647 10.1002/adma.202201280 10.1016/j.cclet.2021.05.046 10.1039/C5CC03403E 10.1002/adom.202200629 10.31635/ccschem.021.202000609 10.1038/s41578-020-0223-z 10.1002/advs.202103833 10.1002/advs.202103975 10.1021/acs.accounts.8b00620 10.1002/agt2.253 10.1039/c2dt30118k 10.1002/agt2.123 10.1039/D2CC04544C 10.1002/anie.201500426 10.1002/agt2.199 10.1126/sciadv.abl8392 10.1021/cm0619398 10.1038/nature24010 10.1038/s41563-021-01073-5 10.1021/acs.accounts.0c00556 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202300207 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202300207 ADOM202300207 |
Genre | article |
GrantInformation_xml | – fundername: Wuhan University funderid: LF20201282; 1506/413100017 – fundername: Hubei Provincial Natural Science Foundation of China funderid: 2021CFB215 – fundername: National Natural Science Foundation of China funderid: 51776143 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3577-4b5c4150a0d773d42a37e677477a7a0d8b25c4d0a90addd318bbb50487a4a3433 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 11:58:06 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Tue Jul 01 00:35:58 EDT 2025 Wed Jan 22 16:18:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3577-4b5c4150a0d773d42a37e677477a7a0d8b25c4d0a90addd318bbb50487a4a3433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0420-6535 0000-0001-5873-2173 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adom.202300207 |
PQID | 2838650482 |
PQPubID | 2034581 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2838650482 crossref_citationtrail_10_1002_adom_202300207 crossref_primary_10_1002_adom_202300207 wiley_primary_10_1002_adom_202300207_ADOM202300207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 417 2022; 442 2022 2015 2021; 9 51 20 2007; 19 2021; 20 2022; 61 2022 2017; 8 56 2022; 9 2019; 58 2022; 34 2020; 59 2017 2016 2022 2022 2021 2021; 139 55 9 11 60 33 2018 2023 2022 2023; 9 4 3 4 2022; 10 2021 2022; 3 4 2021 2021 2015 2018 2021 2021; 54 31 54 57 2 7 2018 2017 2017 2020 2019 2019; 28 5 550 5 10 52 2020 2022; 276 58 2007 2021; 64 420 2021; 60 2021 2022 2006; 12 33 45 2006 2009 2012; 128 42 41 2011 2022 2022; 3 10 10 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_9_3 e_1_2_8_5_6 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_5_2 e_1_2_8_5_5 e_1_2_8_9_1 e_1_2_8_5_4 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_4_4 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 60 start-page: 9500 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 3 10 10 start-page: 205 8806 year: 2011 2022 2022 publication-title: Nat. Chem. Adv. Opt. Mater. J. Mater. Chem. C – volume: 128 42 41 start-page: 7217 6048 year: 2006 2009 2012 publication-title: J. Am. Chem. Soc. Macromolecules Dalton Trans. – volume: 3 4 start-page: 1940 173 year: 2021 2022 publication-title: CCS Chem. CCS Chem. – volume: 19 start-page: 247 year: 2007 publication-title: Chem. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 442 year: 2022 publication-title: Chem. Eng. J. – volume: 276 58 year: 2020 2022 publication-title: Mater. Lett. Chem. Commun. – volume: 54 31 54 57 2 7 start-page: 940 6270 7997 year: 2021 2021 2015 2018 2021 2021 publication-title: Accounts Chem. Res. Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Aggregate Sci. Adv. – volume: 12 33 45 start-page: 1413 243 3170 year: 2021 2022 2006 publication-title: J. Phys. Chem. Lett. Chin. Chem. Lett. Angew. Chem., Int. Ed. – volume: 58 start-page: 7278 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 20 start-page: 175 year: 2021 publication-title: Nat. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 4 3 4 start-page: 840 year: 2018 2023 2022 2023 publication-title: Nat. Commun. Aggregate Aggregate Aggregate – volume: 9 51 20 start-page: 1539 year: 2022 2015 2021 publication-title: Adv. Sci. Chem. Commun. Nat. Mater. – volume: 8 56 year: 2022 2017 publication-title: Sci. Adv. Angew. Chem., Int. Ed. – volume: 139 55 9 11 60 33 start-page: 2728 2181 80 year: 2017 2016 2022 2022 2021 2021 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Sci. Light: Sci. Appl. Angew. Chem., Int. Ed. Adv. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 64 420 start-page: 42 year: 2007 2021 publication-title: Glass Ceram Chem. Eng. J. – volume: 28 5 550 5 10 52 start-page: 384 869 2111 738 year: 2018 2017 2017 2020 2019 2019 publication-title: Adv. Funct. Mater. Adv. Opt. Mater. Nature Nat. Rev. Mater. Nat. Commun. Accounts Chem. Res. – volume: 34 year: 2022 publication-title: Adv. Mater. – ident: e_1_2_8_15_1 doi: 10.1016/j.cej.2021.129175 – ident: e_1_2_8_5_2 doi: 10.1002/anie.201509224 – ident: e_1_2_8_5_4 doi: 10.1038/s41377-022-00767-y – ident: e_1_2_8_9_1 doi: 10.1002/advs.202104278 – ident: e_1_2_8_22_3 doi: 10.1002/anie.200504391 – ident: e_1_2_8_5_5 doi: 10.1002/anie.202108696 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201814629 – ident: e_1_2_8_11_1 doi: 10.1016/j.matlet.2020.128226 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2022.136179 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202101923 – ident: e_1_2_8_2_6 doi: 10.1126/sciadv.abf9668 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-018-03236-6 – ident: e_1_2_8_1_2 doi: 10.1002/adom.201700116 – ident: e_1_2_8_12_3 doi: 10.1039/D2TC00804A – ident: e_1_2_8_5_6 doi: 10.1002/adma.202006781 – ident: e_1_2_8_3_1 doi: 10.1002/anie.201915433 – ident: e_1_2_8_2_5 doi: 10.1002/agt2.38 – ident: e_1_2_8_2_2 doi: 10.1002/adfm.202101312 – ident: e_1_2_8_12_1 doi: 10.1038/nchem.984 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.201802657 – ident: e_1_2_8_6_1 doi: 10.1038/s41563-020-0797-2 – ident: e_1_2_8_24_2 doi: 10.1021/ma901001b – ident: e_1_2_8_22_1 doi: 10.1021/acs.jpclett.0c03614 – ident: e_1_2_8_14_1 doi: 10.1007/s10717-007-0010-y – ident: e_1_2_8_20_1 doi: 10.31635/ccschem.020.202000433 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202207104 – ident: e_1_2_8_18_1 doi: 10.1002/adom.202100704 – ident: e_1_2_8_2_4 doi: 10.1002/anie.201800834 – ident: e_1_2_8_10_2 doi: 10.1002/anie.201710279 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.6b11984 – ident: e_1_2_8_7_1 doi: 10.1002/anie.202104361 – ident: e_1_2_8_1_5 doi: 10.1038/s41467-019-10033-2 – ident: e_1_2_8_24_1 doi: 10.1021/ja064396b – ident: e_1_2_8_14_2 doi: 10.1016/j.cej.2020.127647 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202201280 – ident: e_1_2_8_22_2 doi: 10.1016/j.cclet.2021.05.046 – ident: e_1_2_8_9_2 doi: 10.1039/C5CC03403E – ident: e_1_2_8_12_2 doi: 10.1002/adom.202200629 – ident: e_1_2_8_20_2 doi: 10.31635/ccschem.021.202000609 – ident: e_1_2_8_1_4 doi: 10.1038/s41578-020-0223-z – ident: e_1_2_8_13_1 doi: 10.1002/advs.202103833 – ident: e_1_2_8_5_3 doi: 10.1002/advs.202103975 – ident: e_1_2_8_1_6 doi: 10.1021/acs.accounts.8b00620 – ident: e_1_2_8_4_4 doi: 10.1002/agt2.253 – ident: e_1_2_8_24_3 doi: 10.1039/c2dt30118k – ident: e_1_2_8_4_3 doi: 10.1002/agt2.123 – ident: e_1_2_8_11_2 doi: 10.1039/D2CC04544C – ident: e_1_2_8_2_3 doi: 10.1002/anie.201500426 – ident: e_1_2_8_4_2 doi: 10.1002/agt2.199 – ident: e_1_2_8_10_1 doi: 10.1126/sciadv.abl8392 – ident: e_1_2_8_17_1 doi: 10.1021/cm0619398 – ident: e_1_2_8_1_3 doi: 10.1038/nature24010 – ident: e_1_2_8_9_3 doi: 10.1038/s41563-021-01073-5 – ident: e_1_2_8_2_1 doi: 10.1021/acs.accounts.0c00556 |
SSID | ssj0001073947 |
Score | 2.4040048 |
Snippet | Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 4‐carboxyphenylboronic acid Afterglows anti‐counterfeiting boric acid Density functional theory Doping Electron clouds Electron transfer Emission Excitation excitation‐dependent emission Materials science matrix limitation Optics Phosphorescence Photoluminescence room‐temperature phosphorescence subject–object admixture Temperature dependence Ultraviolet radiation |
Title | Excitation‐Dependent Long Afterglow Room‐Temperature Phosphorescence Material Activated by Doping Boric Acid Matrix |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202300207 https://www.proquest.com/docview/2838650482 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKduHC-CvKNuQDEocqkDpOnBwDHZrQCgg6aXCJ7CRdM5WkahN1cOIbbJ9xn4Tn2HGyqYjBpWpfHNfK-_n595zn9xB6AQzVngacWNyhtkU9n1siAJ8HJpebTKeEqBNy4w_e4TF9f-Ke9HoXnailqhSv4p8bz5X8j1ZBBnqVp2T_QbOmUxDAd9AvfIKG4fNWOj44j3WKbROzMNJFbcvBkawiFMoS4KfzYj34DAzZtJqkwJZVNuXBp1mxWsyKZZ3XSc5yXtZjH4RxXfpMUdSROlj1RqYUgSuZjM4ol9l5l9yGTTxBsVA75N91V23x-lQHAFf5WWYgBTCtbd-3WTbjhUFUpQh-fjpPs3Z_W_fwtUrXWqz3LIhj4lu1aSOyQiQ4nkqUbpA1tnnYxSDdaPNVDlmeFDKxAHhUQIBZu7o1b_RvLHomFFGlbSaRvD8y999B2wT8DrD02-FofPSl3baTbzbrsnVmvE0qUJu8vj6I61Sn9V-6XlBNYyb30T3tf-BQgekB6qX5Q7SjfRGsLf3qEVq32Lr6dWlQhSWqsEEVlqiC6x084Rt4wg2esMETFj-wwhOu8YQlnrDC02N0_O5g8vbQ0kU6rNhxGbOocGMggTa3E8achBLusNQDp4IxzkDoCwINEpsHNiylCSwhQggX1g3GKdgHx3mCtvIiT58iLBI-9R3u2T4fUsZ9n_pJEFAy9IjNOXP7yGqeZ9Q8AllIZR5tVmIfvTTtFyp3yx9b7jXqifT8XkVAvH1PjpT0EalV9pdeonD0cWx-Pbv1v--iu-0k2UNb5bJK94HqluK5ht9vjCCm8w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation%E2%80%90Dependent+Long+Afterglow+Room%E2%80%90Temperature+Phosphorescence+Material+Activated+by+Doping+Boric+Acid+Matrix&rft.jtitle=Advanced+optical+materials&rft.au=Deng%2C+Junjie&rft.au=Guan%2C+Zhihao&rft.au=Fu%2C+Donglei&rft.au=Zheng%2C+Yuewei&rft.date=2023-07-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=11&rft.issue=14&rft_id=info:doi/10.1002%2Fadom.202300207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adom_202300207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |