Excitation‐Dependent Long Afterglow Room‐Temperature Phosphorescence Material Activated by Doping Boric Acid Matrix

Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 11; no. 14
Main Authors Deng, Junjie, Guan, Zhihao, Fu, Donglei, Zheng, Yuewei, Chen, Zhengjie, Li, Houbin, Liu, Xinghai
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN2195-1071
2195-1071
DOI10.1002/adom.202300207

Cover

Loading…
Abstract Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting. A long afterglow excitation‐dependent emission room‐temperature phosphorescence material is reported, emitting dark blue and green phosphorescence upon UV excitation at 310 and 365 nm with lifetimes of 1.97 and 0.62 s, respectively, and absolute photoluminescence quantum yields of 17.4% and 15.6%, with potential promise for information encoding and phosphorescence anti‐counterfeiting.
AbstractList Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting.
Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting. A long afterglow excitation‐dependent emission room‐temperature phosphorescence material is reported, emitting dark blue and green phosphorescence upon UV excitation at 310 and 365 nm with lifetimes of 1.97 and 0.62 s, respectively, and absolute photoluminescence quantum yields of 17.4% and 15.6%, with potential promise for information encoding and phosphorescence anti‐counterfeiting.
Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative decay. This work aims to prepare a long afterglow excitation‐dependent emission RTP material by doping a small amount of 4‐carboxyphenylboronic acid into the boric acid matrix, followed by heat‐treating. The calculation of density functional theory shows that the electron cloud distribution and electron transfer trend of the selected material reduces the energy requirement to excite the RTP properties of the obtained materials. The obtained RTP materials can be excited by UV light at 310 and 365 nm for dark blue and green phosphorescence emission, respectively. The results demonstrate the long phosphorescence lifetimes of 1.97 and 0.62 s and the high absolute photoluminescence quantum yields of 17.4% and 15.6%. These results show that the obtained RTP materials have potential prospects as information coding and phosphorescent anti‐counterfeiting.
Author Chen, Zhengjie
Li, Houbin
Deng, Junjie
Liu, Xinghai
Guan, Zhihao
Fu, Donglei
Zheng, Yuewei
Author_xml – sequence: 1
  givenname: Junjie
  orcidid: 0000-0003-0420-6535
  surname: Deng
  fullname: Deng, Junjie
  organization: Wuhan University
– sequence: 2
  givenname: Zhihao
  surname: Guan
  fullname: Guan, Zhihao
  organization: Wuhan University
– sequence: 3
  givenname: Donglei
  surname: Fu
  fullname: Fu, Donglei
  organization: Wuhan University
– sequence: 4
  givenname: Yuewei
  surname: Zheng
  fullname: Zheng, Yuewei
  organization: Wuhan University
– sequence: 5
  givenname: Zhengjie
  surname: Chen
  fullname: Chen, Zhengjie
  organization: Wuhan University
– sequence: 6
  givenname: Houbin
  surname: Li
  fullname: Li, Houbin
  organization: Wuhan University
– sequence: 7
  givenname: Xinghai
  orcidid: 0000-0001-5873-2173
  surname: Liu
  fullname: Liu, Xinghai
  email: liuxh@whu.edu.cn
  organization: Wuhan University
BookMark eNqFkN1OwjAYhhuDiYicerzEY7BdO7odTsCfBIIxeNx0a4GSrZ3tEDjzErxGr8Qu-BcT41H79nuer8l7ClraaAnAOYJ9BGF4yYUp-yEMsQ-QHoF2iJKohyBFrR_3E9B1bg0h9AEnhLbBdrzLVc1rZfTby-tIVlILqetgYvQySBe1tMvCbIMHY0o_n8uykpbXGyuD-5Vx1cpY6XKpcxlMuYcVL4I0r9WzDyLI9sHIVMpvujJW5X6iRMNZtTsDxwteONn9ODvg8Xo8H972JrObu2E66eU4orRHsignKIIcCkqxICHHVA4oJZRy6h_jLPSAgDyBXAiBUZxlWQRJTDnhmGDcAReHvZU1TxvparY2G6v9lyyMcTxo2NBT5EDl1jhn5YJ9llJbrgqGIGtaZk3L7Ktlr_V_aZVVJbf7v4XkIGxVIff_0Cwdzabf7jt_zJSV
CitedBy_id crossref_primary_10_1016_j_ccr_2024_215987
crossref_primary_10_1002_adom_202401966
crossref_primary_10_1002_adma_202305126
crossref_primary_10_1039_D4TC00059E
crossref_primary_10_1021_acs_nanolett_4c05187
crossref_primary_10_1039_D4NR05190D
crossref_primary_10_1021_acs_jpcc_4c01257
crossref_primary_10_1021_acsanm_3c04995
crossref_primary_10_1021_acs_jpcc_4c00285
crossref_primary_10_1021_acs_jpclett_3c03060
crossref_primary_10_1002_adfm_202306956
crossref_primary_10_1021_acsmaterialslett_4c02116
crossref_primary_10_1002_adom_202401399
crossref_primary_10_1021_acsami_4c01531
crossref_primary_10_1002_cjoc_202400546
crossref_primary_10_1016_j_cej_2023_146178
Cites_doi 10.1016/j.cej.2021.129175
10.1002/anie.201509224
10.1038/s41377-022-00767-y
10.1002/advs.202104278
10.1002/anie.200504391
10.1002/anie.202108696
10.1002/anie.201814629
10.1016/j.matlet.2020.128226
10.1016/j.cej.2022.136179
10.1002/anie.202101923
10.1126/sciadv.abf9668
10.1038/s41467-018-03236-6
10.1002/adom.201700116
10.1039/D2TC00804A
10.1002/adma.202006781
10.1002/anie.201915433
10.1002/agt2.38
10.1002/adfm.202101312
10.1038/nchem.984
10.1002/adfm.201802657
10.1038/s41563-020-0797-2
10.1021/ma901001b
10.1021/acs.jpclett.0c03614
10.1007/s10717-007-0010-y
10.31635/ccschem.020.202000433
10.1002/anie.202207104
10.1002/adom.202100704
10.1002/anie.201800834
10.1002/anie.201710279
10.1021/jacs.6b11984
10.1002/anie.202104361
10.1038/s41467-019-10033-2
10.1021/ja064396b
10.1016/j.cej.2020.127647
10.1002/adma.202201280
10.1016/j.cclet.2021.05.046
10.1039/C5CC03403E
10.1002/adom.202200629
10.31635/ccschem.021.202000609
10.1038/s41578-020-0223-z
10.1002/advs.202103833
10.1002/advs.202103975
10.1021/acs.accounts.8b00620
10.1002/agt2.253
10.1039/c2dt30118k
10.1002/agt2.123
10.1039/D2CC04544C
10.1002/anie.201500426
10.1002/agt2.199
10.1126/sciadv.abl8392
10.1021/cm0619398
10.1038/nature24010
10.1038/s41563-021-01073-5
10.1021/acs.accounts.0c00556
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202300207
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202300207
ADOM202300207
Genre article
GrantInformation_xml – fundername: Wuhan University
  funderid: LF20201282; 1506/413100017
– fundername: Hubei Provincial Natural Science Foundation of China
  funderid: 2021CFB215
– fundername: National Natural Science Foundation of China
  funderid: 51776143
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3577-4b5c4150a0d773d42a37e677477a7a0d8b25c4d0a90addd318bbb50487a4a3433
ISSN 2195-1071
IngestDate Fri Jul 25 11:58:06 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 00:35:58 EDT 2025
Wed Jan 22 16:18:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3577-4b5c4150a0d773d42a37e677477a7a0d8b25c4d0a90addd318bbb50487a4a3433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0420-6535
0000-0001-5873-2173
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adom.202300207
PQID 2838650482
PQPubID 2034581
PageCount 7
ParticipantIDs proquest_journals_2838650482
crossref_citationtrail_10_1002_adom_202300207
crossref_primary_10_1002_adom_202300207
wiley_primary_10_1002_adom_202300207_ADOM202300207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 417
2022; 442
2022 2015 2021; 9 51 20
2007; 19
2021; 20
2022; 61
2022 2017; 8 56
2022; 9
2019; 58
2022; 34
2020; 59
2017 2016 2022 2022 2021 2021; 139 55 9 11 60 33
2018 2023 2022 2023; 9 4 3 4
2022; 10
2021 2022; 3 4
2021 2021 2015 2018 2021 2021; 54 31 54 57 2 7
2018 2017 2017 2020 2019 2019; 28 5 550 5 10 52
2020 2022; 276 58
2007 2021; 64 420
2021; 60
2021 2022 2006; 12 33 45
2006 2009 2012; 128 42 41
2011 2022 2022; 3 10 10
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_9_3
e_1_2_8_5_6
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_5_2
e_1_2_8_5_5
e_1_2_8_9_1
e_1_2_8_5_4
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_4_4
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 60
  start-page: 9500
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 3 10 10
  start-page: 205 8806
  year: 2011 2022 2022
  publication-title: Nat. Chem. Adv. Opt. Mater. J. Mater. Chem. C
– volume: 128 42 41
  start-page: 7217 6048
  year: 2006 2009 2012
  publication-title: J. Am. Chem. Soc. Macromolecules Dalton Trans.
– volume: 3 4
  start-page: 1940 173
  year: 2021 2022
  publication-title: CCS Chem. CCS Chem.
– volume: 19
  start-page: 247
  year: 2007
  publication-title: Chem. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 442
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 276 58
  year: 2020 2022
  publication-title: Mater. Lett. Chem. Commun.
– volume: 54 31 54 57 2 7
  start-page: 940 6270 7997
  year: 2021 2021 2015 2018 2021 2021
  publication-title: Accounts Chem. Res. Adv. Funct. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Aggregate Sci. Adv.
– volume: 12 33 45
  start-page: 1413 243 3170
  year: 2021 2022 2006
  publication-title: J. Phys. Chem. Lett. Chin. Chem. Lett. Angew. Chem., Int. Ed.
– volume: 58
  start-page: 7278
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 20
  start-page: 175
  year: 2021
  publication-title: Nat. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9 4 3 4
  start-page: 840
  year: 2018 2023 2022 2023
  publication-title: Nat. Commun. Aggregate Aggregate Aggregate
– volume: 9 51 20
  start-page: 1539
  year: 2022 2015 2021
  publication-title: Adv. Sci. Chem. Commun. Nat. Mater.
– volume: 8 56
  year: 2022 2017
  publication-title: Sci. Adv. Angew. Chem., Int. Ed.
– volume: 139 55 9 11 60 33
  start-page: 2728 2181 80
  year: 2017 2016 2022 2022 2021 2021
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Sci. Light: Sci. Appl. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 64 420
  start-page: 42
  year: 2007 2021
  publication-title: Glass Ceram Chem. Eng. J.
– volume: 28 5 550 5 10 52
  start-page: 384 869 2111 738
  year: 2018 2017 2017 2020 2019 2019
  publication-title: Adv. Funct. Mater. Adv. Opt. Mater. Nature Nat. Rev. Mater. Nat. Commun. Accounts Chem. Res.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cej.2021.129175
– ident: e_1_2_8_5_2
  doi: 10.1002/anie.201509224
– ident: e_1_2_8_5_4
  doi: 10.1038/s41377-022-00767-y
– ident: e_1_2_8_9_1
  doi: 10.1002/advs.202104278
– ident: e_1_2_8_22_3
  doi: 10.1002/anie.200504391
– ident: e_1_2_8_5_5
  doi: 10.1002/anie.202108696
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201814629
– ident: e_1_2_8_11_1
  doi: 10.1016/j.matlet.2020.128226
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2022.136179
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202101923
– ident: e_1_2_8_2_6
  doi: 10.1126/sciadv.abf9668
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-018-03236-6
– ident: e_1_2_8_1_2
  doi: 10.1002/adom.201700116
– ident: e_1_2_8_12_3
  doi: 10.1039/D2TC00804A
– ident: e_1_2_8_5_6
  doi: 10.1002/adma.202006781
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.201915433
– ident: e_1_2_8_2_5
  doi: 10.1002/agt2.38
– ident: e_1_2_8_2_2
  doi: 10.1002/adfm.202101312
– ident: e_1_2_8_12_1
  doi: 10.1038/nchem.984
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.201802657
– ident: e_1_2_8_6_1
  doi: 10.1038/s41563-020-0797-2
– ident: e_1_2_8_24_2
  doi: 10.1021/ma901001b
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jpclett.0c03614
– ident: e_1_2_8_14_1
  doi: 10.1007/s10717-007-0010-y
– ident: e_1_2_8_20_1
  doi: 10.31635/ccschem.020.202000433
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202207104
– ident: e_1_2_8_18_1
  doi: 10.1002/adom.202100704
– ident: e_1_2_8_2_4
  doi: 10.1002/anie.201800834
– ident: e_1_2_8_10_2
  doi: 10.1002/anie.201710279
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.6b11984
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.202104361
– ident: e_1_2_8_1_5
  doi: 10.1038/s41467-019-10033-2
– ident: e_1_2_8_24_1
  doi: 10.1021/ja064396b
– ident: e_1_2_8_14_2
  doi: 10.1016/j.cej.2020.127647
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202201280
– ident: e_1_2_8_22_2
  doi: 10.1016/j.cclet.2021.05.046
– ident: e_1_2_8_9_2
  doi: 10.1039/C5CC03403E
– ident: e_1_2_8_12_2
  doi: 10.1002/adom.202200629
– ident: e_1_2_8_20_2
  doi: 10.31635/ccschem.021.202000609
– ident: e_1_2_8_1_4
  doi: 10.1038/s41578-020-0223-z
– ident: e_1_2_8_13_1
  doi: 10.1002/advs.202103833
– ident: e_1_2_8_5_3
  doi: 10.1002/advs.202103975
– ident: e_1_2_8_1_6
  doi: 10.1021/acs.accounts.8b00620
– ident: e_1_2_8_4_4
  doi: 10.1002/agt2.253
– ident: e_1_2_8_24_3
  doi: 10.1039/c2dt30118k
– ident: e_1_2_8_4_3
  doi: 10.1002/agt2.123
– ident: e_1_2_8_11_2
  doi: 10.1039/D2CC04544C
– ident: e_1_2_8_2_3
  doi: 10.1002/anie.201500426
– ident: e_1_2_8_4_2
  doi: 10.1002/agt2.199
– ident: e_1_2_8_10_1
  doi: 10.1126/sciadv.abl8392
– ident: e_1_2_8_17_1
  doi: 10.1021/cm0619398
– ident: e_1_2_8_1_3
  doi: 10.1038/nature24010
– ident: e_1_2_8_9_3
  doi: 10.1038/s41563-021-01073-5
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.accounts.0c00556
SSID ssj0001073947
Score 2.4040048
Snippet Room‐temperature phosphorescence (RTP) materials are normally prepared by doping guest materials into space‐limited host materials to inhibit nonradiative...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 4‐carboxyphenylboronic acid
Afterglows
anti‐counterfeiting
boric acid
Density functional theory
Doping
Electron clouds
Electron transfer
Emission
Excitation
excitation‐dependent emission
Materials science
matrix limitation
Optics
Phosphorescence
Photoluminescence
room‐temperature phosphorescence
subject–object admixture
Temperature dependence
Ultraviolet radiation
Title Excitation‐Dependent Long Afterglow Room‐Temperature Phosphorescence Material Activated by Doping Boric Acid Matrix
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202300207
https://www.proquest.com/docview/2838650482
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKduHC-CvKNuQDEocqkDpOnBwDHZrQCgg6aXCJ7CRdM5WkahN1cOIbbJ9xn4Tn2HGyqYjBpWpfHNfK-_n595zn9xB6AQzVngacWNyhtkU9n1siAJ8HJpebTKeEqBNy4w_e4TF9f-Ke9HoXnailqhSv4p8bz5X8j1ZBBnqVp2T_QbOmUxDAd9AvfIKG4fNWOj44j3WKbROzMNJFbcvBkawiFMoS4KfzYj34DAzZtJqkwJZVNuXBp1mxWsyKZZ3XSc5yXtZjH4RxXfpMUdSROlj1RqYUgSuZjM4ol9l5l9yGTTxBsVA75N91V23x-lQHAFf5WWYgBTCtbd-3WTbjhUFUpQh-fjpPs3Z_W_fwtUrXWqz3LIhj4lu1aSOyQiQ4nkqUbpA1tnnYxSDdaPNVDlmeFDKxAHhUQIBZu7o1b_RvLHomFFGlbSaRvD8y999B2wT8DrD02-FofPSl3baTbzbrsnVmvE0qUJu8vj6I61Sn9V-6XlBNYyb30T3tf-BQgekB6qX5Q7SjfRGsLf3qEVq32Lr6dWlQhSWqsEEVlqiC6x084Rt4wg2esMETFj-wwhOu8YQlnrDC02N0_O5g8vbQ0kU6rNhxGbOocGMggTa3E8achBLusNQDp4IxzkDoCwINEpsHNiylCSwhQggX1g3GKdgHx3mCtvIiT58iLBI-9R3u2T4fUsZ9n_pJEFAy9IjNOXP7yGqeZ9Q8AllIZR5tVmIfvTTtFyp3yx9b7jXqifT8XkVAvH1PjpT0EalV9pdeonD0cWx-Pbv1v--iu-0k2UNb5bJK94HqluK5ht9vjCCm8w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation%E2%80%90Dependent+Long+Afterglow+Room%E2%80%90Temperature+Phosphorescence+Material+Activated+by+Doping+Boric+Acid+Matrix&rft.jtitle=Advanced+optical+materials&rft.au=Deng%2C+Junjie&rft.au=Guan%2C+Zhihao&rft.au=Fu%2C+Donglei&rft.au=Zheng%2C+Yuewei&rft.date=2023-07-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=11&rft.issue=14&rft_id=info:doi/10.1002%2Fadom.202300207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adom_202300207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon