A Method to Quench Carbodiimide‐Fueled Self‐Assembly
In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are s...
Saved in:
Published in | ChemSystemsChem Vol. 3; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles.
Counting bricks in the wall: Chemically fueled assemblies are regulated by a chemical reaction cycle. A fast reaction cycle was recently introduced that shows exciting, dynamic self‐assembly behavior. However, analysis of its kinetic properties is challenging due to its speed. Thus, we introduce a simple, powerful method to quench all reactions in the reaction cycle. We show the accuracy and application for several reaction cycles and a range of molecular assemblies. |
---|---|
AbstractList | In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles.
Counting bricks in the wall: Chemically fueled assemblies are regulated by a chemical reaction cycle. A fast reaction cycle was recently introduced that shows exciting, dynamic self‐assembly behavior. However, analysis of its kinetic properties is challenging due to its speed. Thus, we introduce a simple, powerful method to quench all reactions in the reaction cycle. We show the accuracy and application for several reaction cycles and a range of molecular assemblies. In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles. Abstract In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly , i. e ., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e ., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles. |
Author | Schnitter, Fabian Boekhoven, Job |
Author_xml | – sequence: 1 givenname: Fabian surname: Schnitter fullname: Schnitter, Fabian organization: Technical University of Munich – sequence: 2 givenname: Job orcidid: 0000-0002-9126-2430 surname: Boekhoven fullname: Boekhoven, Job email: job.boekhoven@tum.de organization: Technical University of Munich |
BookMark | eNqFkM9Kw0AQhxepYK29eg54Tt0_2d3ssQSrQkWk9eBp2WRnaUqa1N0Eyc1H8Bl9ElMq6s25zAx8vxn4ztGobmpA6JLgGcGYXoc-tDOKKR6KyRM0plziOKFYjP7MZ2gawnZAKCeMKDlG6Tx6gHbT2KhtoqcO6mITZcbnjS3LXWnh8_1j0UEFNlpB5YZtHgLs8qq_QKfOVAGm332Cnhc36-wuXj7e3mfzZVwwLmXMUhCUM5FTRq2U1lAlkrzAwhFLIeHGYWsUFU5wnEIOTBrFhSCkYKlUhWMTdHW8u_fNaweh1dum8_XwUtNEciwpU2KgZkeq8E0IHpze-3JnfK8J1gdB-iBI_wgaAuoYeCsr6P-h9epltf7NfgG4l2u1 |
CitedBy_id | crossref_primary_10_1021_jacs_3c00273 crossref_primary_10_1038_s41467_020_18815_9 crossref_primary_10_1002_syst_202100016 crossref_primary_10_1021_jacs_2c08463 crossref_primary_10_1039_D2SC03691F crossref_primary_10_1002_syst_202100015 crossref_primary_10_1038_s41467_022_30424_2 crossref_primary_10_1038_s41596_021_00563_9 crossref_primary_10_1016_j_chempr_2023_05_035 crossref_primary_10_1038_s41467_023_42344_w crossref_primary_10_1021_jacs_1c01172 crossref_primary_10_1021_jacs_1c01148 crossref_primary_10_1039_D1SM00515D crossref_primary_10_1039_D1CC06428B crossref_primary_10_1039_D3SC04281B crossref_primary_10_1039_D3SC02062B crossref_primary_10_1021_accountsmr_2c00244 crossref_primary_10_1039_D1NR04954B crossref_primary_10_1002_syst_202200035 |
Cites_doi | 10.1002/syst.201900028 10.1038/s41467-019-08308-9 10.1021/jacs.7b06099 10.1021/bm900584m 10.1021/ja053557t 10.1021/acs.accounts.7b00297 10.1039/C6CC01192F 10.1042/bj2770239 10.1002/anie.201807937 10.1126/science.aac6103 10.1038/s41467-019-13903-x 10.1002/anie.201001511 10.1002/syst.201900038 10.1038/ncomms2694 10.1002/chem.200501468 10.1038/s41467-019-08885-9 10.1038/nchem.2511 10.1002/syst.201900030 10.1038/s41565-018-0270-4 10.1021/jacs.8b10542 10.1039/C8CC09823A 10.1021/cm403028b 10.1039/C8CC00799C 10.1021/acs.joc.9b02746 10.1021/nl5039506 10.1021/jacs.9b02004 10.1038/ncomms15899 10.1002/ejoc.200400723 10.1002/anie.201811749 10.1021/acscentsci.5b00279 10.1002/bies.201200131 10.1002/syst.201900042 10.1002/adma.201906834 10.1039/C8SM00822A 10.1126/science.1210493 10.1002/syst.201900044 10.1091/mbc.3.10.1155 10.1038/ncomms15895 10.1038/s41467-018-04670-2 10.1038/s41467-018-04488-y 10.1002/anie.201703765 10.1002/adma.201706750 10.1002/anie.200353510 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley-VCH GmbH 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley-VCH GmbH – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION |
DOI | 10.1002/syst.202000037 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2570-4206 |
EndPage | n/a |
ExternalDocumentID | 10_1002_syst_202000037 SYST202000037 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: European Research Council (ERC starting grant) funderid: 852187 – fundername: German Excellence Initiative and the European Union funderid: 291763 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) funderid: EXC-2094 – 390783311 – fundername: Technische Universität München-Institute for Advanced Study |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS AANLZ ABDBF ACCFJ ACCZN ACPOU ACXQS ADIYS ADXAS ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LYRES MEWTI P2W ROL SUPJJ WIN WXSBR ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3577-38e62536b232d77da2964bc06f1d2e45af0da926f6508ebe37a956611c3879cf3 |
IEDL.DBID | 24P |
ISSN | 2570-4206 |
IngestDate | Thu Oct 10 17:13:46 EDT 2024 Fri Aug 23 00:36:29 EDT 2024 Sat Aug 24 01:05:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3577-38e62536b232d77da2964bc06f1d2e45af0da926f6508ebe37a956611c3879cf3 |
ORCID | 0000-0002-9126-2430 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyst.202000037 |
PQID | 2475072396 |
PQPubID | 4669303 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2475072396 crossref_primary_10_1002_syst_202000037 wiley_primary_10_1002_syst_202000037_SYST202000037 |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemSystemsChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2015; 1 2011; 334 2015; 15 2017; 8 2013; 26 2013; 4 1991; 277 2018; 140 2006; 12 2020; 85 2019; 2 2019; 55 2019; 10 2019; 58 2016; 52 2015; 349 2020; 11 2019; 141 2005; 2005 2017; 139 2017; 50 2018; 9 2010; 49 2009; 10 2013; 35 2020 2005; 127 2017; 56 2018; 30 2018; 54 1994; 50 2016; 8 1992; 3 2018; 14 2018; 13 2018; 57 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_6_1 e_1_2_2_49_2 Dhiman S. (e_1_2_2_51_2) 2019; 2 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_26_2 Fan B. (e_1_2_2_47_2) 2019; 2 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 Fygenson D. K. (e_1_2_2_15_1) 1994; 50 e_1_2_2_34_2 e_1_2_2_5_1 e_1_2_2_48_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 Ogden W. A. (e_1_2_2_53_2) 2019; 2 e_1_2_2_42_1 e_1_2_2_9_1 e_1_2_2_44_2 e_1_2_2_25_2 e_1_2_2_46_2 Panja S. (e_1_2_2_29_2) 2019; 2 e_1_2_2_14_1 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_39_1 Del Grosso E. (e_1_2_2_45_2) 2020 e_1_2_2_10_2 Wanzke C. (e_1_2_2_27_1) 2019; 2 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_35_1 Wanzke C. (e_1_2_2_33_2) 2020 |
References_xml | – volume: 26 start-page: 507 year: 2013 publication-title: Chem. Mater. – volume: 54 start-page: 3195 year: 2018 publication-title: Chem. Commun. (Cambridge, U. K.) – volume: 127 start-page: 12423 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2044 year: 2018 publication-title: Nat. Commun. – volume: 139 start-page: 11949 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3984 year: 2006 publication-title: Chem. Eur. J. – volume: 4 start-page: 1688 year: 2013 publication-title: Nat. Commun. – volume: 35 start-page: 452 year: 2013 publication-title: BioEssays – volume: 349 start-page: 1075 year: 2015 publication-title: Science – volume: 15 start-page: 2213 year: 2015 publication-title: Nano Lett. – volume: 2 year: 2019 publication-title: ChemSystemsChem – volume: 14 start-page: 4852 year: 2018 publication-title: Soft Matter – year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 2440 year: 2017 publication-title: Acc. Chem. Res. – volume: 2005 start-page: 3615 year: 2005 publication-title: Eur. J. Org. Chem. – volume: 58 start-page: 244 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2646 year: 2009 end-page: 2651 publication-title: Biomacromolecules – volume: 334 start-page: 204 year: 2011 publication-title: Science – year: 2020 publication-title: Mater. Horiz. – volume: 52 start-page: 9009 year: 2016 publication-title: Chem. Commun. (Cambridge, U.K.) – volume: 56 start-page: 10992 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 2959 year: 2004 publication-title: Angew. Chem. Int. Ed. – year: 2020 publication-title: Adv. Mater. – volume: 49 start-page: 4825 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 15895 year: 2017 publication-title: Nat. Commun. – volume: 277 start-page: 239 year: 1991 publication-title: Biochem. J. – volume: 141 start-page: 9872 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15899 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 450 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 504 year: 2015 publication-title: ACS Cent. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 176 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 725 year: 2016 publication-title: Nat. Chem. – volume: 9 start-page: 2239 year: 2018 publication-title: Nat. Commun. – volume: 55 start-page: 2086 year: 2019 publication-title: Chem. Commun. (Cambridge, U. K.) – volume: 140 start-page: 16433 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 682 year: 2020 publication-title: J. Org. Chem. – volume: 10 start-page: 1011 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 1155 year: 1992 publication-title: Mol. Biol. Cell – volume: 13 start-page: 1021 year: 2018 publication-title: Nat. Nanotechnol. – volume: 50 start-page: 1579 year: 1994 publication-title: Phys. Rev. – volume: 57 start-page: 14608 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: e1900028 year: 2019 ident: e_1_2_2_47_2 publication-title: ChemSystemsChem doi: 10.1002/syst.201900028 contributor: fullname: Fan B. – ident: e_1_2_2_52_2 doi: 10.1038/s41467-019-08308-9 – ident: e_1_2_2_40_1 – ident: e_1_2_2_32_1 – ident: e_1_2_2_25_2 doi: 10.1021/jacs.7b06099 – ident: e_1_2_2_42_1 doi: 10.1021/bm900584m – ident: e_1_2_2_23_1 – ident: e_1_2_2_7_1 doi: 10.1021/ja053557t – ident: e_1_2_2_2_1 doi: 10.1021/acs.accounts.7b00297 – ident: e_1_2_2_41_1 doi: 10.1039/C6CC01192F – ident: e_1_2_2_17_2 doi: 10.1042/bj2770239 – ident: e_1_2_2_28_1 – ident: e_1_2_2_36_2 doi: 10.1002/anie.201807937 – ident: e_1_2_2_20_1 doi: 10.1126/science.aac6103 – ident: e_1_2_2_21_1 doi: 10.1038/s41467-019-13903-x – ident: e_1_2_2_22_1 doi: 10.1002/anie.201001511 – volume: 2 start-page: e1900038 year: 2019 ident: e_1_2_2_29_2 publication-title: ChemSystemsChem doi: 10.1002/syst.201900038 contributor: fullname: Panja S. – ident: e_1_2_2_8_1 doi: 10.1038/ncomms2694 – ident: e_1_2_2_3_1 doi: 10.1002/chem.200501468 – ident: e_1_2_2_50_2 doi: 10.1038/s41467-019-08885-9 – ident: e_1_2_2_44_2 doi: 10.1038/nchem.2511 – volume: 2 start-page: e1900030 year: 2019 ident: e_1_2_2_53_2 publication-title: ChemSystemsChem doi: 10.1002/syst.201900030 contributor: fullname: Ogden W. A. – ident: e_1_2_2_9_1 – ident: e_1_2_2_19_1 doi: 10.1038/s41565-018-0270-4 – ident: e_1_2_2_39_1 doi: 10.1021/jacs.8b10542 – year: 2020 ident: e_1_2_2_33_2 publication-title: Mater. Horiz. contributor: fullname: Wanzke C. – ident: e_1_2_2_31_2 doi: 10.1039/C8CC09823A – ident: e_1_2_2_1_1 doi: 10.1021/cm403028b – ident: e_1_2_2_43_1 – ident: e_1_2_2_4_1 doi: 10.1039/C8CC00799C – ident: e_1_2_2_30_2 doi: 10.1021/acs.joc.9b02746 – ident: e_1_2_2_48_2 doi: 10.1021/nl5039506 – ident: e_1_2_2_37_2 doi: 10.1021/jacs.9b02004 – ident: e_1_2_2_46_2 doi: 10.1038/ncomms15899 – ident: e_1_2_2_10_2 doi: 10.1002/ejoc.200400723 – ident: e_1_2_2_38_1 doi: 10.1002/anie.201811749 – ident: e_1_2_2_35_1 – ident: e_1_2_2_54_2 doi: 10.1021/acscentsci.5b00279 – ident: e_1_2_2_18_2 doi: 10.1002/bies.201200131 – volume: 2 start-page: e1900042 year: 2019 ident: e_1_2_2_51_2 publication-title: ChemSystemsChem doi: 10.1002/syst.201900042 contributor: fullname: Dhiman S. – ident: e_1_2_2_12_1 doi: 10.1002/adma.201906834 – ident: e_1_2_2_34_2 doi: 10.1039/C8SM00822A – ident: e_1_2_2_11_2 doi: 10.1126/science.1210493 – volume: 2 start-page: e1900044 year: 2019 ident: e_1_2_2_27_1 publication-title: ChemSystemsChem doi: 10.1002/syst.201900044 contributor: fullname: Wanzke C. – ident: e_1_2_2_14_1 doi: 10.1091/mbc.3.10.1155 – volume: 50 start-page: 1579 year: 1994 ident: e_1_2_2_15_1 publication-title: Phys. Rev. contributor: fullname: Fygenson D. K. – ident: e_1_2_2_24_2 doi: 10.1038/ncomms15895 – year: 2020 ident: e_1_2_2_45_2 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Del Grosso E. – ident: e_1_2_2_49_2 doi: 10.1038/s41467-018-04670-2 – ident: e_1_2_2_26_2 doi: 10.1038/s41467-018-04488-y – ident: e_1_2_2_5_1 doi: 10.1002/anie.201703765 – ident: e_1_2_2_13_1 doi: 10.1002/adma.201706750 – ident: e_1_2_2_16_1 – ident: e_1_2_2_6_1 doi: 10.1002/anie.200353510 |
SSID | ssj0002513197 |
Score | 2.2929494 |
Snippet | In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples,... Abstract In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | chemical fuels Chemical reactions dissipative self-assembly kinetics reaction cycles |
Title | A Method to Quench Carbodiimide‐Fueled Self‐Assembly |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyst.202000037 https://www.proquest.com/docview/2475072396 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aHvQiPrFayx4ET0t3kzTJHttqEaGitIV6WpJNgoU-pI-DN3-Cv9FfYma3u21PgsccEsJkkvlmJvMNQrfS7U7oRPtaUOVTiZWvJNN-aAgkmUJD04xp95k9DujTsDHcquLP-CGKgBvcjPS9hgsu1aK-IQ0FpmPn30GpSUD4PioDbQzoOKYvRZTFWW-nY1AzDd3afIoDljM3Bri-u8SuZdrAzW3QmlqdzjE6WsNFr5md7wnaM9NTdNDOu7SdIdH0umkTaG85817hV_S715ZzNdOj0WSkzc_Xd2flTIv2emZs3QiyvBM1_jxHg85Dv_3or7sh-AlpcPcSCON8FcKUw0Cacy0hYaqSgNlQY0Mb0gZaRphZwFzuaAiXzvdhYZgQwaPEkgtUms6m5hJ5CTQWl1go6wCU4VYKYnFgokQE2GgrKugul0T8kZFexBm9MY5BZnEhswqq5oKK18q_iDF1MIRjErEKwqnw_lgl7r31-sXo6j-TrtEhht8maXCkikrL-crcOLiwVLVUI2qo3Gzdtzq_Fuy5fA |
link.rule.ids | 315,783,787,11576,27938,27939,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgDGVBPEWhQAYkpqiJ7TrOWFVUBdoK1FaCybJjW1TqA5V2YOMT-Ea-BN-kSemExOghVnR97Xvu8yB0Ld3fcZ1oX3OqfCqx8pVk2g8NgSRTaGiaMe32WHtI75_reTUh9MJk8yGKgBvcjPS9hgsOAenaemoojDp2Dh70mgQk2kY7lNEY2BswfSzCLM58OyWDpmmga_MpDlg-ujHAtc0tNk3TGm_-Rq2p2Wnto70VXvQa2QEfoC0zPUTlZk7TdoR4w-umLNDeYuY9QVn0q9eUczXTo9FkpM3351dr6WyL9vpmbN0K0rwTNf44RsPW7aDZ9ld0CH5C6pF7CrhxzgphyoEgHUVaQsZUJQGzocaG1qUNtIwxswC63NmQSDrnh4VhQngUJ5acoNJ0NjWnyEuAWVxirqxDUCaykhOLAxMnPMBGW15BN7kkxFs29UJk842xAJmJQmYVVM0FJVba_y4wdTgkwiRmFYRT4f2xi-i_9AfF6uw_H12hcnvQ7YjOXe_hHO1iKD1JIyVVVFrMl-bCYYeFuky14wdXDLt1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UE_VifEYUdQ8mnjbstqXtHgm6wQcEAyR4atptG0l4BeHgzZ_gb_SX2O7CAicTjz20aabTzjcznW8AuBV2d0wlylcMSx8LKH0piPJDjVySKdQ4zZg2mqTexU-9Sm-tij_jh8gDbu5mpO-1u-ATZcor0lDHdGz9O1dqEiC6DXaww-KO2xm38iiLtd5Wx1zNtOvW5mMYkCVzYwDLm0tsWqYV3FwHranViQ_BwQIuetXsfI_Alh4dg73askvbCWBVr5E2gfZmY-_V_Yp-92piKseq3x_2lf75-o7n1rQor60Hxo5clncoB5-noBs_dGp1f9ENwU9QhdqXgGnrqyAiLQZSlCrhEqYyCYgJFdS4IkygRASJcZjLHg2iwvo-JAwTxGiUGHQGCqPxSJ8DL3GNxQVk0lgApakRDBkY6ChhAdTKsCK4W0qCTzLSC57RG0PuZMZzmRVBaSkovlD-Dw6xhSEUoogUAUyF98cqvP3W7uSji_9MugG7rfuYvzw2ny_BPnQfT9I4SQkUZtO5vrLIYSavU-X4BWI1up4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+to+Quench+Carbodiimide%E2%80%90Fueled+Self%E2%80%90Assembly&rft.jtitle=ChemSystemsChem&rft.au=Schnitter%2C+Fabian&rft.au=Boekhoven%2C+Job&rft.date=2021-01-01&rft.issn=2570-4206&rft.eissn=2570-4206&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Fsyst.202000037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_syst_202000037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2570-4206&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2570-4206&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2570-4206&client=summon |