A Method to Quench Carbodiimide‐Fueled Self‐Assembly

In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are s...

Full description

Saved in:
Bibliographic Details
Published inChemSystemsChem Vol. 3; no. 1
Main Authors Schnitter, Fabian, Boekhoven, Job
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles. Counting bricks in the wall: Chemically fueled assemblies are regulated by a chemical reaction cycle. A fast reaction cycle was recently introduced that shows exciting, dynamic self‐assembly behavior. However, analysis of its kinetic properties is challenging due to its speed. Thus, we introduce a simple, powerful method to quench all reactions in the reaction cycle. We show the accuracy and application for several reaction cycles and a range of molecular assemblies.
AbstractList In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles. Counting bricks in the wall: Chemically fueled assemblies are regulated by a chemical reaction cycle. A fast reaction cycle was recently introduced that shows exciting, dynamic self‐assembly behavior. However, analysis of its kinetic properties is challenging due to its speed. Thus, we introduce a simple, powerful method to quench all reactions in the reaction cycle. We show the accuracy and application for several reaction cycles and a range of molecular assemblies.
In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly, i. e., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles.
Abstract In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples, these reactions are typically fast, such that the building blocks remain activated for mere seconds. In contrast, synthetic reaction cycles are slower for self‐assembly , i. e ., with half‐lives on the order of minutes. In search of life‐like, dynamic behavior in synthetic systems, several groups explore faster reaction cycles that form transient labile building blocks with half‐lives of tens of seconds. These cycles show exciting properties, but brought about a new challenge, i. e ., accurately analyzing the fast cycle is impossible with classical techniques. We thus introduce the notion of quenching chemical reaction cycles for self‐assembly. As a model, we use the fast carbodiimide‐fueled chemical reaction cycle and demonstrate a method that quenches all reactions immediately. We show its accuracy and demonstrate the application for several reaction cycles and a range of dissipative assemblies. Finally, we offer preliminary design rules to quench other chemically fueled reaction cycles.
Author Schnitter, Fabian
Boekhoven, Job
Author_xml – sequence: 1
  givenname: Fabian
  surname: Schnitter
  fullname: Schnitter, Fabian
  organization: Technical University of Munich
– sequence: 2
  givenname: Job
  orcidid: 0000-0002-9126-2430
  surname: Boekhoven
  fullname: Boekhoven, Job
  email: job.boekhoven@tum.de
  organization: Technical University of Munich
BookMark eNqFkM9Kw0AQhxepYK29eg54Tt0_2d3ssQSrQkWk9eBp2WRnaUqa1N0Eyc1H8Bl9ElMq6s25zAx8vxn4ztGobmpA6JLgGcGYXoc-tDOKKR6KyRM0plziOKFYjP7MZ2gawnZAKCeMKDlG6Tx6gHbT2KhtoqcO6mITZcbnjS3LXWnh8_1j0UEFNlpB5YZtHgLs8qq_QKfOVAGm332Cnhc36-wuXj7e3mfzZVwwLmXMUhCUM5FTRq2U1lAlkrzAwhFLIeHGYWsUFU5wnEIOTBrFhSCkYKlUhWMTdHW8u_fNaweh1dum8_XwUtNEciwpU2KgZkeq8E0IHpze-3JnfK8J1gdB-iBI_wgaAuoYeCsr6P-h9epltf7NfgG4l2u1
CitedBy_id crossref_primary_10_1021_jacs_3c00273
crossref_primary_10_1038_s41467_020_18815_9
crossref_primary_10_1002_syst_202100016
crossref_primary_10_1021_jacs_2c08463
crossref_primary_10_1039_D2SC03691F
crossref_primary_10_1002_syst_202100015
crossref_primary_10_1038_s41467_022_30424_2
crossref_primary_10_1038_s41596_021_00563_9
crossref_primary_10_1016_j_chempr_2023_05_035
crossref_primary_10_1038_s41467_023_42344_w
crossref_primary_10_1021_jacs_1c01172
crossref_primary_10_1021_jacs_1c01148
crossref_primary_10_1039_D1SM00515D
crossref_primary_10_1039_D1CC06428B
crossref_primary_10_1039_D3SC04281B
crossref_primary_10_1039_D3SC02062B
crossref_primary_10_1021_accountsmr_2c00244
crossref_primary_10_1039_D1NR04954B
crossref_primary_10_1002_syst_202200035
Cites_doi 10.1002/syst.201900028
10.1038/s41467-019-08308-9
10.1021/jacs.7b06099
10.1021/bm900584m
10.1021/ja053557t
10.1021/acs.accounts.7b00297
10.1039/C6CC01192F
10.1042/bj2770239
10.1002/anie.201807937
10.1126/science.aac6103
10.1038/s41467-019-13903-x
10.1002/anie.201001511
10.1002/syst.201900038
10.1038/ncomms2694
10.1002/chem.200501468
10.1038/s41467-019-08885-9
10.1038/nchem.2511
10.1002/syst.201900030
10.1038/s41565-018-0270-4
10.1021/jacs.8b10542
10.1039/C8CC09823A
10.1021/cm403028b
10.1039/C8CC00799C
10.1021/acs.joc.9b02746
10.1021/nl5039506
10.1021/jacs.9b02004
10.1038/ncomms15899
10.1002/ejoc.200400723
10.1002/anie.201811749
10.1021/acscentsci.5b00279
10.1002/bies.201200131
10.1002/syst.201900042
10.1002/adma.201906834
10.1039/C8SM00822A
10.1126/science.1210493
10.1002/syst.201900044
10.1091/mbc.3.10.1155
10.1038/ncomms15895
10.1038/s41467-018-04670-2
10.1038/s41467-018-04488-y
10.1002/anie.201703765
10.1002/adma.201706750
10.1002/anie.200353510
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley-VCH GmbH
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley-VCH GmbH
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
DOI 10.1002/syst.202000037
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2570-4206
EndPage n/a
ExternalDocumentID 10_1002_syst_202000037
SYST202000037
Genre shortCommunication
GrantInformation_xml – fundername: European Research Council (ERC starting grant)
  funderid: 852187
– fundername: German Excellence Initiative and the European Union
  funderid: 291763
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  funderid: EXC-2094 – 390783311
– fundername: Technische Universität München-Institute for Advanced Study
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
AANLZ
ABDBF
ACCFJ
ACCZN
ACPOU
ACXQS
ADIYS
ADXAS
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMYDB
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LYRES
MEWTI
P2W
ROL
SUPJJ
WIN
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3577-38e62536b232d77da2964bc06f1d2e45af0da926f6508ebe37a956611c3879cf3
IEDL.DBID 24P
ISSN 2570-4206
IngestDate Thu Oct 10 17:13:46 EDT 2024
Fri Aug 23 00:36:29 EDT 2024
Sat Aug 24 01:05:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3577-38e62536b232d77da2964bc06f1d2e45af0da926f6508ebe37a956611c3879cf3
ORCID 0000-0002-9126-2430
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyst.202000037
PQID 2475072396
PQPubID 4669303
PageCount 7
ParticipantIDs proquest_journals_2475072396
crossref_primary_10_1002_syst_202000037
wiley_primary_10_1002_syst_202000037_SYST202000037
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemSystemsChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2015; 1
2011; 334
2015; 15
2017; 8
2013; 26
2013; 4
1991; 277
2018; 140
2006; 12
2020; 85
2019; 2
2019; 55
2019; 10
2019; 58
2016; 52
2015; 349
2020; 11
2019; 141
2005; 2005
2017; 139
2017; 50
2018; 9
2010; 49
2009; 10
2013; 35
2020
2005; 127
2017; 56
2018; 30
2018; 54
1994; 50
2016; 8
1992; 3
2018; 14
2018; 13
2018; 57
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_6_1
e_1_2_2_49_2
Dhiman S. (e_1_2_2_51_2) 2019; 2
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_26_2
Fan B. (e_1_2_2_47_2) 2019; 2
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
Fygenson D. K. (e_1_2_2_15_1) 1994; 50
e_1_2_2_34_2
e_1_2_2_5_1
e_1_2_2_48_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
Ogden W. A. (e_1_2_2_53_2) 2019; 2
e_1_2_2_42_1
e_1_2_2_9_1
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
Panja S. (e_1_2_2_29_2) 2019; 2
e_1_2_2_14_1
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_39_1
Del Grosso E. (e_1_2_2_45_2) 2020
e_1_2_2_10_2
Wanzke C. (e_1_2_2_27_1) 2019; 2
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_35_1
Wanzke C. (e_1_2_2_33_2) 2020
References_xml – volume: 26
  start-page: 507
  year: 2013
  publication-title: Chem. Mater.
– volume: 54
  start-page: 3195
  year: 2018
  publication-title: Chem. Commun. (Cambridge, U. K.)
– volume: 127
  start-page: 12423
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2044
  year: 2018
  publication-title: Nat. Commun.
– volume: 139
  start-page: 11949
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3984
  year: 2006
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 1688
  year: 2013
  publication-title: Nat. Commun.
– volume: 35
  start-page: 452
  year: 2013
  publication-title: BioEssays
– volume: 349
  start-page: 1075
  year: 2015
  publication-title: Science
– volume: 15
  start-page: 2213
  year: 2015
  publication-title: Nano Lett.
– volume: 2
  year: 2019
  publication-title: ChemSystemsChem
– volume: 14
  start-page: 4852
  year: 2018
  publication-title: Soft Matter
– year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 2440
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 2005
  start-page: 3615
  year: 2005
  publication-title: Eur. J. Org. Chem.
– volume: 58
  start-page: 244
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2646
  year: 2009
  end-page: 2651
  publication-title: Biomacromolecules
– volume: 334
  start-page: 204
  year: 2011
  publication-title: Science
– year: 2020
  publication-title: Mater. Horiz.
– volume: 52
  start-page: 9009
  year: 2016
  publication-title: Chem. Commun. (Cambridge, U.K.)
– volume: 56
  start-page: 10992
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 2959
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– year: 2020
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4825
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 15895
  year: 2017
  publication-title: Nat. Commun.
– volume: 277
  start-page: 239
  year: 1991
  publication-title: Biochem. J.
– volume: 141
  start-page: 9872
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15899
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 450
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 504
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 176
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 725
  year: 2016
  publication-title: Nat. Chem.
– volume: 9
  start-page: 2239
  year: 2018
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2086
  year: 2019
  publication-title: Chem. Commun. (Cambridge, U. K.)
– volume: 140
  start-page: 16433
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 682
  year: 2020
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 1011
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1155
  year: 1992
  publication-title: Mol. Biol. Cell
– volume: 13
  start-page: 1021
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 50
  start-page: 1579
  year: 1994
  publication-title: Phys. Rev.
– volume: 57
  start-page: 14608
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: e1900028
  year: 2019
  ident: e_1_2_2_47_2
  publication-title: ChemSystemsChem
  doi: 10.1002/syst.201900028
  contributor:
    fullname: Fan B.
– ident: e_1_2_2_52_2
  doi: 10.1038/s41467-019-08308-9
– ident: e_1_2_2_40_1
– ident: e_1_2_2_32_1
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.7b06099
– ident: e_1_2_2_42_1
  doi: 10.1021/bm900584m
– ident: e_1_2_2_23_1
– ident: e_1_2_2_7_1
  doi: 10.1021/ja053557t
– ident: e_1_2_2_2_1
  doi: 10.1021/acs.accounts.7b00297
– ident: e_1_2_2_41_1
  doi: 10.1039/C6CC01192F
– ident: e_1_2_2_17_2
  doi: 10.1042/bj2770239
– ident: e_1_2_2_28_1
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201807937
– ident: e_1_2_2_20_1
  doi: 10.1126/science.aac6103
– ident: e_1_2_2_21_1
  doi: 10.1038/s41467-019-13903-x
– ident: e_1_2_2_22_1
  doi: 10.1002/anie.201001511
– volume: 2
  start-page: e1900038
  year: 2019
  ident: e_1_2_2_29_2
  publication-title: ChemSystemsChem
  doi: 10.1002/syst.201900038
  contributor:
    fullname: Panja S.
– ident: e_1_2_2_8_1
  doi: 10.1038/ncomms2694
– ident: e_1_2_2_3_1
  doi: 10.1002/chem.200501468
– ident: e_1_2_2_50_2
  doi: 10.1038/s41467-019-08885-9
– ident: e_1_2_2_44_2
  doi: 10.1038/nchem.2511
– volume: 2
  start-page: e1900030
  year: 2019
  ident: e_1_2_2_53_2
  publication-title: ChemSystemsChem
  doi: 10.1002/syst.201900030
  contributor:
    fullname: Ogden W. A.
– ident: e_1_2_2_9_1
– ident: e_1_2_2_19_1
  doi: 10.1038/s41565-018-0270-4
– ident: e_1_2_2_39_1
  doi: 10.1021/jacs.8b10542
– year: 2020
  ident: e_1_2_2_33_2
  publication-title: Mater. Horiz.
  contributor:
    fullname: Wanzke C.
– ident: e_1_2_2_31_2
  doi: 10.1039/C8CC09823A
– ident: e_1_2_2_1_1
  doi: 10.1021/cm403028b
– ident: e_1_2_2_43_1
– ident: e_1_2_2_4_1
  doi: 10.1039/C8CC00799C
– ident: e_1_2_2_30_2
  doi: 10.1021/acs.joc.9b02746
– ident: e_1_2_2_48_2
  doi: 10.1021/nl5039506
– ident: e_1_2_2_37_2
  doi: 10.1021/jacs.9b02004
– ident: e_1_2_2_46_2
  doi: 10.1038/ncomms15899
– ident: e_1_2_2_10_2
  doi: 10.1002/ejoc.200400723
– ident: e_1_2_2_38_1
  doi: 10.1002/anie.201811749
– ident: e_1_2_2_35_1
– ident: e_1_2_2_54_2
  doi: 10.1021/acscentsci.5b00279
– ident: e_1_2_2_18_2
  doi: 10.1002/bies.201200131
– volume: 2
  start-page: e1900042
  year: 2019
  ident: e_1_2_2_51_2
  publication-title: ChemSystemsChem
  doi: 10.1002/syst.201900042
  contributor:
    fullname: Dhiman S.
– ident: e_1_2_2_12_1
  doi: 10.1002/adma.201906834
– ident: e_1_2_2_34_2
  doi: 10.1039/C8SM00822A
– ident: e_1_2_2_11_2
  doi: 10.1126/science.1210493
– volume: 2
  start-page: e1900044
  year: 2019
  ident: e_1_2_2_27_1
  publication-title: ChemSystemsChem
  doi: 10.1002/syst.201900044
  contributor:
    fullname: Wanzke C.
– ident: e_1_2_2_14_1
  doi: 10.1091/mbc.3.10.1155
– volume: 50
  start-page: 1579
  year: 1994
  ident: e_1_2_2_15_1
  publication-title: Phys. Rev.
  contributor:
    fullname: Fygenson D. K.
– ident: e_1_2_2_24_2
  doi: 10.1038/ncomms15895
– year: 2020
  ident: e_1_2_2_45_2
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Del Grosso E.
– ident: e_1_2_2_49_2
  doi: 10.1038/s41467-018-04670-2
– ident: e_1_2_2_26_2
  doi: 10.1038/s41467-018-04488-y
– ident: e_1_2_2_5_1
  doi: 10.1002/anie.201703765
– ident: e_1_2_2_13_1
  doi: 10.1002/adma.201706750
– ident: e_1_2_2_16_1
– ident: e_1_2_2_6_1
  doi: 10.1002/anie.200353510
SSID ssj0002513197
Score 2.2929494
Snippet In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological examples,...
Abstract In chemically fueled self‐assembly, the activation and deactivation of molecules for self‐assembly is coupled to a reaction cycle. In biological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms chemical fuels
Chemical reactions
dissipative self-assembly
kinetics
reaction cycles
Title A Method to Quench Carbodiimide‐Fueled Self‐Assembly
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyst.202000037
https://www.proquest.com/docview/2475072396
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aHvQiPrFayx4ET0t3kzTJHttqEaGitIV6WpJNgoU-pI-DN3-Cv9FfYma3u21PgsccEsJkkvlmJvMNQrfS7U7oRPtaUOVTiZWvJNN-aAgkmUJD04xp95k9DujTsDHcquLP-CGKgBvcjPS9hgsu1aK-IQ0FpmPn30GpSUD4PioDbQzoOKYvRZTFWW-nY1AzDd3afIoDljM3Bri-u8SuZdrAzW3QmlqdzjE6WsNFr5md7wnaM9NTdNDOu7SdIdH0umkTaG85817hV_S715ZzNdOj0WSkzc_Xd2flTIv2emZs3QiyvBM1_jxHg85Dv_3or7sh-AlpcPcSCON8FcKUw0Cacy0hYaqSgNlQY0Mb0gZaRphZwFzuaAiXzvdhYZgQwaPEkgtUms6m5hJ5CTQWl1go6wCU4VYKYnFgokQE2GgrKugul0T8kZFexBm9MY5BZnEhswqq5oKK18q_iDF1MIRjErEKwqnw_lgl7r31-sXo6j-TrtEhht8maXCkikrL-crcOLiwVLVUI2qo3Gzdtzq_Fuy5fA
link.rule.ids 315,783,787,11576,27938,27939,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWgDGVBPEWhQAYkpqiJ7TrOWFVUBdoK1FaCybJjW1TqA5V2YOMT-Ea-BN-kSemExOghVnR97Xvu8yB0Ld3fcZ1oX3OqfCqx8pVk2g8NgSRTaGiaMe32WHtI75_reTUh9MJk8yGKgBvcjPS9hgsOAenaemoojDp2Dh70mgQk2kY7lNEY2BswfSzCLM58OyWDpmmga_MpDlg-ujHAtc0tNk3TGm_-Rq2p2Wnto70VXvQa2QEfoC0zPUTlZk7TdoR4w-umLNDeYuY9QVn0q9eUczXTo9FkpM3351dr6WyL9vpmbN0K0rwTNf44RsPW7aDZ9ld0CH5C6pF7CrhxzgphyoEgHUVaQsZUJQGzocaG1qUNtIwxswC63NmQSDrnh4VhQngUJ5acoNJ0NjWnyEuAWVxirqxDUCaykhOLAxMnPMBGW15BN7kkxFs29UJk842xAJmJQmYVVM0FJVba_y4wdTgkwiRmFYRT4f2xi-i_9AfF6uw_H12hcnvQ7YjOXe_hHO1iKD1JIyVVVFrMl-bCYYeFuky14wdXDLt1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UE_VifEYUdQ8mnjbstqXtHgm6wQcEAyR4atptG0l4BeHgzZ_gb_SX2O7CAicTjz20aabTzjcznW8AuBV2d0wlylcMSx8LKH0piPJDjVySKdQ4zZg2mqTexU-9Sm-tij_jh8gDbu5mpO-1u-ATZcor0lDHdGz9O1dqEiC6DXaww-KO2xm38iiLtd5Wx1zNtOvW5mMYkCVzYwDLm0tsWqYV3FwHranViQ_BwQIuetXsfI_Alh4dg73askvbCWBVr5E2gfZmY-_V_Yp-92piKseq3x_2lf75-o7n1rQor60Hxo5clncoB5-noBs_dGp1f9ENwU9QhdqXgGnrqyAiLQZSlCrhEqYyCYgJFdS4IkygRASJcZjLHg2iwvo-JAwTxGiUGHQGCqPxSJ8DL3GNxQVk0lgApakRDBkY6ChhAdTKsCK4W0qCTzLSC57RG0PuZMZzmRVBaSkovlD-Dw6xhSEUoogUAUyF98cqvP3W7uSji_9MugG7rfuYvzw2ny_BPnQfT9I4SQkUZtO5vrLIYSavU-X4BWI1up4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+to+Quench+Carbodiimide%E2%80%90Fueled+Self%E2%80%90Assembly&rft.jtitle=ChemSystemsChem&rft.au=Schnitter%2C+Fabian&rft.au=Boekhoven%2C+Job&rft.date=2021-01-01&rft.issn=2570-4206&rft.eissn=2570-4206&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Fsyst.202000037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_syst_202000037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2570-4206&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2570-4206&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2570-4206&client=summon