High‐Entropy Tungsten Bronze Ceramics for Large Capacitive Energy Storage with Near‐Zero Losses
In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics.
The long‐range ferroelectric order is disrupted into diverse polarization configurations through a high‐entropy strategy, leading to a record‐high energy density of 10.6 J cm−3 in tungsten bronze and an ultrahigh efficiency of 96.2% at a high electric field. These results, combined with excellent mechanical properties and stability, indicate the successful design of structure‐function integrated ceramics. |
---|---|
AbstractList | In the field of dielectric energy storage, achieving the combination of high recoverable energy density (
W
rec
) and high storage efficiency (
η
) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (
E
b
). Benefiting from the synergistic effects, at a large
E
b
of 760 kV cm
−1
, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high
W
rec
of ≈10.6 J cm
−3
, an ultrahigh
η
of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics. In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics. In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics. The long‐range ferroelectric order is disrupted into diverse polarization configurations through a high‐entropy strategy, leading to a record‐high energy density of 10.6 J cm−3 in tungsten bronze and an ultrahigh efficiency of 96.2% at a high electric field. These results, combined with excellent mechanical properties and stability, indicate the successful design of structure‐function integrated ceramics. |
Author | Wei, Kun Duan, Jianhong Du, Qianbiao Qi, He Ma, Linzhao Li, Hao |
Author_xml | – sequence: 1 givenname: Jianhong surname: Duan fullname: Duan, Jianhong organization: Hunan University – sequence: 2 givenname: Kun surname: Wei fullname: Wei, Kun organization: Hunan University – sequence: 3 givenname: Qianbiao surname: Du fullname: Du, Qianbiao organization: Hunan University – sequence: 4 givenname: Linzhao surname: Ma fullname: Ma, Linzhao organization: Hunan University – sequence: 5 givenname: He surname: Qi fullname: Qi, He email: qiheustb@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 6 givenname: Hao orcidid: 0000-0001-9472-7785 surname: Li fullname: Li, Hao email: hli@hnu.edu.cn organization: Hunan University |
BookMark | eNqFkEFPwjAYhhuDiYBePTfxPGzXrWNHRBCTqQcxMV6W0n0bJbDOdkjmyZ_gb_SXWMRgYmI89U37Pu_39e2gVqlLQOiUkh4lxD8XWb7q-cQPSBwE_AC1KafcY8Tvt_aaPh6hjrULQmgUsaCN5EQV84-391FZG101eLouC1tDiS-MLl8BD8GIlZIW59rgRJjCXYlKSFWrF8CjEkzR4PtaG-FeNqqe41sQxgU-gdE40daCPUaHuVhaOPk-u-hhPJoOJ15yd3U9HCSeZGHEvTyGOPMhYjMODARkmR8S6QSjLCQ5yEjmMev7lIcig2wWU2fkJJAihCAkgnXR2S63Mvp5DbZOF3ptSjcy_YoI44Bx5wp2Lmncdgby1H1G1Eq7BoRappSk2zrTbZ3pvk6H9X5hlVErYZq_gXgHbNQSmn_c6eByfPPDfgK1CY3F |
CitedBy_id | crossref_primary_10_1002_adfm_202500988 crossref_primary_10_1016_j_jallcom_2025_178836 crossref_primary_10_1016_j_jallcom_2025_178902 crossref_primary_10_1016_j_ceramint_2025_01_288 crossref_primary_10_1021_acsaelm_5c00153 crossref_primary_10_1016_j_ceramint_2024_09_422 crossref_primary_10_3390_cryst15010026 crossref_primary_10_3390_ma18010074 |
Cites_doi | 10.1016/j.actamat.2022.118115 10.1016/j.nanoen.2022.107910 10.1007/s10853-005-5915-7 10.1021/acsami.2c11691 10.1002/aenm.201803048 10.1016/j.ensm.2021.09.018 10.1021/jacs.3c09805 10.1016/j.ceramint.2023.10.143 10.1038/s41560-023-01300-0 10.1039/D3MH01965A 10.1126/science.aaw8109 10.1126/science.adl2931 10.1002/aenm.202101378 10.1063/5.0190404 10.1002/adfm.202111776 10.1021/acsami.1c05153 10.1016/j.jmst.2023.08.031 10.1080/00150198408245041 10.1002/adfm.202110478 10.1016/j.jmst.2022.10.053 10.1016/j.jallcom.2019.02.332 10.1016/j.compositesb.2023.111189 10.1016/j.nanoen.2023.108458 10.1016/j.nanoen.2019.02.003 10.1016/j.ensm.2022.12.031 10.1002/adma.202205787 10.1016/j.cej.2021.131989 10.1039/D0NR05709F 10.1039/D3TA03294A 10.1002/advs.202300227 10.1103/PhysRevLett.103.207601 10.1002/adma.202313285 10.1016/j.cej.2021.133812 10.1016/j.pmatsci.2018.12.005 10.1016/j.nanoen.2020.105423 10.1021/acs.chemmater.9b04122 10.1002/adma.202310559 10.1021/jacs.3c06912 10.1016/j.nanoen.2022.107276 10.1016/j.cej.2022.136330 10.1021/acs.chemrev.0c01264 10.1038/s41467-023-41494-1 10.1126/science.abi7687 10.1002/inf2.12488 10.1021/acsami.3c18262 10.1039/D3EE01545A 10.1016/0304-3991(91)90004-P 10.1021/acs.nanolett.8b02718 10.1021/acsami.2c06889 10.1021/jacs.3c02811 10.1002/adma.201802155 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202409446 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202409446 ADFM202409446 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province funderid: No.2023JJ30138 – fundername: National Natural Science Foundation of China funderid: No.52102129 – fundername: Science and Technology Innovation Program of Hunan Province funderid: 2023RC3094 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3576-f9e9d2e73b6e3eaedd250ceae31350fec7cf9382165adedb91b6e604ca5e450a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 23:46:49 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 00:31:06 EDT 2025 Wed Jan 22 17:14:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3576-f9e9d2e73b6e3eaedd250ceae31350fec7cf9382165adedb91b6e604ca5e450a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9472-7785 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202409446 |
PQID | 3135059436 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3135059436 crossref_citationtrail_10_1002_adfm_202409446 crossref_primary_10_1002_adfm_202409446 wiley_primary_10_1002_adfm_202409446_ADFM202409446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2019; 9 2021; 43 2023; 14 2023; 55 2023; 11 1991; 37 2023; 5 2023; 16 2023; 8 2023; 145 2019; 58 2011; 53 2024; 50 2019; 102 2024; 384 2020; 12 2024; 11 2024; 146 2019; 788 2024; 124 2021; 121 2020; 32 2024; 36 2024; 16 2022; 236 2019; 365 2022; 433 2021; 79 2021; 13 2022; 442 2018; 18 2006; 41 2021; 32 2021; 11 2023; 112 2022; 34 2022; 14 2018; 30 2024; 177 2022; 98 2022; 32 2021; 374 2022; 427 2009; 103 2022; 104 2024; 271 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 374 start-page: 100 year: 2021 publication-title: Science – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 383 year: 2021 publication-title: Energy Storage Mater. – volume: 442 year: 2022 publication-title: Chem. Eng. J. – volume: 16 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1844 year: 2020 publication-title: Chem. Mater. – volume: 112 year: 2023 publication-title: Nano Energy – volume: 11 year: 2023 publication-title: J. Mater. Chem. A – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 16 start-page: 4511 year: 2023 publication-title: Energy Environ. Sci. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 41 start-page: 31 year: 2006 publication-title: J. Mater. Sci. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 145 start-page: 66 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 271 year: 2024 publication-title: Composites, Part B – volume: 12 year: 2020 publication-title: Nanoscale – volume: 365 start-page: 578 year: 2019 publication-title: Science – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 37 start-page: 14 year: 1991 publication-title: Ultramicroscopy – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 18 start-page: 6850 year: 2018 publication-title: Nano Lett. – volume: 8 start-page: 956 year: 2023 publication-title: Nat. Energy – volume: 788 start-page: 978 year: 2019 publication-title: J. Alloys Compd. – volume: 53 start-page: 129 year: 2011 publication-title: Ferroelectrics – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 50 start-page: 650 year: 2024 publication-title: Ceram. Int. – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 14 start-page: 5725 year: 2023 publication-title: Nat. Commun. – volume: 177 start-page: 59 year: 2024 publication-title: J. Mater. Sci. Technol. – volume: 55 start-page: 763 year: 2023 publication-title: Energy Storage Mater. – volume: 11 start-page: 1732 year: 2024 publication-title: Mater. Horiz. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 104 year: 2022 publication-title: Nano Energy – volume: 121 start-page: 6124 year: 2021 publication-title: Chem. Rev. – volume: 384 start-page: 185 year: 2024 publication-title: Science – volume: 236 year: 2022 publication-title: Acta Mater. – volume: 102 start-page: 72 year: 2019 publication-title: Prog. Mater. Sci. – volume: 124 year: 2024 publication-title: Appl. Phys. Lett. – volume: 58 start-page: 768 year: 2019 publication-title: Nano Energy – volume: 146 start-page: 460 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 98 year: 2022 publication-title: Nano Energy – volume: 5 year: 2023 publication-title: InfoMat – ident: e_1_2_8_39_1 doi: 10.1016/j.actamat.2022.118115 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2022.107910 – ident: e_1_2_8_35_1 doi: 10.1007/s10853-005-5915-7 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.2c11691 – ident: e_1_2_8_25_1 doi: 10.1002/aenm.201803048 – ident: e_1_2_8_7_1 doi: 10.1016/j.ensm.2021.09.018 – ident: e_1_2_8_6_1 doi: 10.1021/jacs.3c09805 – ident: e_1_2_8_46_1 doi: 10.1016/j.ceramint.2023.10.143 – ident: e_1_2_8_41_1 doi: 10.1038/s41560-023-01300-0 – ident: e_1_2_8_27_1 doi: 10.1039/D3MH01965A – ident: e_1_2_8_3_1 doi: 10.1126/science.aaw8109 – ident: e_1_2_8_21_1 doi: 10.1126/science.adl2931 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.202101378 – ident: e_1_2_8_19_1 doi: 10.1063/5.0190404 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.202111776 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.1c05153 – ident: e_1_2_8_10_1 doi: 10.1016/j.jmst.2023.08.031 – ident: e_1_2_8_36_1 doi: 10.1080/00150198408245041 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.202110478 – ident: e_1_2_8_22_1 doi: 10.1016/j.jmst.2022.10.053 – ident: e_1_2_8_9_1 doi: 10.1016/j.jallcom.2019.02.332 – ident: e_1_2_8_12_1 doi: 10.1016/j.compositesb.2023.111189 – ident: e_1_2_8_40_1 doi: 10.1016/j.nanoen.2023.108458 – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2019.02.003 – ident: e_1_2_8_15_1 doi: 10.1016/j.ensm.2022.12.031 – ident: e_1_2_8_24_1 doi: 10.1002/adma.202205787 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2021.131989 – ident: e_1_2_8_20_1 doi: 10.1039/D0NR05709F – ident: e_1_2_8_50_1 doi: 10.1039/D3TA03294A – ident: e_1_2_8_16_1 doi: 10.1002/advs.202300227 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.103.207601 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202313285 – ident: e_1_2_8_11_1 doi: 10.1016/j.cej.2021.133812 – ident: e_1_2_8_1_1 doi: 10.1016/j.pmatsci.2018.12.005 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2020.105423 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemmater.9b04122 – ident: e_1_2_8_17_1 doi: 10.1002/adma.202310559 – ident: e_1_2_8_28_1 doi: 10.1021/jacs.3c06912 – ident: e_1_2_8_32_1 doi: 10.1016/j.nanoen.2022.107276 – ident: e_1_2_8_48_1 doi: 10.1016/j.cej.2022.136330 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.0c01264 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-023-41494-1 – ident: e_1_2_8_18_1 doi: 10.1126/science.abi7687 – ident: e_1_2_8_23_1 doi: 10.1002/inf2.12488 – ident: e_1_2_8_51_1 doi: 10.1021/acsami.3c18262 – ident: e_1_2_8_5_1 doi: 10.1039/D3EE01545A – ident: e_1_2_8_33_1 doi: 10.1016/0304-3991(91)90004-P – ident: e_1_2_8_34_1 doi: 10.1021/acs.nanolett.8b02718 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.2c06889 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.3c02811 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201802155 |
SSID | ssj0017734 |
Score | 2.5581198 |
Snippet | In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major... In the field of dielectric energy storage, achieving the combination of high recoverable energy density ( W rec ) and high storage efficiency ( η ) remains a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ceramics Electric fields Energy storage Entropy Ferroelectricity Figure of merit Functional integration lead‐free ceramic Mechanical properties Polarization polarization configuration Synergistic effect Tungsten bronze |
Title | High‐Entropy Tungsten Bronze Ceramics for Large Capacitive Energy Storage with Near‐Zero Losses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202409446 https://www.proquest.com/docview/3135059436 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPCAxpW1ix6nHqrRCiDLwkCqWKLHPCyit2jLAxE_gN_JLuEuatCAhJNgS6ezEj_N9dz5_ZuzUD11bCaCoTdt5UlvpaUNxK21BOeEQk1BoYHCtLu7l5TAcLp3iL_ghqoAbaUa-XpOCJ-m0uSANTayjk-QBOSiSOLcpYYtQ0U3FH-VHUbGtrHxK8PKHJWtjK2h-Lf7VKi2g5jJgzS1Of5Ml5b8WiSaPjedZ2jCv32gc_9OYLbYxh6O8U8yfbbYC2Q5bXyIp3GWGUkE-3t57lNM-fuF3uDzg1Mg4evDZK_AuTOhO-ylH-MuvKLGcd9ECmzwpiffys4X8Fl17XLk4hX35NWoXVvgAkxG_GtGu8x677_fuuhfe_GoGzwj0UDynQdsAIpEqEJCAtQilDD4IX4QtByYyTot24KswsWBT7aOgakmThCDDViL22Wo2yuCAcbCRcolDE2q1NM6mUoVWGCmUQ0lha8wrhyY2c95yuj7jKS4Yl4OYOi-uOq_Gzir5ccHY8aNkvRzpeK650zhvQKjx8zUW5EP2Sy1x57w_qN4O_1LoiK3Rc5ElU2ers8kzHCPWmaUn-Xz-BBi5-NI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xcNjlAOwCorzWh5U4BZo4ceojKq0KtD0sRUJcosQeX0ApKuUAJ34Cv5FfwkzShIeEkHZvSTROYo_H8_D4G4A_fuRaSiJHbVrOC7UNPW04bqUtKicd2SQcGhgMVe88PLmIqmxCPgtT4kPUATeWjGK9ZgHngPTBK2poah0fJQ_YQwnVN1jgst6FV_W3RpDy47jcWFY-p3j5FxVuYzM4eN_-vV56NTbfmqyFzukuQ1b9bZlqcrV_N832zcMHIMf_6s4KLM0sUnFYTqGfMIf5L1h8g1O4CoazQZ4fnzqc1n5zL0a0QtDsyAU58fkDijZOuKz9rSALWPQ5t1y0SQmbIi9JdIrjheKMvHtavARHfsWQBIxeeImTseiPeeN5Dc67nVG7582qM3hGkpPiOY3aBhjLTKHEFK0la8rQhfRl1HRoYuO0bAW-ilKLNtM-EapmaNIIw6iZynWYz8c5boBAGyuXOtKiVofG2Yw4aaUJpXJEKW0DvIo3iZlBl3MFjeukBF0OEh68pB68BuzV9DclaMenlNsVq5OZ8N4mRQciTZ9vQFDw7Iu3JIdH3UF9t_kvjX7D995o0E_6x8PTLfjBz8ukmW2Yn07ucIdMn2m2W0zuF6Gq_O0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlVwgBZasS20PlTiFEhix1kf0T4E7bKqWpBWXKLEHl-osqtlOcCJn9DfyC_pTLIblkqoEtySaOz4MeN5ePwZ4GuU-LaWyFGbtg-UcSowluNWxqH20pNNwqGB06E-PlffRslo6RR_jQ_RBNxYMqr1mgV84vzhA2ho7jyfJI_ZQVF6BV4rHbaZr7s_GwCpKE3rfWUdcYZXNFrANobx4ePyj9XSg625bLFWKqe_CfmisXWmyeXB9aw4sLf_4Di-pDdvYWNuj4qjmoHewSsst2B9CaVwGyzngtzf_elxUvvkRpzR-kC8UQpy4ctbFB2c8qX2V4LsXzHgzHLRIRVsq6wk0asOF4pf5NvT0iU47iuGJF5U4QVOx2Iw5m3n93De7511joP53QyBleSiBN6gcTGmstAoMUfnyJay9CAjmYQebWq9ke040knu0BUmIkIdKpsnqJIwlx9gtRyXuAMCXap97kmHOqOsd4XSiZNWSe2JUroWBIupyewcuJzvz_id1ZDLccaDlzWD14L9hn5SQ3Y8Sbm7mOlsLrpXWdWBxNDvWxBXU_afWrKjbv-0efv4nEJf4M2Pbj8bnAy_f4I1_lxnzOzC6mx6jXtk98yKzxVr_wXKp_ul |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Tungsten+Bronze+Ceramics+for+Large+Capacitive+Energy+Storage+with+Near%E2%80%90Zero+Losses&rft.jtitle=Advanced+functional+materials&rft.au=Duan%2C+Jianhong&rft.au=Wei%2C+Kun&rft.au=Du%2C+Qianbiao&rft.au=Ma%2C+Linzhao&rft.date=2024-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202409446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202409446 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |