High‐Entropy Tungsten Bronze Ceramics for Large Capacitive Energy Storage with Near‐Zero Losses

In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 49
Main Authors Duan, Jianhong, Wei, Kun, Du, Qianbiao, Ma, Linzhao, Qi, He, Li, Hao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics. The long‐range ferroelectric order is disrupted into diverse polarization configurations through a high‐entropy strategy, leading to a record‐high energy density of 10.6 J cm−3 in tungsten bronze and an ultrahigh efficiency of 96.2% at a high electric field. These results, combined with excellent mechanical properties and stability, indicate the successful design of structure‐function integrated ceramics.
AbstractList In the field of dielectric energy storage, achieving the combination of high recoverable energy density ( W rec ) and high storage efficiency ( η ) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field ( E b ). Benefiting from the synergistic effects, at a large E b of 760 kV cm −1 , breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high W rec of ≈10.6 J cm −3 , an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics.
In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics.
In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major challenge. Here, a high‐entropy design in tungsten bronze ceramics is proposed with disordered polarization functional cells, which disrupts the long‐range ferroelectric order into diverse polar nanoregions (PNRs) characterized by composition fluctuation and cation displacement. These PNRs lower the domain‐switching barriers and weaken domain intercoupling, thereby playing a key role in delaying polarization saturation, reducing energy loss, and enhancing the breakdown electric field (Eb). Benefiting from the synergistic effects, at a large Eb of 760 kV cm−1, breakthrough energy storage performance is realized in tungsten bronze ceramics, including a record‐high Wrec of ≈10.6 J cm−3, an ultrahigh η of ≈96.2%, and a record‐high figure of merit of ≈279. These developments, along with superior mechanical properties, stability, and charge–discharge performance, fully demonstrate the feasibility of this strategy for realizing structural‐functional integration in tungsten bronze ceramics. The long‐range ferroelectric order is disrupted into diverse polarization configurations through a high‐entropy strategy, leading to a record‐high energy density of 10.6 J cm−3 in tungsten bronze and an ultrahigh efficiency of 96.2% at a high electric field. These results, combined with excellent mechanical properties and stability, indicate the successful design of structure‐function integrated ceramics.
Author Wei, Kun
Duan, Jianhong
Du, Qianbiao
Qi, He
Ma, Linzhao
Li, Hao
Author_xml – sequence: 1
  givenname: Jianhong
  surname: Duan
  fullname: Duan, Jianhong
  organization: Hunan University
– sequence: 2
  givenname: Kun
  surname: Wei
  fullname: Wei, Kun
  organization: Hunan University
– sequence: 3
  givenname: Qianbiao
  surname: Du
  fullname: Du, Qianbiao
  organization: Hunan University
– sequence: 4
  givenname: Linzhao
  surname: Ma
  fullname: Ma, Linzhao
  organization: Hunan University
– sequence: 5
  givenname: He
  surname: Qi
  fullname: Qi, He
  email: qiheustb@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Hao
  orcidid: 0000-0001-9472-7785
  surname: Li
  fullname: Li, Hao
  email: hli@hnu.edu.cn
  organization: Hunan University
BookMark eNqFkEFPwjAYhhuDiYBePTfxPGzXrWNHRBCTqQcxMV6W0n0bJbDOdkjmyZ_gb_SXWMRgYmI89U37Pu_39e2gVqlLQOiUkh4lxD8XWb7q-cQPSBwE_AC1KafcY8Tvt_aaPh6hjrULQmgUsaCN5EQV84-391FZG101eLouC1tDiS-MLl8BD8GIlZIW59rgRJjCXYlKSFWrF8CjEkzR4PtaG-FeNqqe41sQxgU-gdE40daCPUaHuVhaOPk-u-hhPJoOJ15yd3U9HCSeZGHEvTyGOPMhYjMODARkmR8S6QSjLCQ5yEjmMev7lIcig2wWU2fkJJAihCAkgnXR2S63Mvp5DbZOF3ptSjcy_YoI44Bx5wp2Lmncdgby1H1G1Eq7BoRappSk2zrTbZ3pvk6H9X5hlVErYZq_gXgHbNQSmn_c6eByfPPDfgK1CY3F
CitedBy_id crossref_primary_10_1002_adfm_202500988
crossref_primary_10_1016_j_jallcom_2025_178836
crossref_primary_10_1016_j_jallcom_2025_178902
crossref_primary_10_1016_j_ceramint_2025_01_288
crossref_primary_10_1021_acsaelm_5c00153
crossref_primary_10_1016_j_ceramint_2024_09_422
crossref_primary_10_3390_cryst15010026
crossref_primary_10_3390_ma18010074
Cites_doi 10.1016/j.actamat.2022.118115
10.1016/j.nanoen.2022.107910
10.1007/s10853-005-5915-7
10.1021/acsami.2c11691
10.1002/aenm.201803048
10.1016/j.ensm.2021.09.018
10.1021/jacs.3c09805
10.1016/j.ceramint.2023.10.143
10.1038/s41560-023-01300-0
10.1039/D3MH01965A
10.1126/science.aaw8109
10.1126/science.adl2931
10.1002/aenm.202101378
10.1063/5.0190404
10.1002/adfm.202111776
10.1021/acsami.1c05153
10.1016/j.jmst.2023.08.031
10.1080/00150198408245041
10.1002/adfm.202110478
10.1016/j.jmst.2022.10.053
10.1016/j.jallcom.2019.02.332
10.1016/j.compositesb.2023.111189
10.1016/j.nanoen.2023.108458
10.1016/j.nanoen.2019.02.003
10.1016/j.ensm.2022.12.031
10.1002/adma.202205787
10.1016/j.cej.2021.131989
10.1039/D0NR05709F
10.1039/D3TA03294A
10.1002/advs.202300227
10.1103/PhysRevLett.103.207601
10.1002/adma.202313285
10.1016/j.cej.2021.133812
10.1016/j.pmatsci.2018.12.005
10.1016/j.nanoen.2020.105423
10.1021/acs.chemmater.9b04122
10.1002/adma.202310559
10.1021/jacs.3c06912
10.1016/j.nanoen.2022.107276
10.1016/j.cej.2022.136330
10.1021/acs.chemrev.0c01264
10.1038/s41467-023-41494-1
10.1126/science.abi7687
10.1002/inf2.12488
10.1021/acsami.3c18262
10.1039/D3EE01545A
10.1016/0304-3991(91)90004-P
10.1021/acs.nanolett.8b02718
10.1021/acsami.2c06889
10.1021/jacs.3c02811
10.1002/adma.201802155
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202409446
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202409446
ADFM202409446
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  funderid: No.2023JJ30138
– fundername: National Natural Science Foundation of China
  funderid: No.52102129
– fundername: Science and Technology Innovation Program of Hunan Province
  funderid: 2023RC3094
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3576-f9e9d2e73b6e3eaedd250ceae31350fec7cf9382165adedb91b6e604ca5e450a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 23:46:49 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 00:31:06 EDT 2025
Wed Jan 22 17:14:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-f9e9d2e73b6e3eaedd250ceae31350fec7cf9382165adedb91b6e604ca5e450a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9472-7785
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202409446
PQID 3135059436
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3135059436
crossref_citationtrail_10_1002_adfm_202409446
crossref_primary_10_1002_adfm_202409446
wiley_primary_10_1002_adfm_202409446_ADFM202409446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2019; 9
2021; 43
2023; 14
2023; 55
2023; 11
1991; 37
2023; 5
2023; 16
2023; 8
2023; 145
2019; 58
2011; 53
2024; 50
2019; 102
2024; 384
2020; 12
2024; 11
2024; 146
2019; 788
2024; 124
2021; 121
2020; 32
2024; 36
2024; 16
2022; 236
2019; 365
2022; 433
2021; 79
2021; 13
2022; 442
2018; 18
2006; 41
2021; 32
2021; 11
2023; 112
2022; 34
2022; 14
2018; 30
2024; 177
2022; 98
2022; 32
2021; 374
2022; 427
2009; 103
2022; 104
2024; 271
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 374
  start-page: 100
  year: 2021
  publication-title: Science
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 383
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 442
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 16
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1844
  year: 2020
  publication-title: Chem. Mater.
– volume: 112
  year: 2023
  publication-title: Nano Energy
– volume: 11
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 16
  start-page: 4511
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 41
  start-page: 31
  year: 2006
  publication-title: J. Mater. Sci.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 145
  start-page: 66
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 271
  year: 2024
  publication-title: Composites, Part B
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 365
  start-page: 578
  year: 2019
  publication-title: Science
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 37
  start-page: 14
  year: 1991
  publication-title: Ultramicroscopy
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 6850
  year: 2018
  publication-title: Nano Lett.
– volume: 8
  start-page: 956
  year: 2023
  publication-title: Nat. Energy
– volume: 788
  start-page: 978
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 53
  start-page: 129
  year: 2011
  publication-title: Ferroelectrics
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 50
  start-page: 650
  year: 2024
  publication-title: Ceram. Int.
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 5725
  year: 2023
  publication-title: Nat. Commun.
– volume: 177
  start-page: 59
  year: 2024
  publication-title: J. Mater. Sci. Technol.
– volume: 55
  start-page: 763
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 1732
  year: 2024
  publication-title: Mater. Horiz.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 104
  year: 2022
  publication-title: Nano Energy
– volume: 121
  start-page: 6124
  year: 2021
  publication-title: Chem. Rev.
– volume: 384
  start-page: 185
  year: 2024
  publication-title: Science
– volume: 236
  year: 2022
  publication-title: Acta Mater.
– volume: 102
  start-page: 72
  year: 2019
  publication-title: Prog. Mater. Sci.
– volume: 124
  year: 2024
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 768
  year: 2019
  publication-title: Nano Energy
– volume: 146
  start-page: 460
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 98
  year: 2022
  publication-title: Nano Energy
– volume: 5
  year: 2023
  publication-title: InfoMat
– ident: e_1_2_8_39_1
  doi: 10.1016/j.actamat.2022.118115
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2022.107910
– ident: e_1_2_8_35_1
  doi: 10.1007/s10853-005-5915-7
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.2c11691
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm.201803048
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ensm.2021.09.018
– ident: e_1_2_8_6_1
  doi: 10.1021/jacs.3c09805
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ceramint.2023.10.143
– ident: e_1_2_8_41_1
  doi: 10.1038/s41560-023-01300-0
– ident: e_1_2_8_27_1
  doi: 10.1039/D3MH01965A
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aaw8109
– ident: e_1_2_8_21_1
  doi: 10.1126/science.adl2931
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.202101378
– ident: e_1_2_8_19_1
  doi: 10.1063/5.0190404
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.202111776
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.1c05153
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jmst.2023.08.031
– ident: e_1_2_8_36_1
  doi: 10.1080/00150198408245041
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.202110478
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jmst.2022.10.053
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jallcom.2019.02.332
– ident: e_1_2_8_12_1
  doi: 10.1016/j.compositesb.2023.111189
– ident: e_1_2_8_40_1
  doi: 10.1016/j.nanoen.2023.108458
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2019.02.003
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ensm.2022.12.031
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202205787
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2021.131989
– ident: e_1_2_8_20_1
  doi: 10.1039/D0NR05709F
– ident: e_1_2_8_50_1
  doi: 10.1039/D3TA03294A
– ident: e_1_2_8_16_1
  doi: 10.1002/advs.202300227
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.103.207601
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202313285
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cej.2021.133812
– ident: e_1_2_8_1_1
  doi: 10.1016/j.pmatsci.2018.12.005
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2020.105423
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemmater.9b04122
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202310559
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.3c06912
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nanoen.2022.107276
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cej.2022.136330
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.0c01264
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-023-41494-1
– ident: e_1_2_8_18_1
  doi: 10.1126/science.abi7687
– ident: e_1_2_8_23_1
  doi: 10.1002/inf2.12488
– ident: e_1_2_8_51_1
  doi: 10.1021/acsami.3c18262
– ident: e_1_2_8_5_1
  doi: 10.1039/D3EE01545A
– ident: e_1_2_8_33_1
  doi: 10.1016/0304-3991(91)90004-P
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.nanolett.8b02718
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.2c06889
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.3c02811
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201802155
SSID ssj0017734
Score 2.5581198
Snippet In the field of dielectric energy storage, achieving the combination of high recoverable energy density (Wrec) and high storage efficiency (η) remains a major...
In the field of dielectric energy storage, achieving the combination of high recoverable energy density ( W rec ) and high storage efficiency ( η ) remains a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ceramics
Electric fields
Energy storage
Entropy
Ferroelectricity
Figure of merit
Functional integration
lead‐free ceramic
Mechanical properties
Polarization
polarization configuration
Synergistic effect
Tungsten bronze
Title High‐Entropy Tungsten Bronze Ceramics for Large Capacitive Energy Storage with Near‐Zero Losses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202409446
https://www.proquest.com/docview/3135059436
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPCAxpW1ix6nHqrRCiDLwkCqWKLHPCyit2jLAxE_gN_JLuEuatCAhJNgS6ezEj_N9dz5_ZuzUD11bCaCoTdt5UlvpaUNxK21BOeEQk1BoYHCtLu7l5TAcLp3iL_ghqoAbaUa-XpOCJ-m0uSANTayjk-QBOSiSOLcpYYtQ0U3FH-VHUbGtrHxK8PKHJWtjK2h-Lf7VKi2g5jJgzS1Of5Ml5b8WiSaPjedZ2jCv32gc_9OYLbYxh6O8U8yfbbYC2Q5bXyIp3GWGUkE-3t57lNM-fuF3uDzg1Mg4evDZK_AuTOhO-ylH-MuvKLGcd9ECmzwpiffys4X8Fl17XLk4hX35NWoXVvgAkxG_GtGu8x677_fuuhfe_GoGzwj0UDynQdsAIpEqEJCAtQilDD4IX4QtByYyTot24KswsWBT7aOgakmThCDDViL22Wo2yuCAcbCRcolDE2q1NM6mUoVWGCmUQ0lha8wrhyY2c95yuj7jKS4Yl4OYOi-uOq_Gzir5ccHY8aNkvRzpeK650zhvQKjx8zUW5EP2Sy1x57w_qN4O_1LoiK3Rc5ElU2ers8kzHCPWmaUn-Xz-BBi5-NI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xcNjlAOwCorzWh5U4BZo4ceojKq0KtD0sRUJcosQeX0ApKuUAJ34Cv5FfwkzShIeEkHZvSTROYo_H8_D4G4A_fuRaSiJHbVrOC7UNPW04bqUtKicd2SQcGhgMVe88PLmIqmxCPgtT4kPUATeWjGK9ZgHngPTBK2poah0fJQ_YQwnVN1jgst6FV_W3RpDy47jcWFY-p3j5FxVuYzM4eN_-vV56NTbfmqyFzukuQ1b9bZlqcrV_N832zcMHIMf_6s4KLM0sUnFYTqGfMIf5L1h8g1O4CoazQZ4fnzqc1n5zL0a0QtDsyAU58fkDijZOuKz9rSALWPQ5t1y0SQmbIi9JdIrjheKMvHtavARHfsWQBIxeeImTseiPeeN5Dc67nVG7582qM3hGkpPiOY3aBhjLTKHEFK0la8rQhfRl1HRoYuO0bAW-ilKLNtM-EapmaNIIw6iZynWYz8c5boBAGyuXOtKiVofG2Yw4aaUJpXJEKW0DvIo3iZlBl3MFjeukBF0OEh68pB68BuzV9DclaMenlNsVq5OZ8N4mRQciTZ9vQFDw7Iu3JIdH3UF9t_kvjX7D995o0E_6x8PTLfjBz8ukmW2Yn07ucIdMn2m2W0zuF6Gq_O0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlVwgBZasS20PlTiFEhix1kf0T4E7bKqWpBWXKLEHl-osqtlOcCJn9DfyC_pTLIblkqoEtySaOz4MeN5ePwZ4GuU-LaWyFGbtg-UcSowluNWxqH20pNNwqGB06E-PlffRslo6RR_jQ_RBNxYMqr1mgV84vzhA2ho7jyfJI_ZQVF6BV4rHbaZr7s_GwCpKE3rfWUdcYZXNFrANobx4ePyj9XSg625bLFWKqe_CfmisXWmyeXB9aw4sLf_4Di-pDdvYWNuj4qjmoHewSsst2B9CaVwGyzngtzf_elxUvvkRpzR-kC8UQpy4ctbFB2c8qX2V4LsXzHgzHLRIRVsq6wk0asOF4pf5NvT0iU47iuGJF5U4QVOx2Iw5m3n93De7511joP53QyBleSiBN6gcTGmstAoMUfnyJay9CAjmYQebWq9ke040knu0BUmIkIdKpsnqJIwlx9gtRyXuAMCXap97kmHOqOsd4XSiZNWSe2JUroWBIupyewcuJzvz_id1ZDLccaDlzWD14L9hn5SQ3Y8Sbm7mOlsLrpXWdWBxNDvWxBXU_afWrKjbv-0efv4nEJf4M2Pbj8bnAy_f4I1_lxnzOzC6mx6jXtk98yKzxVr_wXKp_ul
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Tungsten+Bronze+Ceramics+for+Large+Capacitive+Energy+Storage+with+Near%E2%80%90Zero+Losses&rft.jtitle=Advanced+functional+materials&rft.au=Duan%2C+Jianhong&rft.au=Wei%2C+Kun&rft.au=Du%2C+Qianbiao&rft.au=Ma%2C+Linzhao&rft.date=2024-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202409446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202409446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon