Automated image analysis as a tool to measure individualised growth and population structure in Chinook salmon (Oncorhynchus tshawytscha)

Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, qu...

Full description

Saved in:
Bibliographic Details
Published inAquaculture, fish and fisheries Vol. 2; no. 5; pp. 402 - 413
Main Authors Tuckey, Nicholas P. L., Ashton, David T., Li, Jiakai, Lin, Harris T., Walker, Seumas P., Symonds, Jane E., Wellenreuther, Maren
Format Journal Article
LanguageEnglish
Published Sydney John Wiley & Sons, Inc 01.10.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, quantity and individualisation of repeated phenotypic measurements, but remain underutilised in aquaculture breeding programmes. In this study, we compare manual measurements of phenotypic traits of Chinook salmon (Oncorhynchus tshawytscha) with digital images and an automated software analysis pipeline written in the Python® programming language using the OpenCV machine vision library. Manual measurements of length, girth and weight of passive integrated transponder‐tagged individuals were compared with image‐based measures of 738 individuals over a time span from June–December 2019. Linear regressions showed strong correlations between manual and automated measurements for fork length, girth and weight (R2 = 0.989, R2 = 0.918, R2 = 0.987, respectively). Image‐based software measurements proved powerful for tracking general population changes in growth over the study period while retaining insights about subpopulations deviating from the average (e.g. losing weight). Taken together, our study demonstrates that image‐analysis can be used to estimate fish growth traits with a high degree of precision, requires reduced labour and demonstrates that additional knowledge can be gained through tracking individuals throughout production to harvest. Graphical A design for a simple image capture and automated software analysis pipeline for fish phenotypic measurements is presented in which measurements of Chinook salmon body weight, length and girth derived from automated image‐analysis were modelled and validated against manual measurements. Population structure and growth derived from automated image‐analysis measurements was shown to be comparable to that produced from manual measurements. Furthermore, individualising growth data was effective in highlighting an otherwise concealed sub‐population that lost body mass between October and December 2019.
AbstractList Abstract Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, quantity and individualisation of repeated phenotypic measurements, but remain underutilised in aquaculture breeding programmes. In this study, we compare manual measurements of phenotypic traits of Chinook salmon ( Oncorhynchus tshawytscha ) with digital images and an automated software analysis pipeline written in the Python ® programming language using the OpenCV machine vision library. Manual measurements of length, girth and weight of passive integrated transponder‐tagged individuals were compared with image‐based measures of 738 individuals over a time span from June–December 2019. Linear regressions showed strong correlations between manual and automated measurements for fork length, girth and weight ( R 2  = 0.989, R 2  = 0.918, R 2  = 0.987, respectively). Image‐based software measurements proved powerful for tracking general population changes in growth over the study period while retaining insights about subpopulations deviating from the average (e.g. losing weight). Taken together, our study demonstrates that image‐analysis can be used to estimate fish growth traits with a high degree of precision, requires reduced labour and demonstrates that additional knowledge can be gained through tracking individuals throughout production to harvest.
Abstract Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, quantity and individualisation of repeated phenotypic measurements, but remain underutilised in aquaculture breeding programmes. In this study, we compare manual measurements of phenotypic traits of Chinook salmon (Oncorhynchus tshawytscha) with digital images and an automated software analysis pipeline written in the Python® programming language using the OpenCV machine vision library. Manual measurements of length, girth and weight of passive integrated transponder‐tagged individuals were compared with image‐based measures of 738 individuals over a time span from June–December 2019. Linear regressions showed strong correlations between manual and automated measurements for fork length, girth and weight (R2 = 0.989, R2 = 0.918, R2 = 0.987, respectively). Image‐based software measurements proved powerful for tracking general population changes in growth over the study period while retaining insights about subpopulations deviating from the average (e.g. losing weight). Taken together, our study demonstrates that image‐analysis can be used to estimate fish growth traits with a high degree of precision, requires reduced labour and demonstrates that additional knowledge can be gained through tracking individuals throughout production to harvest.
Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, quantity and individualisation of repeated phenotypic measurements, but remain underutilised in aquaculture breeding programmes. In this study, we compare manual measurements of phenotypic traits of Chinook salmon (Oncorhynchus tshawytscha) with digital images and an automated software analysis pipeline written in the Python® programming language using the OpenCV machine vision library. Manual measurements of length, girth and weight of passive integrated transponder‐tagged individuals were compared with image‐based measures of 738 individuals over a time span from June–December 2019. Linear regressions showed strong correlations between manual and automated measurements for fork length, girth and weight (R2 = 0.989, R2 = 0.918, R2 = 0.987, respectively). Image‐based software measurements proved powerful for tracking general population changes in growth over the study period while retaining insights about subpopulations deviating from the average (e.g. losing weight). Taken together, our study demonstrates that image‐analysis can be used to estimate fish growth traits with a high degree of precision, requires reduced labour and demonstrates that additional knowledge can be gained through tracking individuals throughout production to harvest. Graphical A design for a simple image capture and automated software analysis pipeline for fish phenotypic measurements is presented in which measurements of Chinook salmon body weight, length and girth derived from automated image‐analysis were modelled and validated against manual measurements. Population structure and growth derived from automated image‐analysis measurements was shown to be comparable to that produced from manual measurements. Furthermore, individualising growth data was effective in highlighting an otherwise concealed sub‐population that lost body mass between October and December 2019.
Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the life cycle being optimal. Recent advances in electronics and computer vision technologies offer opportunities to improve both the quality, quantity and individualisation of repeated phenotypic measurements, but remain underutilised in aquaculture breeding programmes. In this study, we compare manual measurements of phenotypic traits of Chinook salmon (Oncorhynchus tshawytscha) with digital images and an automated software analysis pipeline written in the Python® programming language using the OpenCV machine vision library. Manual measurements of length, girth and weight of passive integrated transponder‐tagged individuals were compared with image‐based measures of 738 individuals over a time span from June–December 2019. Linear regressions showed strong correlations between manual and automated measurements for fork length, girth and weight (R2 = 0.989, R2 = 0.918, R2 = 0.987, respectively). Image‐based software measurements proved powerful for tracking general population changes in growth over the study period while retaining insights about subpopulations deviating from the average (e.g. losing weight). Taken together, our study demonstrates that image‐analysis can be used to estimate fish growth traits with a high degree of precision, requires reduced labour and demonstrates that additional knowledge can be gained through tracking individuals throughout production to harvest.
Author Lin, Harris T.
Walker, Seumas P.
Tuckey, Nicholas P. L.
Li, Jiakai
Wellenreuther, Maren
Symonds, Jane E.
Ashton, David T.
Author_xml – sequence: 1
  givenname: Nicholas P. L.
  orcidid: 0000-0003-1437-636X
  surname: Tuckey
  fullname: Tuckey, Nicholas P. L.
  email: Nicholas.Tuckey@plantandfood.co.nz
  organization: The New Zealand Institute for Plant and Food Research Ltd
– sequence: 2
  givenname: David T.
  surname: Ashton
  fullname: Ashton, David T.
  organization: The New Zealand Institute for Plant and Food Research Ltd
– sequence: 3
  givenname: Jiakai
  surname: Li
  fullname: Li, Jiakai
  organization: The New Zealand Institute for Plant and Food Research Ltd
– sequence: 4
  givenname: Harris T.
  surname: Lin
  fullname: Lin, Harris T.
  organization: The New Zealand Institute for Plant and Food Research Ltd
– sequence: 5
  givenname: Seumas P.
  surname: Walker
  fullname: Walker, Seumas P.
  organization: Cawthron Institute
– sequence: 6
  givenname: Jane E.
  surname: Symonds
  fullname: Symonds, Jane E.
  organization: Cawthron Institute
– sequence: 7
  givenname: Maren
  surname: Wellenreuther
  fullname: Wellenreuther, Maren
  organization: The University of Auckland
BookMark eNp1kdtq3DAQhkVIIYeGvIKgF0kJm0o-yNblsnSTQCA37bUYndbaeq2NJGfxI-Stq9Qh5KYgRsPo-_9hNGfoePCDQeiSkltKSPEDrC1uGTtCpwXj5aJtq-b4U36CLmLckky2lJasOkWvyzH5HSSjsdvBxmAYoJ-iixjywcn7Pge8MxDHYLAbtHtxeoTexSzZBH9IXdZovPf7sYfk_IBjCqNKM45XnRu8_4Mj9Lv8dv00KB-6aVDdGHGKHRymFFUH37-iLxb6aC7e73P0e_3z1-p-8fh097BaPi5UWTdsYZRlvFK1lSzPUWvgxBDOgRFZEmY4KMosZappdS2bmltpy0ppybguGqlkeY4eZl_tYSv2IY8dJuHBiX8FHzYCQnKqN4LyxnIi28Ly3FJWULZWcUt0wSQnXGevb7PXPvjn0cQktn4M-QejKAmnvKoJbTN1NVMq-BiDsR9dKRFvaxNvaxOMZfJmJg-uN9P_MLFcr4tM_wX8gZy6
CitedBy_id crossref_primary_10_1111_eva_13732
crossref_primary_10_1111_jfb_15807
crossref_primary_10_1016_j_aquaculture_2023_739794
Cites_doi 10.1109/MCSE.2007.55
10.1111/jfb.13491
10.1016/B978-012373898-1.50025-5
10.1016/j.aquaeng.2017.07.004
10.25080/Majora-92bf1922-011
10.1002/ece3.6618
10.1016/j.aquaculture.2008.12.024
10.1016/j.compag.2020.105274
10.1111/raq.12154
10.1371/journal.pone.0157890
10.1016/j.aquaculture.2013.03.001
10.1590/fst.02018
10.1111/faf.12006
10.1016/j.compag.2012.07.010
10.4031/mtsj.50.1.1
10.1111/j.2517‐6161.1995.tb02031.x
10.1111/j.1365‐2621.1997.tb04379.x
10.1016/S0044‐8486(96)01384‐1
10.1109/TII.2020.3006933
10.1111/age.12748
10.1038/s41598‐021‐96476‐4
10.1111/j.1750‐3841.2010.01522.x
10.1016/S0044-8486(03)00111-X
10.1016/j.compag.2015.11.015
10.1016/j.aquaeng.2014.11.003
10.3389/fvets.2020.00253
10.1016/j.fishres.2019.105425
10.2331/fishsci.62.845
10.3906/vet‐1209‐9
10.1016/j.aquaculture.2018.12.053
10.4236/as.2014.512125
10.1111/j.1750‐3841.2010.01813.x
10.2527/2006.844807x
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1002/aff2.66
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Environmental Science Database
ProQuest One Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2693-8847
EndPage 413
ExternalDocumentID oai_doaj_org_article_197f90b82f994cb4a38fc9f0d26b909d
10_1002_aff2_66
AFF266
Genre article
GeographicLocations New Zealand
Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: New Zealand
– name: Beijing China
– name: United States--US
GrantInformation_xml – fundername: Ministry of Business, Innovation and Employment
  funderid: CAWX1606
– fundername: Ngā Pou Rangahau platform
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
M7P
M~E
OK1
PATMY
PCBAR
PIMPY
PYCSY
WIN
AAYXX
CITATION
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
ITC
LK8
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3576-ecf694c5fb60005da90e099a60b306e9ac16f16c78d5b759fbf34cdb69d27bcb3
IEDL.DBID 24P
ISSN 2693-8847
IngestDate Thu Jul 04 21:06:10 EDT 2024
Wed Sep 25 02:32:16 EDT 2024
Thu Sep 12 17:47:55 EDT 2024
Sat Aug 24 01:07:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-ecf694c5fb60005da90e099a60b306e9ac16f16c78d5b759fbf34cdb69d27bcb3
ORCID 0000-0003-1437-636X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faff2.66
PQID 3091945018
PQPubID 6852859
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_197f90b82f994cb4a38fc9f0d26b909d
proquest_journals_3091945018
crossref_primary_10_1002_aff2_66
wiley_primary_10_1002_aff2_66_AFF266
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Sydney
PublicationPlace_xml – name: Sydney
PublicationTitle Aquaculture, fish and fisheries
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1997; 62
2010a; 75
2019; 50
2010
1995; 57
2019; 39
2008
1995
2016; 121
2016; 50
2019; 502
2020; 223
2020; 10
2010b; 75
1996; 146
2016; 11
2020; 7
2014; 5
2017; 91
2021; 11
2006; 84
2000
2021
2020
2015; 64
2020; 170
2021; 17
2019; 48
2017; 78
2014; 38
2007; 9
2014; 15
1996; 62
2009; 289
2016
2013; 396
2018; 10
2012; 88
2003; 221
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
SriHari M. (e_1_2_12_34_1) 2019; 48
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_30_1
e_1_2_12_31_1
R Core Team (e_1_2_12_29_1) 2021
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
Mous P.J. (e_1_2_12_23_1) 1995
e_1_2_12_9_1
References_xml – volume: 39
  start-page: 696
  year: 2019
  end-page: 703
  article-title: Color assessment by different techniques of gilthead seabream ( ) during cold storage
  publication-title: Food Sci. Technol.
– volume: 88
  start-page: 125
  year: 2012
  end-page: 132
  article-title: The use of computer vision technologies in aquaculture—a review
  publication-title: Comput. Electron. Agric.
– volume: 223
  year: 2020
  article-title: A powerful method for measuring fish size of small‐scale fishery catches using ImageJ
  publication-title: Fish. Res.
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
– volume: 64
  start-page: 42
  year: 2015
  end-page: 48
  article-title: Automatic mass estimation of Jade perch Scortum barcoo by computer vision
  publication-title: Aquac. Eng.
– volume: 7
  start-page: 253
  year: 2020
  article-title: Assessment of sample size calculations used in aquaculture by simulation techniques
  publication-title: Front. Vet. Sci.
– volume: 396
  start-page: 113
  year: 2013
  end-page: 118
  article-title: Accuracy and precision of harvest stock estimation in Atlantic salmon farming
  publication-title: Aquaculture
– volume: 502
  start-page: 272
  year: 2019
  end-page: 279
  article-title: Sampling of Atlantic salmon from tanks and sea cages is size‐biased
  publication-title: Aquaculture
– volume: 75
  start-page: E157
  year: 2010b
  end-page: E162
  article-title: Using image analysis to predict the weight of Alaskan salmon of different species
  publication-title: J. Food Sci.
– volume: 50
  start-page: 3
  year: 2019
  end-page: 14
  article-title: Atlantic salmon ( L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding
  publication-title: Anim. Genet.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– year: 2021
– volume: 75
  start-page: E552
  year: 2010a
  end-page: E556
  article-title: Prediction of the weight of Alaskan pollock using image analysis
  publication-title: J. Food Sci.
– year: 2000
– volume: 48
  start-page: 233
  year: 2019
  end-page: 238
  article-title: Differentiation in morphometric traits of Chanos chanos stocks along the Indian coast
  publication-title: Indian J. Geo‐Mar. Sci.
– year: 2016
– volume: 121
  start-page: 66
  year: 2016
  end-page: 73
  article-title: IMAFISH_ML: a fully‐automated image analysis software for assessing fish morphometric traits on gilthead seabream ( L.), meagre ( ) and red porgy ( )
  publication-title: Comput. Electron. Agric.
– year: 2010
– volume: 50
  start-page: 4
  year: 2016
  end-page: 16
  article-title: Progress in the automated identification, measurement, and counting of fish in underwater image sequences
  publication-title: Mar. Technol. Soc. J.
– volume: 91
  start-page: 1699
  year: 2017
  end-page: 1712
  article-title: Consistent melanophore spot patterns allow long‐term individual recognition of Atlantic salmon
  publication-title: J. Fish Biol.
– volume: 15
  start-page: 181
  year: 2014
  end-page: 195
  article-title: Levels of domestication in fish: implications for the sustainable future of aquaculture
  publication-title: Fish Fish.
– volume: 289
  start-page: 225
  year: 2009
  end-page: 230
  article-title: Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead seabream ( L.), under industrial conditions
  publication-title: Aquaculture
– volume: 78
  start-page: 163
  year: 2017
  end-page: 172
  article-title: Biomonitoring using tagged sentinel fish and acoustic telemetry in commercial salmon aquaculture: a feasibility study
  publication-title: Aquac. Eng.
– volume: 11
  year: 2016
  article-title: Repeatability, reproducibility, separative power and subjectivity of different fish morphometric analysis methods
  publication-title: Plos One
– volume: 10
  start-page: 9313
  year: 2020
  end-page: 9325
  article-title: Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish
  publication-title: Ecol. Evol.
– volume: 170
  year: 2020
  article-title: Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia
  publication-title: Comput. Electron. Agric.
– volume: 11
  year: 2021
  article-title: Computer vision based individual fish identification using skin dot pattern
  publication-title: Sci. Rep.
– start-page: 55
  year: 1995
  end-page: 82
– year: 2020
– volume: 17
  start-page: 4356
  year: 2021
  end-page: 4366
  article-title: Towards fish individuality‐based aquaculture
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 519
  year: 2008
  end-page: 534
– volume: 221
  start-page: 549
  year: 2003
  end-page: 566
  article-title: The efficacy of metomidate, clove oil, Aqui‐S (TM) and Benzoak (R) as anaesthetics in Atlantic salmon ( L.) smolts, and their potential stress‐reducing capacity
  publication-title: Aquaculture
– volume: 5
  start-page: 1152
  year: 2014
  end-page: 1158
  article-title: Advances by selective breeding for aquatic species: a review
  publication-title: Agric. Sci.
– volume: 84
  start-page: 807
  year: 2006
  end-page: 817
  article-title: Feed efficiency of rainbow trout can be improved through selection: different genetic potential on alternative diets1
  publication-title: J. Anim. Sci.
– volume: 62
  start-page: 845
  year: 1996
  end-page: 849
  article-title: Selective breeding for growth in red sea bream
  publication-title: Fish. Sci.
– volume: 38
  start-page: 88
  year: 2014
  end-page: 94
  article-title: Comparison of manual measurements and computer‐assisted image analysis in fish morphometry
  publication-title: Turk. J. Vet. Anim. Sci.
– volume: 10
  start-page: 168
  year: 2018
  end-page: 179
  article-title: Selection response in fish and shellfish: a review
  publication-title: Rev. Aquac.
– volume: 62
  start-page: 113
  year: 1997
  end-page: 118
  article-title: Analysis of visual quality attributes of white shrimp by machine vision
  publication-title: J. Food Sci.
– volume: 146
  start-page: 189
  year: 1996
  end-page: 203
  article-title: Predicting salmon biomass remotely using a digital stereo‐imaging technique
  publication-title: Aquaculture
– ident: e_1_2_12_10_1
– ident: e_1_2_12_19_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_12_35_1
  doi: 10.1111/jfb.13491
– ident: e_1_2_12_36_1
  doi: 10.1016/B978-012373898-1.50025-5
– ident: e_1_2_12_15_1
  doi: 10.1016/j.aquaeng.2017.07.004
– ident: e_1_2_12_2_1
– start-page: 55
  volume-title: Fish stocks and fisheries of Lake Victoria: a handbook for field observations
  year: 1995
  ident: e_1_2_12_23_1
  contributor:
    fullname: Mous P.J.
– ident: e_1_2_12_31_1
  doi: 10.25080/Majora-92bf1922-011
– ident: e_1_2_12_11_1
  doi: 10.1002/ece3.6618
– ident: e_1_2_12_26_1
  doi: 10.1016/j.aquaculture.2008.12.024
– ident: e_1_2_12_14_1
  doi: 10.1016/j.compag.2020.105274
– ident: e_1_2_12_17_1
  doi: 10.1111/raq.12154
– ident: e_1_2_12_37_1
  doi: 10.1371/journal.pone.0157890
– ident: e_1_2_12_5_1
  doi: 10.1016/j.aquaculture.2013.03.001
– ident: e_1_2_12_32_1
  doi: 10.1590/fst.02018
– ident: e_1_2_12_38_1
  doi: 10.1111/faf.12006
– ident: e_1_2_12_42_1
  doi: 10.1016/j.compag.2012.07.010
– ident: e_1_2_12_33_1
  doi: 10.4031/mtsj.50.1.1
– volume: 48
  start-page: 233
  year: 2019
  ident: e_1_2_12_34_1
  article-title: Differentiation in morphometric traits of Chanos chanos stocks along the Indian coast
  publication-title: Indian J. Geo‐Mar. Sci.
  contributor:
    fullname: SriHari M.
– ident: e_1_2_12_9_1
  doi: 10.1111/j.2517‐6161.1995.tb02031.x
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_12_29_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_12_22_1
  doi: 10.1111/j.1365‐2621.1997.tb04379.x
– ident: e_1_2_12_8_1
  doi: 10.1016/S0044‐8486(96)01384‐1
– ident: e_1_2_12_30_1
  doi: 10.1109/TII.2020.3006933
– ident: e_1_2_12_18_1
  doi: 10.1111/age.12748
– ident: e_1_2_12_12_1
  doi: 10.1038/s41598‐021‐96476‐4
– ident: e_1_2_12_4_1
– ident: e_1_2_12_7_1
  doi: 10.1111/j.1750‐3841.2010.01522.x
– ident: e_1_2_12_20_1
  doi: 10.1016/S0044-8486(03)00111-X
– ident: e_1_2_12_25_1
  doi: 10.1016/j.compag.2015.11.015
– ident: e_1_2_12_40_1
  doi: 10.1016/j.aquaeng.2014.11.003
– ident: e_1_2_12_13_1
  doi: 10.3389/fvets.2020.00253
– ident: e_1_2_12_39_1
– ident: e_1_2_12_3_1
  doi: 10.1016/j.fishres.2019.105425
– ident: e_1_2_12_24_1
  doi: 10.2331/fishsci.62.845
– ident: e_1_2_12_28_1
  doi: 10.3906/vet‐1209‐9
– ident: e_1_2_12_27_1
  doi: 10.1016/j.aquaculture.2018.12.053
– ident: e_1_2_12_16_1
  doi: 10.4236/as.2014.512125
– ident: e_1_2_12_6_1
  doi: 10.1111/j.1750‐3841.2010.01813.x
– ident: e_1_2_12_21_1
  doi: 10.2527/2006.844807x
– ident: e_1_2_12_41_1
SSID ssj0002811364
Score 2.2711747
Snippet Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements throughout the...
Abstract Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements...
Abstract Selective breeding programmes depend on high‐quality measurements of phenotype and genotype with repeated individualised phenotype measurements...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 402
SubjectTerms Accuracy
Anesthesia
Aquaculture
Automation
Breeding
breeding programme
Cameras
Computer vision
Data collection
Digital imaging
Food quality
Genotypes
growth
Identification systems
Image analysis
Image processing
Image quality
Machine vision
morphometric software
Oncorhynchus tshawytscha
Phenotypes
Population changes
population dynamics
Population structure
Population studies
Programming languages
Python
Salmon
Selective breeding
Software
Subpopulations
Tracking
Weight
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoyEMHGELTxHHisSAqxAALlbpZ_myLSluRVKg_gX_N2U5LGRALUpQhjiPrnuN7Z53fIdSyscwzpW2kYq0iUmgdFTQTESOS5EbnuZA-QfaJPvTJ4yAbbJT6cjlhQR44GK7dYbllsSwSyxhRkoi0sIrZWCdUsphpv_p2so1g6tVvGblaJSScknUqo21hbXLjtRC_3Y9X6f9BLTcJqvcwvX20V1ND3A1DOkBbZnqIdrvD91oewxyhz-6imgHHNBqP32AlwKLWFMECLlzNZhO44bew8YfH69NW4xK6DCHkrkbQR-P5um4XDgqy4XXsymkD7calmMD8xFfPTuZytJyq0aLEVTkSH8sK4mFxfYz6vfuXu4eoLqYQqRRiisgoS8GAmZXU8TQtWGyAHQoaS4gaDBOqQ22HqrzQGcDHrLQpUVpSppNcKpmeoO3pbGpOEbbCAikTqYAPECMIK8APSgjUmFEmpraB8MrGfB40M3hQR064g4FT2kC3zvbrZidy7R8A9LyGnv8FfQM1V8jx-s8reQoEiBEnU9hALY_mb2Pg3V4P6MnZfwzlHO0k7lyEz_Jrom1AzlwAW6nkpZ-YX8SR7KM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gIHxFMsFORDD3Awm3UcJz6hLepqxaEgRKXeLD93V2o32yYV6k_ov-5Mkt3CAaQohySOLI89883Y8w3AUcpcWfiQuM-C57IKgVeqsFxLJ8sYytK67oDsqZqfyW_nxfkezLe5MHSscqsTO0Udak8x8nGOhk1Lop8bW0dRAN-Ov2yuONWPon3WoZjGIzgQE0kbtgfHJ6c_fu7iLaKi6iW0ySyUznmFWrnPoSUO0rFNSXzumBIfjFPH4f8X8PwTvnb2Z_YMng7AkU17ST-Hvbh-AU-mi-uBPCO-hLvpTVsjAo2BrS5RTzA7MI4wixdr6_oCb-yyDwuy1S4Xa9VgkwU65O0S2wS22VX1Yj2_bP85o2LbCMpZYy9wENjH70SCubxd--VNw9pmaX_ftugt20-v4Gx28uvrnA-lFrjP0ePg0SelpS-SU4TigtVZROxoVebQp4ja-olKE-XLKhQoXJ1cyqUPTukgSudd_hr21_U6vgGWbELIZnOLP5DRSl2hlXToxunoY6bSCNh2jM2mZ9QwPXeyMCQGo9QIjmnsd6-JArt7UF8vzLCizESXSWeuEkljz520eZW8TlkQyulMhxEcbiVnhnXZmIdZNIKjTpr_6oOZzmYIXt7-_y_v4LGgfIjudN8h7KNM4ntEKa37MEzAexmq6uI
  priority: 102
  providerName: ProQuest
Title Automated image analysis as a tool to measure individualised growth and population structure in Chinook salmon (Oncorhynchus tshawytscha)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faff2.66
https://www.proquest.com/docview/3091945018/abstract/
https://doaj.org/article/197f90b82f994cb4a38fc9f0d26b909d
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKXMqhgtKqC3TlAwc4BLKO49jHpWKFOFBUgcTNGr92V4INIkEVP6H_umMnBDhUqhTlkHgiy_PwN479DSEHITdVaV3IbO5sxqVzmRQlZIobXnlXVWDSBtlLcX7DL27L2zelvjp-iGHBLXpGitfRwcE0J6-koRACOxZijWwgqJHRoBm_GpZXmIzFSuI_ZSZUkUkMwt2R2Sh90su-m4sSZf87nPkWrabpZrZFPvU4kU47xW6TD371mWxO5489V4bfIX-mT22NgNM7urzHsEChJxihgBdt6_oOb_S-WwWky-Ho1bJBkTnm3-0CZRx9GIp40Y5OtmtOY21txOC0gTs0Vnr4M3JeLp5XdvHU0LZZwO_nFpNjOPpCbmZn1z_Os76yQmYLTDAyb4NQ3JbBiAjaHKjcI1QEkRtMIbwCOxFhImwlXYm6VMGEgltnhHKsMtYUX8n6ql75b4QGCIjQoAD8APfAlcRJ0WDWprz1uQgjQl_GWD90BBq6o0pmOqpBCzEip3Hsh9eR8To9qB_nuncgPVFVULmRLCjsueFQyGBVyB0TRuXKjcj-i-Z074aNLhANKR45C0fkIGnzX33Q09kMscru_zXbIx9ZPAaRNvXtk3XUjf-O4KQ142SGY7JxenZ59WucUvy_1CbnBA
link.rule.ids 315,786,790,870,2115,11589,21416,27957,27958,33779,43840,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAcqvIS2wf40AMcTLOJ48QntEVdLVAWhFqpN8vP3ZXazbZJVfUn9F8zTrxbeihSlEMcW5bHnvlmbH8DsO8TXeTGemoSaygrraUlzxUVTLPC2aJQuj0gO-HjU_b9LD-LAbc6Hqtc6cRWUdvKhBj5QYaGTbBAP_dleUlD1qiwuxpTaDyFDZahq9KDjcOjye8_6yhLWoacJWFrOeUioyXq4u7mbGAePVDep59bfsR7k9Qy9z-Am_-C1tbqjLZgM8JFMuzk-xKeuMUreDGcXkXKDPca7obXTYW401kyv0DtQFTkGSEKH9JU1Tm-yEUXDCTz9Q2seY1VpuiGNzOsY8lyncuLdKyy3e8kpNhGKE5qdY6DQD7-CtSXs9uFmV3XpKln6ua2QR9ZfXoDp6Ojk69jGhMsUJOhn0Gd8Vwwk3vNA3azSiQOEaPiiUZPwgllBtwPuClKm6NIhdc-Y8ZqLmxaaKOzt9BbVAv3DohXHoGayhQ2wJxiokTbqNF5E864hPs-kNUYy2XHoyE7xuRUBjFIzvtwGMZ-XRyIr9sP1dVUxnUkB6LwItFl6gX2XDOVld4In9iUa5EI24fdleRkXI21vJ87fdhvpflYH-RwNELIsv3_Vj7As_HJz2N5_G3yYweep-FGRHu-bxd6KB-3hzil0e_jZPwLD8nqFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVkJwQFBALBTwoYdyCPU6jmMfF9qoPNT20Eq9WX7urtRuVk0q1J_Av2acpKE9ICFFOSSeyPJ4Zr5x7G8AdiO1ZeF8zBz1LuPS-0yKwmSKW14GX5bGdhtkj8XROf9-UVzcK_XV80OMC27JMjp_nQx87eP-X9JQEyP7LMQj2OKCypR3MX46Lq8wmYqVpH_KTKg8k-iE-yOzSXp_kH0QizrK_gc48z5a7cJN9RyeDTiRzHrFvoCNsNqGp7P59cCVEV7C79lNWyPgDJ4sr9AtEDMQjBCDF2nr-hJv5KpfBSTL8ejVskGROebf7QJlPFmPRbxITyfbNyeptjZicNKYS5ysZO8kcV4ublducdOQtlmYX7ctJsfm0ys4rw7Pvh5lQ2WFzOWYYGTBRaG4K6IVCbR5o2hAqGgEtZhCBGXcVMSpcKX0BepSRRtz7rwVyrPSOpu_hs1VvQpvgEQTEaGZ3OAHeDBcSQyKFrM2FVygIk6A3I2xXvcEGrqnSmY6qUELMYEvaezH14nxuntQX8_1YEB6qsqoqJUsKuy55SaX0alIPRNWUeUnsHOnOT2YYaNzREOKJ87CCex22vxXH_SsqhCrvP2_Zh_h8elBpX9-O_7xDp6wdCKi29-3A5uopvAecUprP3Qz8g89V-cI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+image+analysis+as+a+tool+to+measure+individualised+growth+and+population+structure+in+Chinook+salmon+%28+Oncorhynchus+tshawytscha+%29&rft.jtitle=Aquaculture%2C+fish+and+fisheries&rft.au=Tuckey%2C+Nicholas+P.+L.&rft.au=Ashton%2C+David+T.&rft.au=Li%2C+Jiakai&rft.au=Lin%2C+Harris+T.&rft.date=2022-10-01&rft.issn=2693-8847&rft.eissn=2693-8847&rft.volume=2&rft.issue=5&rft.spage=402&rft.epage=413&rft_id=info:doi/10.1002%2Faff2.66&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aff2_66
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2693-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2693-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2693-8847&client=summon