Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface

The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 13; no. 10
Main Authors Bisharat, Dia'aaldin J., Sievenpiper, Daniel F.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators. A simple approach to realize photonic topological insulators (PTIs), which promise lossless wave‐transmission despite fabrication imperfections, is presented. The design is nothing but a flat metasurface (patterned plate) atop another of a complementary pattern. Hence, electromagnetic duality is exploited, yet without demanding any parameter fine‐tuning. Strikingly, the design outperforms existing PTIs in terms of bandwidth and energy concentration.
AbstractList Abstract The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators.
The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators. A simple approach to realize photonic topological insulators (PTIs), which promise lossless wave‐transmission despite fabrication imperfections, is presented. The design is nothing but a flat metasurface (patterned plate) atop another of a complementary pattern. Hence, electromagnetic duality is exploited, yet without demanding any parameter fine‐tuning. Strikingly, the design outperforms existing PTIs in terms of bandwidth and energy concentration.
The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators.
Author Bisharat, Dia'aaldin J.
Sievenpiper, Daniel F.
Author_xml – sequence: 1
  givenname: Dia'aaldin J.
  orcidid: 0000-0003-2229-2123
  surname: Bisharat
  fullname: Bisharat, Dia'aaldin J.
  email: dbisharat@eng.ucsd.edu
  organization: University of California San Diego
– sequence: 2
  givenname: Daniel F.
  surname: Sievenpiper
  fullname: Sievenpiper, Daniel F.
  organization: University of California San Diego
BookMark eNqFkMFKAzEQhoMo2Favnhc8b50km2xylLZqoVLReg5pmpQt282a7CK9-Qg-o0_i1ko9OpcZZr7_H_j76LTylUXoCsMQA5CbsvZhSABLAEz4CephwWkqhJSnx1nAOerHuAFgXfEemk9Ka5rgt3pd2aYwXx-f41aXyaNtdGyD08bGxPmQLHztS78uTHd8aXTTrXXpq3WiEzxOplVjf-ALdOZ0Ge3lbx-g17vJYvSQzub309HtLDWU5TzNbZ4RKTSjLHOWgaGcE6llbgALaoTVKyqXklDNALIVz1ZL56SxnEnHmQU6QNcH3zr4t9bGRm18G6rupSIUGBcip7SjhgfKBB9jsE7VodjqsFMY1D40tQ9NHUPrBPIgeC9Ku_uHVrOn-fOf9huXzXML
CitedBy_id crossref_primary_10_1002_adom_202200262
crossref_primary_10_1103_PhysRevApplied_17_064008
crossref_primary_10_1038_s41467_023_40238_5
crossref_primary_10_1103_PhysRevB_109_L241406
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1109_MAP_2021_3127541
crossref_primary_10_1515_nanoph_2022_0258
crossref_primary_10_1021_acsphotonics_2c00309
crossref_primary_10_1002_apxr_202200076
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1038_s41598_022_12617_3
crossref_primary_10_1038_s41598_024_56049_7
crossref_primary_10_1109_TAP_2023_3284377
crossref_primary_10_1364_PRJ_453803
crossref_primary_10_1557_s43579_024_00519_6
crossref_primary_10_1038_s41377_020_0331_y
crossref_primary_10_1109_TAP_2021_3111256
crossref_primary_10_1002_adma_202004376
crossref_primary_10_1103_PhysRevX_11_031038
crossref_primary_10_1088_2040_8986_acbf67
crossref_primary_10_1063_5_0008046
crossref_primary_10_1038_s41565_023_01380_9
crossref_primary_10_1103_PhysRevB_104_205403
crossref_primary_10_1109_JMW_2021_3126199
crossref_primary_10_1103_PhysRevApplied_19_024053
crossref_primary_10_1109_TAP_2020_3018536
crossref_primary_10_1021_acsphotonics_0c00465
crossref_primary_10_1103_PhysRevApplied_21_044038
crossref_primary_10_1002_andp_202100191
crossref_primary_10_1021_acsphotonics_2c00491
crossref_primary_10_1063_5_0062058
crossref_primary_10_1103_PhysRevResearch_2_043148
crossref_primary_10_1364_OL_488612
crossref_primary_10_1109_LAWP_2023_3270456
crossref_primary_10_1109_MAP_2021_3069276
crossref_primary_10_1063_5_0107211
crossref_primary_10_1063_5_0051239
crossref_primary_10_3788_COL202422_023902
crossref_primary_10_1103_PhysRevB_108_155437
crossref_primary_10_1364_OE_485765
crossref_primary_10_1103_PhysRevApplied_21_044043
crossref_primary_10_1103_PhysRevB_109_155135
crossref_primary_10_1063_5_0046588
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1103_PhysRevApplied_21_044006
crossref_primary_10_1063_5_0041055
crossref_primary_10_1063_5_0042583
crossref_primary_10_7498_aps_69_20200415
crossref_primary_10_1002_lpor_202200362
crossref_primary_10_1109_JLT_2023_3288342
crossref_primary_10_1002_lpor_201900392
crossref_primary_10_1038_s41598_022_20972_4
Cites_doi 10.1103/PhysRevLett.114.127401
10.1103/RevModPhys.91.015006
10.1103/PhysRevB.95.035153
10.1038/s41467-017-01515-2
10.1038/nature08293
10.1038/nphys2063
10.1038/nmat4573
10.1103/PhysRevLett.120.217401
10.1109/JMMCT.2017.2654962
10.1088/1367-2630/18/2/025012
10.1103/PhysRevLett.119.106802
10.1038/srep30055
10.1103/RevModPhys.83.1057
10.1038/nphoton.2016.253
10.1021/ph5001988
10.1088/1367-2630/13/3/033024
10.1038/ncomms9260
10.1088/1367-2630/14/11/113017
10.1038/nphys3796
10.1038/s41566-017-0048-5
10.1103/PhysRevLett.110.203904
10.1142/0613
10.1515/nanoph-2017-0133
10.1038/s42005-018-0035-2
10.1103/PhysRevB.76.033407
10.1103/PhysRevLett.114.114301
10.1038/ncomms11619
10.1063/1.1611642
10.1063/1.4963789
10.1038/ncomms11744
10.1038/s41467-018-07084-2
10.1088/0022-3727/47/43/435103
10.1088/1367-2630/18/11/113013
10.1038/nmat3520
10.1038/ncomms9183
10.1038/nature12066
10.1002/lpor.201800073
10.1038/s42005-018-0094-4
10.1038/nphoton.2012.236
10.1103/PhysRevLett.120.063902
10.1038/nmat4807
10.1063/1.5055601
10.1038/s41467-018-03330-9
10.1103/PhysRevLett.114.223901
10.1038/ncomms16023
10.1038/ncomms9682
10.1038/srep04536
10.1103/PhysRevLett.106.093903
10.1103/PhysRevA.99.033842
10.1103/PhysRevB.96.201402
10.1088/2040-8978/18/8/085601
10.1103/PhysRevB.92.014210
10.1038/nature08916
10.1038/s41467-019-08966-9
10.1038/ncomms6782
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.201900126
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_201900126
LPOR201900126
Genre article
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: FA9550‐16‐1‐0093
– fundername: Defense Advanced Research Projects Agency
  funderid: W911NF‐17‐1‐0580
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c3576-7e74298a5354fe50c36629a97c0183c8ead39b923a5004d64dbff9ce659f65e03
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Thu Oct 10 16:24:39 EDT 2024
Fri Aug 23 01:49:20 EDT 2024
Sat Aug 24 01:10:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-7e74298a5354fe50c36629a97c0183c8ead39b923a5004d64dbff9ce659f65e03
ORCID 0000-0003-2229-2123
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900126
PQID 2305688733
PQPubID 1016358
PageCount 7
ParticipantIDs proquest_journals_2305688733
crossref_primary_10_1002_lpor_201900126
wiley_primary_10_1002_lpor_201900126_LPOR201900126
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 119
2019; 91
2017; 8
2015; 6
2017; 2
2015; 4
2016; 109
2015; 92
2019; 99
2019; 10
2010; 464
2011; 83
2014; 47
2011; 13
2016; 18
2012; 14
2007; 76
2016; 15
2011; 7
2016; 12
2018; 7
2014; 1
2017; 95
2018; 9
2016; 6
2016; 7
2017; 96
2014; 5
2011; 106
2018; 1
2015; 114
2017; 16
2013; 12
2017; 11
2013; 496
2019; 114
2013; 110
2009; 461
2012; 6
2018; 12
2003; 83
1989
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 9
  start-page: 909
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  start-page: 97
  year: 2018
  publication-title: Comm. Phys.
– volume: 1
  start-page: 894
  year: 2014
  publication-title: ACS Photonics
– volume: 12
  start-page: 626
  year: 2016
  publication-title: Nat. Phys.
– year: 1989
– volume: 16
  start-page: 298
  year: 2017
  publication-title: Nat. Mater.
– volume: 6
  start-page: 8260
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 39
  year: 2018
  publication-title: Comm. Phys.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 8183
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 6
  start-page: 782
  year: 2012
  publication-title: Nat. Photonics
– volume: 12
  year: 2018
  publication-title: Laser Photonics Rev.
– volume: 13
  year: 2011
  publication-title: New J. Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 233
  year: 2013
  publication-title: Nat. Mater.
– volume: 10
  start-page: 1102
  year: 2019
  publication-title: Nat. Commun.
– volume: 464
  start-page: 194
  year: 2010
  publication-title: Nature
– volume: 91
  year: 2019
  publication-title: Rev. Mod. Phys.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 4598
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 763
  year: 2017
  publication-title: Nat. Photonics
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 907
  year: 2011
  publication-title: Nat. Phys.
– volume: 4
  start-page: 4536
  year: 2015
  publication-title: Sci. Rep.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 893
  year: 2018
  publication-title: Nanophotonics
– volume: 496
  start-page: 196
  year: 2013
  publication-title: Nature
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 542
  year: 2016
  publication-title: Nat. Mater.
– volume: 83
  start-page: 2124
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 461
  start-page: 772
  year: 2009
  publication-title: Nature
– volume: 18
  year: 2016
  publication-title: J. Opt.
– volume: 14
  year: 2012
  publication-title: New J. Phys.
– volume: 2
  start-page: 3
  year: 2017
  publication-title: IEEE J. Multiscale Multiphys. Comp. Tech.
– volume: 11
  start-page: 130
  year: 2017
  publication-title: Nat. Photonics
– volume: 47
  year: 2014
  publication-title: J. Phys. D: Appl. Phys.
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 5782
  year: 2014
  publication-title: Nat. Commun.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 8682
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1304
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– ident: e_1_2_7_27_1
  doi: 10.1103/PhysRevLett.114.127401
– ident: e_1_2_7_10_1
  doi: 10.1103/RevModPhys.91.015006
– ident: e_1_2_7_43_1
  doi: 10.1103/PhysRevB.95.035153
– ident: e_1_2_7_46_1
  doi: 10.1038/s41467-017-01515-2
– ident: e_1_2_7_11_1
  doi: 10.1038/nature08293
– ident: e_1_2_7_16_1
  doi: 10.1038/nphys2063
– ident: e_1_2_7_53_1
  doi: 10.1038/nmat4573
– ident: e_1_2_7_23_1
  doi: 10.1103/PhysRevLett.120.217401
– ident: e_1_2_7_32_1
  doi: 10.1109/JMMCT.2017.2654962
– ident: e_1_2_7_44_1
  doi: 10.1088/1367-2630/18/2/025012
– ident: e_1_2_7_34_1
  doi: 10.1103/PhysRevLett.119.106802
– ident: e_1_2_7_48_1
  doi: 10.1038/srep30055
– ident: e_1_2_7_2_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_7_28_1
  doi: 10.1038/nphoton.2016.253
– ident: e_1_2_7_42_1
  doi: 10.1021/ph5001988
– ident: e_1_2_7_50_1
  doi: 10.1088/1367-2630/13/3/033024
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms9260
– ident: e_1_2_7_54_1
  doi: 10.1088/1367-2630/14/11/113017
– ident: e_1_2_7_8_1
  doi: 10.1038/nphys3796
– ident: e_1_2_7_9_1
  doi: 10.1038/s41566-017-0048-5
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevLett.110.203904
– ident: e_1_2_7_33_1
  doi: 10.1142/0613
– ident: e_1_2_7_37_1
  doi: 10.1515/nanoph-2017-0133
– ident: e_1_2_7_51_1
  doi: 10.1038/s42005-018-0035-2
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRevB.76.033407
– ident: e_1_2_7_3_1
  doi: 10.1103/PhysRevLett.114.114301
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms11619
– ident: e_1_2_7_49_1
  doi: 10.1063/1.1611642
– ident: e_1_2_7_15_1
  doi: 10.1063/1.4963789
– ident: e_1_2_7_7_1
  doi: 10.1038/ncomms11744
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-018-07084-2
– ident: e_1_2_7_36_1
  doi: 10.1088/0022-3727/47/43/435103
– ident: e_1_2_7_22_1
  doi: 10.1088/1367-2630/18/11/113013
– ident: e_1_2_7_25_1
  doi: 10.1038/nmat3520
– ident: e_1_2_7_39_1
  doi: 10.1038/ncomms9183
– ident: e_1_2_7_14_1
  doi: 10.1038/nature12066
– ident: e_1_2_7_31_1
  doi: 10.1002/lpor.201800073
– ident: e_1_2_7_4_1
  doi: 10.1038/s42005-018-0094-4
– ident: e_1_2_7_13_1
  doi: 10.1038/nphoton.2012.236
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRevLett.120.063902
– ident: e_1_2_7_24_1
  doi: 10.1038/nmat4807
– ident: e_1_2_7_29_1
  doi: 10.1063/1.5055601
– ident: e_1_2_7_55_1
  doi: 10.1038/s41467-018-03330-9
– ident: e_1_2_7_21_1
  doi: 10.1103/PhysRevLett.114.223901
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms16023
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms9682
– ident: e_1_2_7_38_1
  doi: 10.1038/srep04536
– ident: e_1_2_7_12_1
  doi: 10.1103/PhysRevLett.106.093903
– ident: e_1_2_7_35_1
  doi: 10.1103/PhysRevA.99.033842
– ident: e_1_2_7_45_1
  doi: 10.1103/PhysRevB.96.201402
– ident: e_1_2_7_40_1
  doi: 10.1088/2040-8978/18/8/085601
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevB.92.014210
– ident: e_1_2_7_1_1
  doi: 10.1038/nature08916
– ident: e_1_2_7_52_1
  doi: 10.1038/s41467-019-08966-9
– ident: e_1_2_7_26_1
  doi: 10.1038/ncomms6782
SSID ssj0055556
Score 2.5658777
Snippet The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune...
Abstract The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 1D waves
Backscattering
bianisotropy
Cones
electromagnetic duality
Interlayers
Metamaterials
Metasurfaces
Microwave frequencies
Photonic crystals
Quantum Hall effect
Supports
Topological insulators
topological photonics
Topology
Title Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900126
https://www.proquest.com/docview/2305688733
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwvlVxQK8oDElDaNHSceES2qEIUKUalbZLt2ByBFtF2YeASekSfhLk5LYUGCTIkUR7HvzveddfcdIadRqAX4YRuAM0wDznUapMKCuTtAHy1lpA6x3rl3I7oDfjWMhytV_J4fYnnghpZR7Ndo4EpPm1-koY-ATzE1S6LHRs7tFkswp6t9t-SPiuEqyotSwQII9cIFa2MYNb8P_-6VvqDmKmAtPM5llajFv_pEk4fGfKYb5vUHjeN_JrNFNks4Ss-9_myTNZvvkGoJTWlp-NNdctvx7XKe1DjHssePt_f2HAb27AzPGB0mdlHAv_TeN11A0VMPZKl6nORjqmirTYvzR3x5jwwuO_cX3aDsxRAYBiFJkFiIoWWqYhZzZ-PQMCEiqWRiQtgUTAoKyaQGtIgdFvhI8JF2ThorYulEbEO2Tyr5JLcHhCrmUmlUgliFG5toB5DFMRGObJJawWvkbCGL7NlTbmSeXDnKcJ2y5TrVSH0hqqw0vWkWYVAEWydjNRIVa_7LV7Lr_u3d8unwL4OOyAbe-yS_OqnMXub2GMDKTJ-Q9Yj3Twq1_ASCCOIn
link.rule.ids 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGGDhjShPD0hMgRAnTjwiCirQAqpaiS2KXbsDEBC0CxM_gd_IL-EuTlrKggTZEsVRfPb5vjvdfQewH_hKoB02HhrDxAtDlXiJMKjuFtHHcaal8qneuXUtGt3w8i6qsgmpFsbxQ4wCbqQZxXlNCk4B6aMxa-gDAlTKzZJkssU0zKLOc2piUG-PGKQivIoCo0RwD509v-Jt9IOjyfGTdmkMNr9D1sLmnC-Cqv7WpZrcHw4H6lC__SBy_Nd0lmChRKTsxG2hZZgy-QosluiUlbr_ugo3Z65jzmPWz6ny8fP9oz7EgS0zoDCjpdwuhhCYdVzfBVp95rAsyx6e8j7L2HGdFSFIenkNuudnndOGV7Zj8DRHr8SLDbrRMskiHoXWRL7mQgQyk7H28VzQCe5JLhUCRmqyEPZE2FPWSm1EJK2IjM_XYSZ_ys0GsIzbROosJrgSahMri6jFcuH3TJwYEdbgoFqM9NmxbqSOXzlISU7pSE412K7WKi217zUNyC_C05PzGgSF0H_5Stq8vWmP7jb_MmgP5hqdVjNtXlxfbcE8PXc5f9swM3gZmh3ELgO1W-zOL1jT5Wo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BkRAL5VcUCnhAYgqY2HHiEdFW_BUQAoktcly7AyUg2i5MPALPyJNwjtPSsiBBtkRxFPvufN9Zd98B7IU0E-iHTYDOMAk4z5IgEQbN3SL6OFJaZtTVO7evxOk9P3-IHiaq-D0_xPjAzVlGsV87A3_p2MNv0tAe4lOXmiWdxxazMMcFoy6pq3E7JpCK8CrqixLBAoz16Ii2kYaH0-On3dI31pxErIXLaVVBjX7WZ5o8HgwH2YF--8Hj-J_ZLMFiiUfJsVegZZgx-QpUS2xKSsvvr8J10_fLeVLd3NU9fr5_NIY4sG0G7pDRuswuggCY3PmuC072xCNZonrPeZcoctQgxQGke3kN7lvNu5PToGzGEGiGMUkQGwyiZaIiFnFrIqqZEKFUMtYUdwWdoEYymSFcdC0WeEfwTmat1EZE0orIULYOlfw5NxtAFLOJ1Cp2YIVrE2cWMYtlgnZMnBjBa7A_kkX64jk3Us-uHKZundLxOtWgPhJVWtpePw1dVIR7J2M1CIs1_-Ur6eXN9e34bvMvg3Zh_qbRSi_Pri62YME99gl_dagMXodmG4HLINspdPMLu_HkGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic%E2%80%90Dual+Metasurfaces+for+Topological+States+along+a+1D+Interface&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Bisharat%2C+Dia%27aaldin+J.&rft.au=Sievenpiper%2C+Daniel+F.&rft.date=2019-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.201900126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_201900126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon