Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface
The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two...
Saved in:
Published in | Laser & photonics reviews Vol. 13; no. 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators.
A simple approach to realize photonic topological insulators (PTIs), which promise lossless wave‐transmission despite fabrication imperfections, is presented. The design is nothing but a flat metasurface (patterned plate) atop another of a complementary pattern. Hence, electromagnetic duality is exploited, yet without demanding any parameter fine‐tuning. Strikingly, the design outperforms existing PTIs in terms of bandwidth and energy concentration. |
---|---|
AbstractList | Abstract
The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators. The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators. A simple approach to realize photonic topological insulators (PTIs), which promise lossless wave‐transmission despite fabrication imperfections, is presented. The design is nothing but a flat metasurface (patterned plate) atop another of a complementary pattern. Hence, electromagnetic duality is exploited, yet without demanding any parameter fine‐tuning. Strikingly, the design outperforms existing PTIs in terms of bandwidth and energy concentration. The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune light propagation. So far, however, implementations have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two‐dimensional (2D) systems, which closely mimic their electronic counterparts. In addition, metamaterials‐based implementations subject to electromagnetic duality and bianisotropy conditions suffer from intricate designs and narrow operating bandwidths. Here, it is shown that symmetry‐protected topological states akin to the quantum spin‐Hall effect can be realized in a straightforward manner by coupling surface modes over metasurfaces of complementary electromagnetic responses. Specifically, stacking unit cells of such metasurfaces directly results in double Dirac cones of degenerate transverse‐electric (TE) and transverse‐magnetic (TM) modes, which break into a wide nontrivial bandgap at small interlayer separation. Consequently, the ultrathin structure supports robust gapless edge states, which are confined along a one‐dimensional (1D) line rather than a surface interface, as demonstrated at microwave frequencies by near‐field imaging. The simplicity and versatility of the proposed approach proves attractive as a tabletop platform for the study of classical topological phases, as well as for applications benefiting the compactness of metasurfaces and the potential of topological insulators. |
Author | Bisharat, Dia'aaldin J. Sievenpiper, Daniel F. |
Author_xml | – sequence: 1 givenname: Dia'aaldin J. orcidid: 0000-0003-2229-2123 surname: Bisharat fullname: Bisharat, Dia'aaldin J. email: dbisharat@eng.ucsd.edu organization: University of California San Diego – sequence: 2 givenname: Daniel F. surname: Sievenpiper fullname: Sievenpiper, Daniel F. organization: University of California San Diego |
BookMark | eNqFkMFKAzEQhoMo2Favnhc8b50km2xylLZqoVLReg5pmpQt282a7CK9-Qg-o0_i1ko9OpcZZr7_H_j76LTylUXoCsMQA5CbsvZhSABLAEz4CephwWkqhJSnx1nAOerHuAFgXfEemk9Ka5rgt3pd2aYwXx-f41aXyaNtdGyD08bGxPmQLHztS78uTHd8aXTTrXXpq3WiEzxOplVjf-ALdOZ0Ge3lbx-g17vJYvSQzub309HtLDWU5TzNbZ4RKTSjLHOWgaGcE6llbgALaoTVKyqXklDNALIVz1ZL56SxnEnHmQU6QNcH3zr4t9bGRm18G6rupSIUGBcip7SjhgfKBB9jsE7VodjqsFMY1D40tQ9NHUPrBPIgeC9Ku_uHVrOn-fOf9huXzXML |
CitedBy_id | crossref_primary_10_1002_adom_202200262 crossref_primary_10_1103_PhysRevApplied_17_064008 crossref_primary_10_1038_s41467_023_40238_5 crossref_primary_10_1103_PhysRevB_109_L241406 crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1109_MAP_2021_3127541 crossref_primary_10_1515_nanoph_2022_0258 crossref_primary_10_1021_acsphotonics_2c00309 crossref_primary_10_1002_apxr_202200076 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1038_s41598_022_12617_3 crossref_primary_10_1038_s41598_024_56049_7 crossref_primary_10_1109_TAP_2023_3284377 crossref_primary_10_1364_PRJ_453803 crossref_primary_10_1557_s43579_024_00519_6 crossref_primary_10_1038_s41377_020_0331_y crossref_primary_10_1109_TAP_2021_3111256 crossref_primary_10_1002_adma_202004376 crossref_primary_10_1103_PhysRevX_11_031038 crossref_primary_10_1088_2040_8986_acbf67 crossref_primary_10_1063_5_0008046 crossref_primary_10_1038_s41565_023_01380_9 crossref_primary_10_1103_PhysRevB_104_205403 crossref_primary_10_1109_JMW_2021_3126199 crossref_primary_10_1103_PhysRevApplied_19_024053 crossref_primary_10_1109_TAP_2020_3018536 crossref_primary_10_1021_acsphotonics_0c00465 crossref_primary_10_1103_PhysRevApplied_21_044038 crossref_primary_10_1002_andp_202100191 crossref_primary_10_1021_acsphotonics_2c00491 crossref_primary_10_1063_5_0062058 crossref_primary_10_1103_PhysRevResearch_2_043148 crossref_primary_10_1364_OL_488612 crossref_primary_10_1109_LAWP_2023_3270456 crossref_primary_10_1109_MAP_2021_3069276 crossref_primary_10_1063_5_0107211 crossref_primary_10_1063_5_0051239 crossref_primary_10_3788_COL202422_023902 crossref_primary_10_1103_PhysRevB_108_155437 crossref_primary_10_1364_OE_485765 crossref_primary_10_1103_PhysRevApplied_21_044043 crossref_primary_10_1103_PhysRevB_109_155135 crossref_primary_10_1063_5_0046588 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1103_PhysRevApplied_21_044006 crossref_primary_10_1063_5_0041055 crossref_primary_10_1063_5_0042583 crossref_primary_10_7498_aps_69_20200415 crossref_primary_10_1002_lpor_202200362 crossref_primary_10_1109_JLT_2023_3288342 crossref_primary_10_1002_lpor_201900392 crossref_primary_10_1038_s41598_022_20972_4 |
Cites_doi | 10.1103/PhysRevLett.114.127401 10.1103/RevModPhys.91.015006 10.1103/PhysRevB.95.035153 10.1038/s41467-017-01515-2 10.1038/nature08293 10.1038/nphys2063 10.1038/nmat4573 10.1103/PhysRevLett.120.217401 10.1109/JMMCT.2017.2654962 10.1088/1367-2630/18/2/025012 10.1103/PhysRevLett.119.106802 10.1038/srep30055 10.1103/RevModPhys.83.1057 10.1038/nphoton.2016.253 10.1021/ph5001988 10.1088/1367-2630/13/3/033024 10.1038/ncomms9260 10.1088/1367-2630/14/11/113017 10.1038/nphys3796 10.1038/s41566-017-0048-5 10.1103/PhysRevLett.110.203904 10.1142/0613 10.1515/nanoph-2017-0133 10.1038/s42005-018-0035-2 10.1103/PhysRevB.76.033407 10.1103/PhysRevLett.114.114301 10.1038/ncomms11619 10.1063/1.1611642 10.1063/1.4963789 10.1038/ncomms11744 10.1038/s41467-018-07084-2 10.1088/0022-3727/47/43/435103 10.1088/1367-2630/18/11/113013 10.1038/nmat3520 10.1038/ncomms9183 10.1038/nature12066 10.1002/lpor.201800073 10.1038/s42005-018-0094-4 10.1038/nphoton.2012.236 10.1103/PhysRevLett.120.063902 10.1038/nmat4807 10.1063/1.5055601 10.1038/s41467-018-03330-9 10.1103/PhysRevLett.114.223901 10.1038/ncomms16023 10.1038/ncomms9682 10.1038/srep04536 10.1103/PhysRevLett.106.093903 10.1103/PhysRevA.99.033842 10.1103/PhysRevB.96.201402 10.1088/2040-8978/18/8/085601 10.1103/PhysRevB.92.014210 10.1038/nature08916 10.1038/s41467-019-08966-9 10.1038/ncomms6782 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.201900126 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_201900126 LPOR201900126 |
Genre | article |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: FA9550‐16‐1‐0093 – fundername: Defense Advanced Research Projects Agency funderid: W911NF‐17‐1‐0580 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WIN WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3576-7e74298a5354fe50c36629a97c0183c8ead39b923a5004d64dbff9ce659f65e03 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Thu Oct 10 16:24:39 EDT 2024 Fri Aug 23 01:49:20 EDT 2024 Sat Aug 24 01:10:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3576-7e74298a5354fe50c36629a97c0183c8ead39b923a5004d64dbff9ce659f65e03 |
ORCID | 0000-0003-2229-2123 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900126 |
PQID | 2305688733 |
PQPubID | 1016358 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2305688733 crossref_primary_10_1002_lpor_201900126 wiley_primary_10_1002_lpor_201900126_LPOR201900126 |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2017; 119 2019; 91 2017; 8 2015; 6 2017; 2 2015; 4 2016; 109 2015; 92 2019; 99 2019; 10 2010; 464 2011; 83 2014; 47 2011; 13 2016; 18 2012; 14 2007; 76 2016; 15 2011; 7 2016; 12 2018; 7 2014; 1 2017; 95 2018; 9 2016; 6 2016; 7 2017; 96 2014; 5 2011; 106 2018; 1 2015; 114 2017; 16 2013; 12 2017; 11 2013; 496 2019; 114 2013; 110 2009; 461 2012; 6 2018; 12 2003; 83 1989 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 9 start-page: 909 year: 2018 publication-title: Nat. Commun. – volume: 1 start-page: 97 year: 2018 publication-title: Comm. Phys. – volume: 1 start-page: 894 year: 2014 publication-title: ACS Photonics – volume: 12 start-page: 626 year: 2016 publication-title: Nat. Phys. – year: 1989 – volume: 16 start-page: 298 year: 2017 publication-title: Nat. Mater. – volume: 6 start-page: 8260 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 39 year: 2018 publication-title: Comm. Phys. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 8183 year: 2015 publication-title: Nat. Commun. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 6 start-page: 782 year: 2012 publication-title: Nat. Photonics – volume: 12 year: 2018 publication-title: Laser Photonics Rev. – volume: 13 year: 2011 publication-title: New J. Phys. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 12 start-page: 233 year: 2013 publication-title: Nat. Mater. – volume: 10 start-page: 1102 year: 2019 publication-title: Nat. Commun. – volume: 464 start-page: 194 year: 2010 publication-title: Nature – volume: 91 year: 2019 publication-title: Rev. Mod. Phys. – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 9 start-page: 4598 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 763 year: 2017 publication-title: Nat. Photonics – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 907 year: 2011 publication-title: Nat. Phys. – volume: 4 start-page: 4536 year: 2015 publication-title: Sci. Rep. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 893 year: 2018 publication-title: Nanophotonics – volume: 496 start-page: 196 year: 2013 publication-title: Nature – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 542 year: 2016 publication-title: Nat. Mater. – volume: 83 start-page: 2124 year: 2003 publication-title: Appl. Phys. Lett. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 461 start-page: 772 year: 2009 publication-title: Nature – volume: 18 year: 2016 publication-title: J. Opt. – volume: 14 year: 2012 publication-title: New J. Phys. – volume: 2 start-page: 3 year: 2017 publication-title: IEEE J. Multiscale Multiphys. Comp. Tech. – volume: 11 start-page: 130 year: 2017 publication-title: Nat. Photonics – volume: 47 year: 2014 publication-title: J. Phys. D: Appl. Phys. – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 5 start-page: 5782 year: 2014 publication-title: Nat. Commun. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 8682 year: 2015 publication-title: Nat. Commun. – volume: 8 start-page: 1304 year: 2017 publication-title: Nat. Commun. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 92 year: 2015 publication-title: Phys. Rev. B – ident: e_1_2_7_27_1 doi: 10.1103/PhysRevLett.114.127401 – ident: e_1_2_7_10_1 doi: 10.1103/RevModPhys.91.015006 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevB.95.035153 – ident: e_1_2_7_46_1 doi: 10.1038/s41467-017-01515-2 – ident: e_1_2_7_11_1 doi: 10.1038/nature08293 – ident: e_1_2_7_16_1 doi: 10.1038/nphys2063 – ident: e_1_2_7_53_1 doi: 10.1038/nmat4573 – ident: e_1_2_7_23_1 doi: 10.1103/PhysRevLett.120.217401 – ident: e_1_2_7_32_1 doi: 10.1109/JMMCT.2017.2654962 – ident: e_1_2_7_44_1 doi: 10.1088/1367-2630/18/2/025012 – ident: e_1_2_7_34_1 doi: 10.1103/PhysRevLett.119.106802 – ident: e_1_2_7_48_1 doi: 10.1038/srep30055 – ident: e_1_2_7_2_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_7_28_1 doi: 10.1038/nphoton.2016.253 – ident: e_1_2_7_42_1 doi: 10.1021/ph5001988 – ident: e_1_2_7_50_1 doi: 10.1088/1367-2630/13/3/033024 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms9260 – ident: e_1_2_7_54_1 doi: 10.1088/1367-2630/14/11/113017 – ident: e_1_2_7_8_1 doi: 10.1038/nphys3796 – ident: e_1_2_7_9_1 doi: 10.1038/s41566-017-0048-5 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevLett.110.203904 – ident: e_1_2_7_33_1 doi: 10.1142/0613 – ident: e_1_2_7_37_1 doi: 10.1515/nanoph-2017-0133 – ident: e_1_2_7_51_1 doi: 10.1038/s42005-018-0035-2 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevB.76.033407 – ident: e_1_2_7_3_1 doi: 10.1103/PhysRevLett.114.114301 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms11619 – ident: e_1_2_7_49_1 doi: 10.1063/1.1611642 – ident: e_1_2_7_15_1 doi: 10.1063/1.4963789 – ident: e_1_2_7_7_1 doi: 10.1038/ncomms11744 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-018-07084-2 – ident: e_1_2_7_36_1 doi: 10.1088/0022-3727/47/43/435103 – ident: e_1_2_7_22_1 doi: 10.1088/1367-2630/18/11/113013 – ident: e_1_2_7_25_1 doi: 10.1038/nmat3520 – ident: e_1_2_7_39_1 doi: 10.1038/ncomms9183 – ident: e_1_2_7_14_1 doi: 10.1038/nature12066 – ident: e_1_2_7_31_1 doi: 10.1002/lpor.201800073 – ident: e_1_2_7_4_1 doi: 10.1038/s42005-018-0094-4 – ident: e_1_2_7_13_1 doi: 10.1038/nphoton.2012.236 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevLett.120.063902 – ident: e_1_2_7_24_1 doi: 10.1038/nmat4807 – ident: e_1_2_7_29_1 doi: 10.1063/1.5055601 – ident: e_1_2_7_55_1 doi: 10.1038/s41467-018-03330-9 – ident: e_1_2_7_21_1 doi: 10.1103/PhysRevLett.114.223901 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms16023 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms9682 – ident: e_1_2_7_38_1 doi: 10.1038/srep04536 – ident: e_1_2_7_12_1 doi: 10.1103/PhysRevLett.106.093903 – ident: e_1_2_7_35_1 doi: 10.1103/PhysRevA.99.033842 – ident: e_1_2_7_45_1 doi: 10.1103/PhysRevB.96.201402 – ident: e_1_2_7_40_1 doi: 10.1088/2040-8978/18/8/085601 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevB.92.014210 – ident: e_1_2_7_1_1 doi: 10.1038/nature08916 – ident: e_1_2_7_52_1 doi: 10.1038/s41467-019-08966-9 – ident: e_1_2_7_26_1 doi: 10.1038/ncomms6782 |
SSID | ssj0055556 |
Score | 2.5658777 |
Snippet | The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of backscattering‐immune... Abstract The discovery of topological insulators was rapidly followed by the advent of their photonic analogues, motivated by the prospect of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 1D waves Backscattering bianisotropy Cones electromagnetic duality Interlayers Metamaterials Metasurfaces Microwave frequencies Photonic crystals Quantum Hall effect Supports Topological insulators topological photonics Topology |
Title | Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201900126 https://www.proquest.com/docview/2305688733 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwvlVxQK8oDElDaNHSceES2qEIUKUalbZLt2ByBFtF2YeASekSfhLk5LYUGCTIkUR7HvzveddfcdIadRqAX4YRuAM0wDznUapMKCuTtAHy1lpA6x3rl3I7oDfjWMhytV_J4fYnnghpZR7Ndo4EpPm1-koY-ATzE1S6LHRs7tFkswp6t9t-SPiuEqyotSwQII9cIFa2MYNb8P_-6VvqDmKmAtPM5llajFv_pEk4fGfKYb5vUHjeN_JrNFNks4Ss-9_myTNZvvkGoJTWlp-NNdctvx7XKe1DjHssePt_f2HAb27AzPGB0mdlHAv_TeN11A0VMPZKl6nORjqmirTYvzR3x5jwwuO_cX3aDsxRAYBiFJkFiIoWWqYhZzZ-PQMCEiqWRiQtgUTAoKyaQGtIgdFvhI8JF2ThorYulEbEO2Tyr5JLcHhCrmUmlUgliFG5toB5DFMRGObJJawWvkbCGL7NlTbmSeXDnKcJ2y5TrVSH0hqqw0vWkWYVAEWydjNRIVa_7LV7Lr_u3d8unwL4OOyAbe-yS_OqnMXub2GMDKTJ-Q9Yj3Twq1_ASCCOIn |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGGDhjShPD0hMgRAnTjwiCirQAqpaiS2KXbsDEBC0CxM_gd_IL-EuTlrKggTZEsVRfPb5vjvdfQewH_hKoB02HhrDxAtDlXiJMKjuFtHHcaal8qneuXUtGt3w8i6qsgmpFsbxQ4wCbqQZxXlNCk4B6aMxa-gDAlTKzZJkssU0zKLOc2piUG-PGKQivIoCo0RwD509v-Jt9IOjyfGTdmkMNr9D1sLmnC-Cqv7WpZrcHw4H6lC__SBy_Nd0lmChRKTsxG2hZZgy-QosluiUlbr_ugo3Z65jzmPWz6ny8fP9oz7EgS0zoDCjpdwuhhCYdVzfBVp95rAsyx6e8j7L2HGdFSFIenkNuudnndOGV7Zj8DRHr8SLDbrRMskiHoXWRL7mQgQyk7H28VzQCe5JLhUCRmqyEPZE2FPWSm1EJK2IjM_XYSZ_ys0GsIzbROosJrgSahMri6jFcuH3TJwYEdbgoFqM9NmxbqSOXzlISU7pSE412K7WKi217zUNyC_C05PzGgSF0H_5Stq8vWmP7jb_MmgP5hqdVjNtXlxfbcE8PXc5f9swM3gZmh3ELgO1W-zOL1jT5Wo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BkRAL5VcUCnhAYgqY2HHiEdFW_BUQAoktcly7AyUg2i5MPALPyJNwjtPSsiBBtkRxFPvufN9Zd98B7IU0E-iHTYDOMAk4z5IgEQbN3SL6OFJaZtTVO7evxOk9P3-IHiaq-D0_xPjAzVlGsV87A3_p2MNv0tAe4lOXmiWdxxazMMcFoy6pq3E7JpCK8CrqixLBAoz16Ii2kYaH0-On3dI31pxErIXLaVVBjX7WZ5o8HgwH2YF--8Hj-J_ZLMFiiUfJsVegZZgx-QpUS2xKSsvvr8J10_fLeVLd3NU9fr5_NIY4sG0G7pDRuswuggCY3PmuC072xCNZonrPeZcoctQgxQGke3kN7lvNu5PToGzGEGiGMUkQGwyiZaIiFnFrIqqZEKFUMtYUdwWdoEYymSFcdC0WeEfwTmat1EZE0orIULYOlfw5NxtAFLOJ1Cp2YIVrE2cWMYtlgnZMnBjBa7A_kkX64jk3Us-uHKZundLxOtWgPhJVWtpePw1dVIR7J2M1CIs1_-Ur6eXN9e34bvMvg3Zh_qbRSi_Pri62YME99gl_dagMXodmG4HLINspdPMLu_HkGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic%E2%80%90Dual+Metasurfaces+for+Topological+States+along+a+1D+Interface&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Bisharat%2C+Dia%27aaldin+J.&rft.au=Sievenpiper%2C+Daniel+F.&rft.date=2019-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.201900126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_201900126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |