Novel control approach for integrating water electrolyzers to renewable energy sources
Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, mod...
Saved in:
Published in | Fuel cells (Weinheim an der Bergstrasse, Germany) Vol. 22; no. 6; pp. 290 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1615-6846 1615-6854 |
DOI | 10.1002/fuce.202200066 |
Cover
Loading…
Abstract | Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables. |
---|---|
AbstractList | Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables. Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables. |
Author | Steinberger‐Wilckens, Robert Al‐Sagheer, Yousif |
Author_xml | – sequence: 1 givenname: Yousif orcidid: 0000-0002-0429-2456 surname: Al‐Sagheer fullname: Al‐Sagheer, Yousif email: Y.I.W.Al-Sagheer@bham.ac.uk organization: University of Birmingham – sequence: 2 givenname: Robert surname: Steinberger‐Wilckens fullname: Steinberger‐Wilckens, Robert organization: University of Birmingham |
BookMark | eNqFkM1LAzEQxYMo2FavngOetybZfPUopVWh6MV6DWl2Uresm5psLetf7y6VCoJ4mnd4v5l5b4hO61ADQleUjCkh7MbvHIwZYYwQIuUJGlBJRSa14KdHzeU5Gqa0IYQqrfkAvTyGD6iwC3UTQ4XtdhuDda_Yh4jLuoF1tE1Zr_HeNhAxVOB6X_sJMeEm4Ag17O2qAtyJuG5xCrvoIF2gM2-rBJffc4SW89nz9D5bPN09TG8XmcuFkpnwnHKXwyQXhWCOK1kosQKpHLG6EKBZoa1zhSgo8U54okmuPMsLZifacZ2P0PVhb_f2-w5SYzbdA3V30jAltJKEUtK5-MHlYkgpgjeubLpcfWhbVoYS0zdo-gbNscEOG__CtrF8s7H9G5gcgH1ZQfuP28yX09kP-wXcjIeE |
CitedBy_id | crossref_primary_10_3390_en17143370 crossref_primary_10_1016_j_electacta_2023_143474 crossref_primary_10_1016_j_est_2024_114432 crossref_primary_10_1109_TPEL_2025_3534877 crossref_primary_10_1016_j_ijhydene_2024_08_425 crossref_primary_10_1002_tee_70009 crossref_primary_10_32604_ee_2024_051524 crossref_primary_10_1016_j_aej_2023_12_032 crossref_primary_10_1016_j_heliyon_2024_e32312 crossref_primary_10_1063_5_0218151 |
Cites_doi | 10.1016/j.ijhydene.2010.07.106 10.1016/j.ijhydene.2006.10.067 10.1049/iet-rpg.2020.0453 10.1109/UPEC.2006.367777 10.1016/j.ijhydene.2009.11.044 10.1016/j.ijhydene.2009.10.077 10.1016/S0360-3199(97)00055-4 10.1016/j.ijhydene.2009.01.053 10.1016/j.egypro.2011.10.133 10.1016/j.solener.2003.09.013 10.1007/978-1-84800-247-0_7 10.1109/IREC.2014.6826907 10.1109/TSG.2015.2445794 10.1109/TIE.2016.2547870 10.1016/j.ijhydene.2011.11.029 10.1016/j.rser.2014.01.012 10.1016/j.ijhydene.2012.07.083 10.1007/s40565-015-0163-6 10.1016/j.renene.2008.04.018 10.1016/j.ijhydene.2013.11.003 10.1109/TSTE.2021.3063245 10.1016/j.probengmech.2013.01.001 10.1016/j.ijhydene.2010.12.074 10.1016/j.renene.2014.12.007 10.1088/1742-6596/1726/1/012022 10.1016/j.egypro.2016.09.188 10.1016/j.rser.2017.09.003 10.1016/B978-0-12-375028-0.00005-4 10.1016/j.apenergy.2016.01.014 10.1016/j.renene.2012.04.016 10.1016/j.apenergy.2018.05.076 10.1016/j.ijhydene.2008.08.026 10.1109/CCEE.2018.8634512 10.1109/IECON.2012.6389059 10.1002/0470036427 10.1016/j.ijhydene.2011.01.046 10.1016/0038-092X(82)90072-X 10.1016/j.heliyon.2019.e01396 10.1016/j.epsr.2014.06.006 10.1016/j.jpowsour.2008.01.092 10.2172/1032531 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1002/fuce.202200066 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-6854 |
EndPage | 300 |
ExternalDocumentID | 10_1002_fuce_202200066 FUCE202200066 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 L7M |
ID | FETCH-LOGICAL-c3576-5f414c3e935d52c476d75be67c0a8d5e82d8accd5d10fc5f08037f23d2a98c483 |
IEDL.DBID | DR2 |
ISSN | 1615-6846 |
IngestDate | Fri Jul 25 12:07:02 EDT 2025 Tue Jul 01 00:36:39 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Wed Jan 22 16:19:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3576-5f414c3e935d52c476d75be67c0a8d5e82d8accd5d10fc5f08037f23d2a98c483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0429-2456 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202200066 |
PQID | 2758760110 |
PQPubID | 866399 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2758760110 crossref_citationtrail_10_1002_fuce_202200066 crossref_primary_10_1002_fuce_202200066 wiley_primary_10_1002_fuce_202200066_FUCE202200066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Fuel cells (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014; 116 2013; 3 2010; 35 2019; 5 2012 2010 2018; 225 2015; 77 1998 2008 2016; 166 2006 2020; 14 2016; 94 2005 2016; 2016 2008; 33 2011; 12 2012; 37 2011; 36 2018; 82 2007; 32 1998; 23 2009; 34 2004; 76 2008; 180 2016; 6 2016; 7 1982; 29 2021; 12 2022 2000 2013; 32 2021 2020 2021; 1726 2018 2016; 63 2016 2015 2014 2014; 39 2012; 47 2014; 32 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Kempton W. (e_1_2_6_52_1) 2010 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Aggarwal S. K. (e_1_2_6_47_1) 2013; 3 Tsoutsos T. D. (e_1_2_6_53_1) 2008 Meier A. (e_1_2_6_51_1) 2006 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Saadsaoud M. (e_1_2_6_14_1) 2016; 6 e_1_2_6_42_1 e_1_2_6_21_1 Eichman J. (e_1_2_6_39_1) 2014 e_1_2_6_40_1 Jones L. E. (e_1_2_6_50_1) 2012 (e_1_2_6_44_1) 2016; 2016 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 225 start-page: 965 year: 2018 publication-title: Appl. Energy – start-page: 1 year: 2014 – year: 2021 – volume: 94 start-page: 306 year: 2016 publication-title: Energy Procedia – volume: 63 start-page: 4919 year: 2016 publication-title: IEEE Trans. Ind. Electron. – volume: 82 start-page: 2440 year: 2018 publication-title: Renew. Sustain. Energy Rev. – volume: 3 start-page: 1 year: 2013 publication-title: Int. J. Energy Sci. – year: 2018 – volume: 34 start-page: 2531 year: 2009 publication-title: Int. J. Hydrogen Energy – year: 1998 – volume: 37 start-page: 3098 year: 2012 publication-title: Int. J. Hydrogen Energy – start-page: 5669 year: 2012 – start-page: 1 year: 2000 – volume: 29 start-page: 363 year: 1982 publication-title: Sol. Energy – year: 2008 – year: 2022 – volume: 1726 year: 2021 publication-title: J. Phys. Conf. Ser. – start-page: 75 year: 2010 – volume: 47 start-page: 103 year: 2012 publication-title: Renew. Energy – volume: 36 start-page: 8143 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 202 year: 2017 publication-title: J. Mod. Power Syst. Clean Energy – start-page: 67 year: 2005 – volume: 14 start-page: 3070 year: 2020 publication-title: IET Renew. Power Gener. – volume: 32 start-page: 810 year: 2014 publication-title: Renew. Sustain. Energy. Rev. – volume: 12 start-page: 1707 year: 2021 publication-title: IEEE Trans. Sustain. Energy – volume: 180 start-page: 468 year: 2008 publication-title: J. Power Sources – volume: 36 start-page: 7985 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 2016 start-page: 9 year: 2016 publication-title: Fuel Cells Bull. – start-page: 1 year: 2006 – volume: 35 start-page: 872 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 23 start-page: 295 year: 1998 publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 1243 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 77 start-page: 115 year: 2015 publication-title: Renew. Energy – volume: 37 year: 2012 publication-title: Int. J. Hydrogen Energy – start-page: 369 year: 2006 – start-page: 276 year: 2006 – volume: 116 start-page: 208 year: 2014 publication-title: Electr. Power Syst. Res. – start-page: 1 year: 2012 – volume: 32 start-page: 2247 year: 2007 publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 413 year: 2016 publication-title: Int. J. Renew. Energy Res. – volume: 35 start-page: 1841 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 2337 year: 2016 publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2018 – volume: 34 start-page: 815 year: 2009 publication-title: Renew. Energy – year: 2016 – volume: 76 start-page: 323 year: 2004 publication-title: Sol. Energy – start-page: 151 year: 2008 – volume: 33 start-page: 6401 year: 2008 publication-title: Int. J. Hydrogen Energy – year: 2006 – year: 2020 – start-page: 194 year: 2012 – volume: 12 start-page: 1015 year: 2011 publication-title: Energy Procedia – start-page: 1039 year: 2015 – volume: 32 start-page: 48 year: 2013 publication-title: Probabilistic Eng. Mech. – volume: 35 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 166 start-page: 96 year: 2016 publication-title: Appl. Energy – volume: 5 year: 2019 publication-title: Heliyon – ident: e_1_2_6_5_1 doi: 10.1016/j.ijhydene.2010.07.106 – ident: e_1_2_6_29_1 doi: 10.1016/j.ijhydene.2006.10.067 – ident: e_1_2_6_46_1 doi: 10.1049/iet-rpg.2020.0453 – ident: e_1_2_6_11_1 doi: 10.1109/UPEC.2006.367777 – ident: e_1_2_6_31_1 – ident: e_1_2_6_37_1 doi: 10.1016/j.ijhydene.2009.11.044 – ident: e_1_2_6_23_1 doi: 10.1016/j.ijhydene.2009.10.077 – ident: e_1_2_6_10_1 doi: 10.1016/S0360-3199(97)00055-4 – ident: e_1_2_6_28_1 doi: 10.1016/j.ijhydene.2009.01.053 – ident: e_1_2_6_59_1 – ident: e_1_2_6_22_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_38_1 doi: 10.1016/j.egypro.2011.10.133 – ident: e_1_2_6_30_1 doi: 10.1016/j.solener.2003.09.013 – start-page: 151 volume-title: Hydrog. Auton. Power Syst year: 2008 ident: e_1_2_6_53_1 doi: 10.1007/978-1-84800-247-0_7 – ident: e_1_2_6_58_1 – ident: e_1_2_6_48_1 doi: 10.1109/IREC.2014.6826907 – ident: e_1_2_6_55_1 – start-page: 1 volume-title: Novel Electrolyzer Applications: Providing More Than Just Hydrogen year: 2014 ident: e_1_2_6_39_1 – ident: e_1_2_6_56_1 doi: 10.1109/TSG.2015.2445794 – ident: e_1_2_6_32_1 doi: 10.1109/TIE.2016.2547870 – ident: e_1_2_6_9_1 – ident: e_1_2_6_25_1 doi: 10.1016/j.ijhydene.2011.11.029 – ident: e_1_2_6_2_1 doi: 10.1016/j.rser.2014.01.012 – ident: e_1_2_6_6_1 doi: 10.1016/j.ijhydene.2012.07.083 – ident: e_1_2_6_54_1 doi: 10.1007/s40565-015-0163-6 – ident: e_1_2_6_36_1 doi: 10.1016/j.renene.2008.04.018 – ident: e_1_2_6_12_1 – ident: e_1_2_6_27_1 doi: 10.1016/j.ijhydene.2013.11.003 – ident: e_1_2_6_43_1 doi: 10.1109/TSTE.2021.3063245 – ident: e_1_2_6_18_1 doi: 10.1016/j.probengmech.2013.01.001 – volume: 2016 start-page: 9 year: 2016 ident: e_1_2_6_44_1 publication-title: Fuel Cells Bull. – ident: e_1_2_6_7_1 doi: 10.1016/j.ijhydene.2010.12.074 – volume: 3 start-page: 1 year: 2013 ident: e_1_2_6_47_1 publication-title: Int. J. Energy Sci. – ident: e_1_2_6_49_1 doi: 10.1016/j.renene.2014.12.007 – ident: e_1_2_6_15_1 doi: 10.1088/1742-6596/1726/1/012022 – ident: e_1_2_6_42_1 – ident: e_1_2_6_20_1 doi: 10.1016/j.egypro.2016.09.188 – ident: e_1_2_6_40_1 doi: 10.1016/j.rser.2017.09.003 – start-page: 75 volume-title: Renew. Energy Syst. Choice Model 100% Renew. Solut. year: 2010 ident: e_1_2_6_52_1 doi: 10.1016/B978-0-12-375028-0.00005-4 – ident: e_1_2_6_60_1 – ident: e_1_2_6_34_1 doi: 10.1016/j.apenergy.2016.01.014 – ident: e_1_2_6_26_1 doi: 10.1016/j.renene.2012.04.016 – ident: e_1_2_6_3_1 doi: 10.1016/j.apenergy.2018.05.076 – ident: e_1_2_6_24_1 doi: 10.1016/j.ijhydene.2008.08.026 – volume: 6 start-page: 413 year: 2016 ident: e_1_2_6_14_1 publication-title: Int. J. Renew. Energy Res. – ident: e_1_2_6_16_1 doi: 10.1109/CCEE.2018.8634512 – ident: e_1_2_6_33_1 doi: 10.1109/IECON.2012.6389059 – start-page: 276 volume-title: Electric Power Systems: A Conceptual Introduction year: 2006 ident: e_1_2_6_51_1 doi: 10.1002/0470036427 – ident: e_1_2_6_21_1 doi: 10.1016/j.ijhydene.2011.01.046 – ident: e_1_2_6_17_1 doi: 10.1016/0038-092X(82)90072-X – ident: e_1_2_6_13_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.heliyon.2019.e01396 – ident: e_1_2_6_19_1 doi: 10.1016/j.epsr.2014.06.006 – ident: e_1_2_6_41_1 doi: 10.1016/j.jpowsour.2008.01.092 – ident: e_1_2_6_35_1 – start-page: 1 volume-title: Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations year: 2012 ident: e_1_2_6_50_1 doi: 10.2172/1032531 – ident: e_1_2_6_57_1 |
SSID | ssj0017884 |
Score | 2.3918805 |
Snippet | Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 290 |
SubjectTerms | Algorithms Alternative energy sources battery as sensor Battery cycles Clean energy Compensators Control algorithms Control theory Energy resources Frequency response green hydrogen model predictive control model uncertainty compensator Power conditioning Prediction models Predictive control renewable energy fluctuation Renewable energy sources Renewable resources Steering water electrolyzer control |
Title | Novel control approach for integrating water electrolyzers to renewable energy sources |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202200066 https://www.proquest.com/docview/2758760110 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOi968Lc4nSMHwVNcmyb9cRz7wRA3RJ3sVtokvTg2cdPh_npf-mtTEEFvLSSlyUv6vmne-wTgUgp0BEoElAudUC4tTiM3YFRypvwoEJEtTHJyf-D2hvxmJEZrWfwZH6L84WZmRvq9NhM8imeNFTQ0wabj-o6luSaGuW07roHnt-9LfpSN67t0WxndNnXR0xbURos1vlb_6pVWUnNdsKYep7sHUfGuWaDJ8_XbPL6Wy28Yx_80Zh92czlKmtn4OYANPTmEnTVI4RE8DabvekzymHZSQMgJql1SwCawIFmgan0l-bE6448l6koynxKDzFyY_Cyi0zRDkm0XzI5h2O08tno0P42BSgcXJVQk3ObS0YEjlGCSe67yRKxdT1qRr4T2jXGlVELZViJFglLU8RIcCCwKfMl95wQqk-lEnwJRDnNQ6KADRQERpwAehUokCaTnxZ6UVaCFNUKZo8rNiRnjMIMss9D0V1j2VxWuyvIvGaTjx5K1wrhhPllnIcM1kwkNsq0qsNRKvzwl7A5bnfLu7C-VzmHbXGeBMTWozF_f9AXKm3lch03G7-qw1Wz3bx_q6YD-BBS-8-g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RSFAh6QmCxSx85jRFWrAm3F0CI2K7GdqWpRW6jg13N2Hm0HhMSY6Bwp5zjfd-e7zwC3SiAQaBFTLkxGufI4TYKYUcWZjpJYJE1hm5P7g6A74k9voqwmtL0wuT5ElXCzK8P9r-0Ctwnp-5VqaIbvjgEec80mwTbscCTntqqP8ZdqIwEjPLexjMBNA8TaUrfRY_eb4zdxaUU21ymrw5zOIRwUZJE85LN7BFtmcgz7axKCJ_A6mH6aMSkqzkkpEU6Qi5JSCgINyRI55YwUh96Mv76R9ZHFlFhBy6XtniLGNQGSPJk_P4VRpz1sdWlxVgJVPoYMVGS8yZVvYl9owRQPAx2K1ASh8pJICxNZ1yulhW56mRIZEkU_zHCaWBJHikf-GdQm04k5B6J95iMNQXhDeE-dPI5GnpDFKgzTUKk60NJTUhVC4vY8i7HMJZCZtJ6VlWfrcFfZv-cSGr9aNkrHy2IpzSXDiMYW7jS9OjA3GX88RXZGrXZ1dfGfQTew2x32e7L3OHi-hD17Py9haUBtMfswV0hEFum1-9R-AGRA074 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4SAgOvBGDATkgccrWpkkfRwSbxmtCiKHdqjZJL0zbtAcIfj1OX9uQEBIcWzlVE9v158b-AnAuBQYCJQLKhU4olxankRswKjlTfhSIyBamOfmh7bY6_LYrunNd_Bk_RPnDzXhG-r02Dj5USX1GGprg1DG_Y2mvibsMq9xFOGFg0VNJIGVjgpfuK2Pcpi6G2oK20WL1xfGLYWmGNecRaxpymlsQFS-bVZq81qaTuCY_v_E4_mc227CZ41FymRnQDizp_i5szLEU7sFLe_CmeyQvaicFCzlBuEsKtgkUJO8IW0ckP1en9_GJwJJMBsRwZr6bBi2i0z5Dku0XjPeh02w8X7VofhwDlQ5mJVQk3ObS0YEjlGCSe67yRKxdT1qRr4T2jXalVELZViJFgljU8RK0BBYFvuS-cwAr_UFfHwJRDnMQ6WAERQQRpww8CqFIEkjPiz0pK0ALbYQy5yo3R2b0woxlmYVmvcJyvSpwUcoPM5aOHyWrhXLD3FvHIcOkydQG2VYFWKqlX54SNjtXjfLq6C-DzmDt8boZ3t-0745h3dzOimSqsDIZTfUJQp1JfJpa8xcfPPRL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+control+approach+for+integrating+water+electrolyzers+to+renewable+energy+sources&rft.jtitle=Fuel+cells+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yousif+Al%E2%80%90Sagheer&rft.au=Robert+Steinberger%E2%80%90Wilckens&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-6846&rft.eissn=1615-6854&rft.volume=22&rft.issue=6&rft.spage=290&rft.epage=300&rft_id=info:doi/10.1002%2Ffuce.202200066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-6846&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-6846&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-6846&client=summon |