Novel control approach for integrating water electrolyzers to renewable energy sources

Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, mod...

Full description

Saved in:
Bibliographic Details
Published inFuel cells (Weinheim an der Bergstrasse, Germany) Vol. 22; no. 6; pp. 290 - 300
Main Authors Al‐Sagheer, Yousif, Steinberger‐Wilckens, Robert
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN1615-6846
1615-6854
DOI10.1002/fuce.202200066

Cover

Loading…
Abstract Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables.
AbstractList Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables.
Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power volatility that requires advanced control strategies. There are three main electrolyzer control approaches, which are: battery hysteresis cycle, model‐based scheduling, and frequency response. These approaches do not fully solve the problem of electrolyzer operation under power fluctuating conditions. This study introduces a novel integration and control approach for water electrolyzers based on model predictive control algorithm. The algorithm controls electrolyzer load so that steering the system into a breakeven energy balance across the main DC busbar that links generation and demand sides. However, the energy balance is subject to power conditioning losses and capacity constraints of electrolyzer. The novel approach uses simplified prediction models for the generation and demand and introduces a compensator for model uncertainty based on a novel role to the battery as a sensor of energy imbalance. The approach is tested on a 5 kW polymer electrolyte membrane electrolyzer and showed that fully automated energy balancing is achievable for grid connected and stand‐alone systems. Also, the electrolyzer can operate at partial capacity with improved efficiency and hydrogen yield, and it is applicable to any mix of renewables.
Author Steinberger‐Wilckens, Robert
Al‐Sagheer, Yousif
Author_xml – sequence: 1
  givenname: Yousif
  orcidid: 0000-0002-0429-2456
  surname: Al‐Sagheer
  fullname: Al‐Sagheer, Yousif
  email: Y.I.W.Al-Sagheer@bham.ac.uk
  organization: University of Birmingham
– sequence: 2
  givenname: Robert
  surname: Steinberger‐Wilckens
  fullname: Steinberger‐Wilckens, Robert
  organization: University of Birmingham
BookMark eNqFkM1LAzEQxYMo2FavngOetybZfPUopVWh6MV6DWl2Uresm5psLetf7y6VCoJ4mnd4v5l5b4hO61ADQleUjCkh7MbvHIwZYYwQIuUJGlBJRSa14KdHzeU5Gqa0IYQqrfkAvTyGD6iwC3UTQ4XtdhuDda_Yh4jLuoF1tE1Zr_HeNhAxVOB6X_sJMeEm4Ag17O2qAtyJuG5xCrvoIF2gM2-rBJffc4SW89nz9D5bPN09TG8XmcuFkpnwnHKXwyQXhWCOK1kosQKpHLG6EKBZoa1zhSgo8U54okmuPMsLZifacZ2P0PVhb_f2-w5SYzbdA3V30jAltJKEUtK5-MHlYkgpgjeubLpcfWhbVoYS0zdo-gbNscEOG__CtrF8s7H9G5gcgH1ZQfuP28yX09kP-wXcjIeE
CitedBy_id crossref_primary_10_3390_en17143370
crossref_primary_10_1016_j_electacta_2023_143474
crossref_primary_10_1016_j_est_2024_114432
crossref_primary_10_1109_TPEL_2025_3534877
crossref_primary_10_1016_j_ijhydene_2024_08_425
crossref_primary_10_1002_tee_70009
crossref_primary_10_32604_ee_2024_051524
crossref_primary_10_1016_j_aej_2023_12_032
crossref_primary_10_1016_j_heliyon_2024_e32312
crossref_primary_10_1063_5_0218151
Cites_doi 10.1016/j.ijhydene.2010.07.106
10.1016/j.ijhydene.2006.10.067
10.1049/iet-rpg.2020.0453
10.1109/UPEC.2006.367777
10.1016/j.ijhydene.2009.11.044
10.1016/j.ijhydene.2009.10.077
10.1016/S0360-3199(97)00055-4
10.1016/j.ijhydene.2009.01.053
10.1016/j.egypro.2011.10.133
10.1016/j.solener.2003.09.013
10.1007/978-1-84800-247-0_7
10.1109/IREC.2014.6826907
10.1109/TSG.2015.2445794
10.1109/TIE.2016.2547870
10.1016/j.ijhydene.2011.11.029
10.1016/j.rser.2014.01.012
10.1016/j.ijhydene.2012.07.083
10.1007/s40565-015-0163-6
10.1016/j.renene.2008.04.018
10.1016/j.ijhydene.2013.11.003
10.1109/TSTE.2021.3063245
10.1016/j.probengmech.2013.01.001
10.1016/j.ijhydene.2010.12.074
10.1016/j.renene.2014.12.007
10.1088/1742-6596/1726/1/012022
10.1016/j.egypro.2016.09.188
10.1016/j.rser.2017.09.003
10.1016/B978-0-12-375028-0.00005-4
10.1016/j.apenergy.2016.01.014
10.1016/j.renene.2012.04.016
10.1016/j.apenergy.2018.05.076
10.1016/j.ijhydene.2008.08.026
10.1109/CCEE.2018.8634512
10.1109/IECON.2012.6389059
10.1002/0470036427
10.1016/j.ijhydene.2011.01.046
10.1016/0038-092X(82)90072-X
10.1016/j.heliyon.2019.e01396
10.1016/j.epsr.2014.06.006
10.1016/j.jpowsour.2008.01.092
10.2172/1032531
ContentType Journal Article
Copyright 2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Fuel Cells published by Wiley‐VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1002/fuce.202200066
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-6854
EndPage 300
ExternalDocumentID 10_1002_fuce_202200066
FUCE202200066
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
L7M
ID FETCH-LOGICAL-c3576-5f414c3e935d52c476d75be67c0a8d5e82d8accd5d10fc5f08037f23d2a98c483
IEDL.DBID DR2
ISSN 1615-6846
IngestDate Fri Jul 25 12:07:02 EDT 2025
Tue Jul 01 00:36:39 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Wed Jan 22 16:19:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-5f414c3e935d52c476d75be67c0a8d5e82d8accd5d10fc5f08037f23d2a98c483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0429-2456
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202200066
PQID 2758760110
PQPubID 866399
PageCount 11
ParticipantIDs proquest_journals_2758760110
crossref_citationtrail_10_1002_fuce_202200066
crossref_primary_10_1002_fuce_202200066
wiley_primary_10_1002_fuce_202200066_FUCE202200066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Fuel cells (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014; 116
2013; 3
2010; 35
2019; 5
2012
2010
2018; 225
2015; 77
1998
2008
2016; 166
2006
2020; 14
2016; 94
2005
2016; 2016
2008; 33
2011; 12
2012; 37
2011; 36
2018; 82
2007; 32
1998; 23
2009; 34
2004; 76
2008; 180
2016; 6
2016; 7
1982; 29
2021; 12
2022
2000
2013; 32
2021
2020
2021; 1726
2018
2016; 63
2016
2015
2014
2014; 39
2012; 47
2014; 32
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Kempton W. (e_1_2_6_52_1) 2010
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Aggarwal S. K. (e_1_2_6_47_1) 2013; 3
Tsoutsos T. D. (e_1_2_6_53_1) 2008
Meier A. (e_1_2_6_51_1) 2006
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Saadsaoud M. (e_1_2_6_14_1) 2016; 6
e_1_2_6_42_1
e_1_2_6_21_1
Eichman J. (e_1_2_6_39_1) 2014
e_1_2_6_40_1
Jones L. E. (e_1_2_6_50_1) 2012
(e_1_2_6_44_1) 2016; 2016
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 225
  start-page: 965
  year: 2018
  publication-title: Appl. Energy
– start-page: 1
  year: 2014
– year: 2021
– volume: 94
  start-page: 306
  year: 2016
  publication-title: Energy Procedia
– volume: 63
  start-page: 4919
  year: 2016
  publication-title: IEEE Trans. Ind. Electron.
– volume: 82
  start-page: 2440
  year: 2018
  publication-title: Renew. Sustain. Energy Rev.
– volume: 3
  start-page: 1
  year: 2013
  publication-title: Int. J. Energy Sci.
– year: 2018
– volume: 34
  start-page: 2531
  year: 2009
  publication-title: Int. J. Hydrogen Energy
– year: 1998
– volume: 37
  start-page: 3098
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– start-page: 5669
  year: 2012
– start-page: 1
  year: 2000
– volume: 29
  start-page: 363
  year: 1982
  publication-title: Sol. Energy
– year: 2008
– year: 2022
– volume: 1726
  year: 2021
  publication-title: J. Phys. Conf. Ser.
– start-page: 75
  year: 2010
– volume: 47
  start-page: 103
  year: 2012
  publication-title: Renew. Energy
– volume: 36
  start-page: 8143
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 202
  year: 2017
  publication-title: J. Mod. Power Syst. Clean Energy
– start-page: 67
  year: 2005
– volume: 14
  start-page: 3070
  year: 2020
  publication-title: IET Renew. Power Gener.
– volume: 32
  start-page: 810
  year: 2014
  publication-title: Renew. Sustain. Energy. Rev.
– volume: 12
  start-page: 1707
  year: 2021
  publication-title: IEEE Trans. Sustain. Energy
– volume: 180
  start-page: 468
  year: 2008
  publication-title: J. Power Sources
– volume: 36
  start-page: 7985
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 2016
  start-page: 9
  year: 2016
  publication-title: Fuel Cells Bull.
– start-page: 1
  year: 2006
– volume: 35
  start-page: 872
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 295
  year: 1998
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 1243
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 77
  start-page: 115
  year: 2015
  publication-title: Renew. Energy
– volume: 37
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– start-page: 369
  year: 2006
– start-page: 276
  year: 2006
– volume: 116
  start-page: 208
  year: 2014
  publication-title: Electr. Power Syst. Res.
– start-page: 1
  year: 2012
– volume: 32
  start-page: 2247
  year: 2007
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 413
  year: 2016
  publication-title: Int. J. Renew. Energy Res.
– volume: 35
  start-page: 1841
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 2337
  year: 2016
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2018
– volume: 34
  start-page: 815
  year: 2009
  publication-title: Renew. Energy
– year: 2016
– volume: 76
  start-page: 323
  year: 2004
  publication-title: Sol. Energy
– start-page: 151
  year: 2008
– volume: 33
  start-page: 6401
  year: 2008
  publication-title: Int. J. Hydrogen Energy
– year: 2006
– year: 2020
– start-page: 194
  year: 2012
– volume: 12
  start-page: 1015
  year: 2011
  publication-title: Energy Procedia
– start-page: 1039
  year: 2015
– volume: 32
  start-page: 48
  year: 2013
  publication-title: Probabilistic Eng. Mech.
– volume: 35
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 166
  start-page: 96
  year: 2016
  publication-title: Appl. Energy
– volume: 5
  year: 2019
  publication-title: Heliyon
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ijhydene.2010.07.106
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ijhydene.2006.10.067
– ident: e_1_2_6_46_1
  doi: 10.1049/iet-rpg.2020.0453
– ident: e_1_2_6_11_1
  doi: 10.1109/UPEC.2006.367777
– ident: e_1_2_6_31_1
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ijhydene.2009.11.044
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ijhydene.2009.10.077
– ident: e_1_2_6_10_1
  doi: 10.1016/S0360-3199(97)00055-4
– ident: e_1_2_6_28_1
  doi: 10.1016/j.ijhydene.2009.01.053
– ident: e_1_2_6_59_1
– ident: e_1_2_6_22_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_38_1
  doi: 10.1016/j.egypro.2011.10.133
– ident: e_1_2_6_30_1
  doi: 10.1016/j.solener.2003.09.013
– start-page: 151
  volume-title: Hydrog. Auton. Power Syst
  year: 2008
  ident: e_1_2_6_53_1
  doi: 10.1007/978-1-84800-247-0_7
– ident: e_1_2_6_58_1
– ident: e_1_2_6_48_1
  doi: 10.1109/IREC.2014.6826907
– ident: e_1_2_6_55_1
– start-page: 1
  volume-title: Novel Electrolyzer Applications: Providing More Than Just Hydrogen
  year: 2014
  ident: e_1_2_6_39_1
– ident: e_1_2_6_56_1
  doi: 10.1109/TSG.2015.2445794
– ident: e_1_2_6_32_1
  doi: 10.1109/TIE.2016.2547870
– ident: e_1_2_6_9_1
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ijhydene.2011.11.029
– ident: e_1_2_6_2_1
  doi: 10.1016/j.rser.2014.01.012
– ident: e_1_2_6_6_1
  doi: 10.1016/j.ijhydene.2012.07.083
– ident: e_1_2_6_54_1
  doi: 10.1007/s40565-015-0163-6
– ident: e_1_2_6_36_1
  doi: 10.1016/j.renene.2008.04.018
– ident: e_1_2_6_12_1
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ijhydene.2013.11.003
– ident: e_1_2_6_43_1
  doi: 10.1109/TSTE.2021.3063245
– ident: e_1_2_6_18_1
  doi: 10.1016/j.probengmech.2013.01.001
– volume: 2016
  start-page: 9
  year: 2016
  ident: e_1_2_6_44_1
  publication-title: Fuel Cells Bull.
– ident: e_1_2_6_7_1
  doi: 10.1016/j.ijhydene.2010.12.074
– volume: 3
  start-page: 1
  year: 2013
  ident: e_1_2_6_47_1
  publication-title: Int. J. Energy Sci.
– ident: e_1_2_6_49_1
  doi: 10.1016/j.renene.2014.12.007
– ident: e_1_2_6_15_1
  doi: 10.1088/1742-6596/1726/1/012022
– ident: e_1_2_6_42_1
– ident: e_1_2_6_20_1
  doi: 10.1016/j.egypro.2016.09.188
– ident: e_1_2_6_40_1
  doi: 10.1016/j.rser.2017.09.003
– start-page: 75
  volume-title: Renew. Energy Syst. Choice Model 100% Renew. Solut.
  year: 2010
  ident: e_1_2_6_52_1
  doi: 10.1016/B978-0-12-375028-0.00005-4
– ident: e_1_2_6_60_1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.apenergy.2016.01.014
– ident: e_1_2_6_26_1
  doi: 10.1016/j.renene.2012.04.016
– ident: e_1_2_6_3_1
  doi: 10.1016/j.apenergy.2018.05.076
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ijhydene.2008.08.026
– volume: 6
  start-page: 413
  year: 2016
  ident: e_1_2_6_14_1
  publication-title: Int. J. Renew. Energy Res.
– ident: e_1_2_6_16_1
  doi: 10.1109/CCEE.2018.8634512
– ident: e_1_2_6_33_1
  doi: 10.1109/IECON.2012.6389059
– start-page: 276
  volume-title: Electric Power Systems: A Conceptual Introduction
  year: 2006
  ident: e_1_2_6_51_1
  doi: 10.1002/0470036427
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ijhydene.2011.01.046
– ident: e_1_2_6_17_1
  doi: 10.1016/0038-092X(82)90072-X
– ident: e_1_2_6_13_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.heliyon.2019.e01396
– ident: e_1_2_6_19_1
  doi: 10.1016/j.epsr.2014.06.006
– ident: e_1_2_6_41_1
  doi: 10.1016/j.jpowsour.2008.01.092
– ident: e_1_2_6_35_1
– start-page: 1
  volume-title: Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations
  year: 2012
  ident: e_1_2_6_50_1
  doi: 10.2172/1032531
– ident: e_1_2_6_57_1
SSID ssj0017884
Score 2.3918805
Snippet Green hydrogen can be produced by integrating water electrolyzers to renewable energy sources. The integration confronts the problem of renewable power...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 290
SubjectTerms Algorithms
Alternative energy sources
battery as sensor
Battery cycles
Clean energy
Compensators
Control algorithms
Control theory
Energy resources
Frequency response
green hydrogen
model predictive control
model uncertainty compensator
Power conditioning
Prediction models
Predictive control
renewable energy fluctuation
Renewable energy sources
Renewable resources
Steering
water electrolyzer control
Title Novel control approach for integrating water electrolyzers to renewable energy sources
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffuce.202200066
https://www.proquest.com/docview/2758760110
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOi968Lc4nSMHwVNcmyb9cRz7wRA3RJ3sVtokvTg2cdPh_npf-mtTEEFvLSSlyUv6vmne-wTgUgp0BEoElAudUC4tTiM3YFRypvwoEJEtTHJyf-D2hvxmJEZrWfwZH6L84WZmRvq9NhM8imeNFTQ0wabj-o6luSaGuW07roHnt-9LfpSN67t0WxndNnXR0xbURos1vlb_6pVWUnNdsKYep7sHUfGuWaDJ8_XbPL6Wy28Yx_80Zh92czlKmtn4OYANPTmEnTVI4RE8DabvekzymHZSQMgJql1SwCawIFmgan0l-bE6448l6koynxKDzFyY_Cyi0zRDkm0XzI5h2O08tno0P42BSgcXJVQk3ObS0YEjlGCSe67yRKxdT1qRr4T2jXGlVELZViJFglLU8RIcCCwKfMl95wQqk-lEnwJRDnNQ6KADRQERpwAehUokCaTnxZ6UVaCFNUKZo8rNiRnjMIMss9D0V1j2VxWuyvIvGaTjx5K1wrhhPllnIcM1kwkNsq0qsNRKvzwl7A5bnfLu7C-VzmHbXGeBMTWozF_f9AXKm3lch03G7-qw1Wz3bx_q6YD-BBS-8-g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RSFAh6QmCxSx85jRFWrAm3F0CI2K7GdqWpRW6jg13N2Hm0HhMSY6Bwp5zjfd-e7zwC3SiAQaBFTLkxGufI4TYKYUcWZjpJYJE1hm5P7g6A74k9voqwmtL0wuT5ElXCzK8P9r-0Ctwnp-5VqaIbvjgEec80mwTbscCTntqqP8ZdqIwEjPLexjMBNA8TaUrfRY_eb4zdxaUU21ymrw5zOIRwUZJE85LN7BFtmcgz7axKCJ_A6mH6aMSkqzkkpEU6Qi5JSCgINyRI55YwUh96Mv76R9ZHFlFhBy6XtniLGNQGSPJk_P4VRpz1sdWlxVgJVPoYMVGS8yZVvYl9owRQPAx2K1ASh8pJICxNZ1yulhW56mRIZEkU_zHCaWBJHikf-GdQm04k5B6J95iMNQXhDeE-dPI5GnpDFKgzTUKk60NJTUhVC4vY8i7HMJZCZtJ6VlWfrcFfZv-cSGr9aNkrHy2IpzSXDiMYW7jS9OjA3GX88RXZGrXZ1dfGfQTew2x32e7L3OHi-hD17Py9haUBtMfswV0hEFum1-9R-AGRA074
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4SAgOvBGDATkgccrWpkkfRwSbxmtCiKHdqjZJL0zbtAcIfj1OX9uQEBIcWzlVE9v158b-AnAuBQYCJQLKhU4olxankRswKjlTfhSIyBamOfmh7bY6_LYrunNd_Bk_RPnDzXhG-r02Dj5USX1GGprg1DG_Y2mvibsMq9xFOGFg0VNJIGVjgpfuK2Pcpi6G2oK20WL1xfGLYWmGNecRaxpymlsQFS-bVZq81qaTuCY_v_E4_mc227CZ41FymRnQDizp_i5szLEU7sFLe_CmeyQvaicFCzlBuEsKtgkUJO8IW0ckP1en9_GJwJJMBsRwZr6bBi2i0z5Dku0XjPeh02w8X7VofhwDlQ5mJVQk3ObS0YEjlGCSe67yRKxdT1qRr4T2jXalVELZViJFgljU8RK0BBYFvuS-cwAr_UFfHwJRDnMQ6WAERQQRpww8CqFIEkjPiz0pK0ALbYQy5yo3R2b0woxlmYVmvcJyvSpwUcoPM5aOHyWrhXLD3FvHIcOkydQG2VYFWKqlX54SNjtXjfLq6C-DzmDt8boZ3t-0745h3dzOimSqsDIZTfUJQp1JfJpa8xcfPPRL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+control+approach+for+integrating+water+electrolyzers+to+renewable+energy+sources&rft.jtitle=Fuel+cells+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yousif+Al%E2%80%90Sagheer&rft.au=Robert+Steinberger%E2%80%90Wilckens&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-6846&rft.eissn=1615-6854&rft.volume=22&rft.issue=6&rft.spage=290&rft.epage=300&rft_id=info:doi/10.1002%2Ffuce.202200066&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-6846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-6846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-6846&client=summon