Microwave‐Optics Entanglement Via Cavity Optomagnomechanics

Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 17; no. 12
Main Authors Fan, Zhi‐Yuan, Qiu, Liu, Gröblacher, Simon, Li, Jie
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. A new mechanism to generate microwave‐optics entanglement in a cavity optomagnomechanical system is proposed. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion and further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement finds particularly important applications in hybrid quantum networks and quantum information processing with hybrid systems.
AbstractList Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. A new mechanism to generate microwave‐optics entanglement in a cavity optomagnomechanical system is proposed. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion and further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement finds particularly important applications in hybrid quantum networks and quantum information processing with hybrid systems.
Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
Author Gröblacher, Simon
Fan, Zhi‐Yuan
Qiu, Liu
Li, Jie
Author_xml – sequence: 1
  givenname: Zhi‐Yuan
  surname: Fan
  fullname: Fan, Zhi‐Yuan
  organization: School of Physics, Zhejiang University
– sequence: 2
  givenname: Liu
  surname: Qiu
  fullname: Qiu, Liu
  organization: Institute of Science and Technology Austria
– sequence: 3
  givenname: Simon
  surname: Gröblacher
  fullname: Gröblacher, Simon
  organization: Delft University of Technology
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-0199-1606
  surname: Li
  fullname: Li, Jie
  email: jieli007@zju.edu.cn
  organization: School of Physics, Zhejiang University
BookMark eNqFkMFKw0AQhhepYFu9eg54Tp3dZJPNwYOUWoVKRdTrstls6pZkN262Lb35CD6jT2JKpYIgzmUG5v_mZ_4B6hlrFELnGEYYgFxWjXUjAoQAsCQ5Qn3MkihkLMt6h5nBCRq07RKAdpX00dW9ls5uxFp9vn_MG69lG0yMF2ZRqVoZH7xoEYzFWvtt0K1tLRbG1kq-CtNJT9FxKapWnX33IXq-mTyNb8PZfHo3vp6FMqJpElLJYgxFLkFBztKYlZEqaY4jIQngopRFpiiJCpzGOc1VUhQlU1AoiokUsoyiIbrY322cfVup1vOlXTnTWXKSAcQpThntVKO9qvuobZ0qeeN0LdyWY-C7iPguIn6IqAPiX4DUXnhtjXdCV39j2R7b6Ept_zHhs4f54w_7BUA5gDk
CitedBy_id crossref_primary_10_1002_lpor_202401348
crossref_primary_10_1364_JOSAB_525408
crossref_primary_10_1088_1361_6455_ad8a0c
crossref_primary_10_1103_PhysRevA_110_053502
crossref_primary_10_1103_PhysRevA_111_013713
crossref_primary_10_1007_s11433_024_2432_9
crossref_primary_10_1364_OME_534817
crossref_primary_10_1103_PhysRevA_111_013708
crossref_primary_10_1364_OL_520039
crossref_primary_10_1103_PhysRevApplied_23_024061
crossref_primary_10_1063_5_0190162
crossref_primary_10_1088_1367_2630_ad327c
crossref_primary_10_1016_j_physleta_2023_129263
crossref_primary_10_1103_PhysRevA_111_023522
crossref_primary_10_7498_aps_74_20241801
crossref_primary_10_1364_OE_546225
crossref_primary_10_1103_PhysRevA_109_013704
crossref_primary_10_7498_aps_74_20241664
crossref_primary_10_1088_1674_1056_ad8cbb
crossref_primary_10_1364_OE_537098
crossref_primary_10_1103_PhysRevResearch_6_023089
crossref_primary_10_1103_PhysRevA_111_013524
crossref_primary_10_1063_5_0228364
crossref_primary_10_1140_epjqt_s40507_024_00218_0
crossref_primary_10_1364_OE_558988
crossref_primary_10_1002_qute_202400350
crossref_primary_10_1364_OL_545127
crossref_primary_10_1049_nde2_12094
crossref_primary_10_1002_qute_202400654
crossref_primary_10_1103_PhysRevA_110_043706
crossref_primary_10_1016_j_chaos_2024_115629
Cites_doi 10.1103/PhysRevLett.111.127003
10.1103/PhysRevLett.113.083603
10.1038/nature08171
10.1103/PhysRevLett.107.113601
10.1103/PhysRevLett.70.1895
10.1103/PhysRevA.101.042331
10.1103/PhysRevLett.84.2513
10.1103/PhysRevLett.124.010511
10.1103/PhysRevLett.98.240401
10.1088/2058-9565/abd982
10.1038/s41534-019-0220-5
10.1103/PhysRevA.105.062454
10.1038/35051009
10.1038/nature04446
10.1088/2058-9565/aca3cf
10.1103/PhysRevApplied.12.054031
10.1103/PhysRevA.105.033507
10.1049/el:20010009
10.1103/RevModPhys.86.1391
10.1103/PhysRevLett.113.023602
10.1103/PhysRevLett.129.123601
10.1103/PhysRevA.84.042342
10.1103/PhysRevLett.98.030405
10.1038/nature13029
10.1073/pnas.1419326112
10.1103/PRXQuantum.2.040344
10.1103/PhysRevA.70.022318
10.1126/science.aam9288
10.1038/s41567-020-0797-9
10.1038/451664a
10.1103/PhysRevApplied.11.024075
10.1103/PhysRevLett.108.123902
10.1103/PhysRevLett.109.250502
10.7567/1882-0786/ab248d
10.1103/PhysRevLett.129.243601
10.1364/OL.26.000367
10.1103/PhysRevLett.75.4337
10.1103/PhysRevLett.110.233602
10.1103/PhysRevLett.124.213604
10.1038/s41586-019-1320-2
10.1038/s41567-019-0673-7
10.1103/PhysRevLett.113.156401
10.1038/nature06715
10.1038/nature07127
10.1038/nphys2911
10.1103/PhysRevLett.127.040503
10.1103/PhysRevA.63.023812
10.1088/1361-6455/ab68b5
10.1103/PhysRevLett.121.203601
10.1103/PhysRevLett.94.053601
10.1038/nature15759
10.1038/37539
10.1103/PhysRev.73.155
10.1103/PhysRevLett.110.253601
10.1103/PhysRevLett.68.3663
10.1103/PhysRevB.100.134421
10.1103/PhysRevB.101.060407
10.1126/science.282.5389.706
10.1038/nature07751
10.1103/PhysRevLett.109.183901
10.1103/PhysRevA.81.063837
10.1103/PhysRevLett.95.090503
10.1103/PhysRevLett.115.250401
10.1103/RevModPhys.85.623
10.1364/OL.401689
10.1038/s41467-020-14768-1
10.1126/sciadv.1501286
10.1038/nphoton.2011.35
10.1103/PhysRevLett.115.250402
10.1103/PhysRevA.65.032314
10.1038/532169a
10.1103/PhysRevLett.46.1
10.1364/PRJ.467595
10.1103/PhysRevB.102.144438
10.1103/PhysRevA.78.032316
10.1103/PhysRevResearch.2.033244
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202200866
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202200866
LPOR202200866
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92265202
– fundername: European Research Council
  funderid: ERCCoGQ‐ECHOS,101001005
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1405200
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-c3576-5c8410dbc0e0b8748f3ef5b13ac201dfcd9e523d174b5be6ddf8e0de512cacf33
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Fri Jul 25 10:37:39 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Tue Jul 01 04:32:43 EDT 2025
Wed Jan 22 16:17:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-5c8410dbc0e0b8748f3ef5b13ac201dfcd9e523d174b5be6ddf8e0de512cacf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0199-1606
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202200866
PQID 2900471785
PQPubID 1016358
PageCount 7
ParticipantIDs proquest_journals_2900471785
crossref_primary_10_1002_lpor_202200866
crossref_citationtrail_10_1002_lpor_202200866
wiley_primary_10_1002_lpor_202200866_LPOR202200866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
1995; 75
2018; 121
2019; 11
2023; 8
2021; 127
2019; 12
2020; 16
1981; 46
2008; 78
2020; 124
2020; 11
2004; 70
2020; 2
2020; 53
1993; 70
2013; 111
2020; 45
2013; 110
1997; 390
2022; 129
1998; 282
2014; 10
2021; 6
2006; 439
1948; 73
2021; 2
2019; 5
2011; 84
2013; 85
2001; 409
2001; 26
2015; 526
2020; 101
2020; 102
2010; 81
2007; 98
2011; 5
2019; 100
2012; 108
2001; 63
2009; 457
2012; 109
2014; 113
2014; 86
2014; 507
2011; 107
2016; 2
2021; 11
2015; 115
2015; 112
2002; 65
2005; 95
2000; 84
1992; 68
2001; 37
2022; 10
2009; 460
2005; 94
2016; 532
2008; 453
2019; 570
2008; 452
2008; 451
2022; 105
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Potts C. A. (e_1_2_8_48_1) 2021; 11
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 81
  year: 2010
  publication-title: Phys. Rev. A
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 457
  start-page: 859
  year: 2009
  publication-title: Nature
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. A
– volume: 70
  start-page: 1895
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 16
  start-page: 257
  year: 2020
  publication-title: Nat. Phys.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 570
  start-page: 480
  year: 2019
  publication-title: Nature
– volume: 75
  start-page: 4337
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 439
  start-page: 179
  year: 2006
  publication-title: Nature
– volume: 282
  start-page: 706
  year: 1998
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 45
  start-page: 5452
  year: 2020
  publication-title: Opt. Lett.
– volume: 526
  start-page: 682
  year: 2015
  publication-title: Nature
– volume: 112
  start-page: 3866
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 452
  start-page: 72
  year: 2008
  publication-title: Nature
– volume: 46
  start-page: 1
  year: 1981
  publication-title: Phys. Rev. Lett.
– volume: 453
  start-page: 1023
  year: 2008
  publication-title: Nature
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 321
  year: 2014
  publication-title: Nat. Phys.
– volume: 532
  start-page: 169
  year: 2016
  publication-title: Nature
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 409
  start-page: 46
  year: 2001
  publication-title: Nature
– volume: 94
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 1391
  year: 2014
  publication-title: Rev. Mod. Phys.
– volume: 16
  start-page: 69
  year: 2020
  publication-title: Nat. Phys.
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 460
  start-page: 724
  year: 2009
  publication-title: Nature
– volume: 10
  start-page: 2786
  year: 2022
  publication-title: Photonics Res.
– volume: 84
  start-page: 2513
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 362
  start-page: 303
  year: 2018
  publication-title: Science
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 26
  year: 2001
  publication-title: Electron. Lett.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. A
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 3663
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2022
  publication-title: Phys. Rev. A
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 451
  start-page: 664
  year: 2008
  publication-title: Nature
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 8
  year: 2023
  publication-title: Quantum Sci. Technol.
– volume: 26
  start-page: 367
  year: 2001
  publication-title: Opt. Lett.
– volume: 2
  year: 2021
  publication-title: PRX Quantum
– volume: 53
  year: 2020
  publication-title: J. Phys. B
– volume: 507
  start-page: 81
  year: 2014
  publication-title: Nature
– volume: 65
  year: 2002
  publication-title: Phys. Rev. A
– volume: 11
  year: 2021
  publication-title: Phys. Rev. X
– volume: 129
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 12
  year: 2019
  publication-title: Appl. Phys. Express
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. A
– volume: 390
  start-page: 575
  year: 1997
  publication-title: Nature
– volume: 5
  start-page: 108
  year: 2019
  publication-title: NPJ Quantum Inf.
– volume: 85
  start-page: 623
  year: 2013
  publication-title: Rev. Mod. Phys.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 943
  year: 2020
  publication-title: Nat. Commun.
– volume: 73
  start-page: 155
  year: 1948
  publication-title: Phys. Rev.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2021
  publication-title: Quantum Sci. Technol.
– volume: 63
  year: 2001
  publication-title: Phys. Rev. A
– volume: 5
  start-page: 222
  year: 2011
  publication-title: Nat. Photon.
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevLett.111.127003
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevLett.113.083603
– ident: e_1_2_8_63_1
  doi: 10.1038/nature08171
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.107.113601
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevLett.70.1895
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevA.101.042331
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.84.2513
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevLett.124.010511
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.98.240401
– ident: e_1_2_8_77_1
  doi: 10.1088/2058-9565/abd982
– ident: e_1_2_8_43_1
  doi: 10.1038/s41534-019-0220-5
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevA.105.062454
– ident: e_1_2_8_6_1
  doi: 10.1038/35051009
– ident: e_1_2_8_18_1
  doi: 10.1038/nature04446
– ident: e_1_2_8_61_1
  doi: 10.1088/2058-9565/aca3cf
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevApplied.12.054031
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevA.105.033507
– ident: e_1_2_8_19_1
  doi: 10.1049/el:20010009
– ident: e_1_2_8_60_1
  doi: 10.1103/RevModPhys.86.1391
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevLett.113.023602
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevLett.129.123601
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevA.84.042342
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevLett.98.030405
– ident: e_1_2_8_39_1
  doi: 10.1038/nature13029
– volume: 11
  year: 2021
  ident: e_1_2_8_48_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.1419326112
– ident: e_1_2_8_37_1
  doi: 10.1103/PRXQuantum.2.040344
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevA.70.022318
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aam9288
– ident: e_1_2_8_33_1
  doi: 10.1038/s41567-020-0797-9
– ident: e_1_2_8_34_1
  doi: 10.1038/451664a
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevApplied.11.024075
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevLett.108.123902
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.109.250502
– ident: e_1_2_8_54_1
  doi: 10.7567/1882-0786/ab248d
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevLett.129.243601
– ident: e_1_2_8_13_1
  doi: 10.1364/OL.26.000367
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevLett.75.4337
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.110.233602
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.124.213604
– ident: e_1_2_8_29_1
  doi: 10.1038/s41586-019-1320-2
– ident: e_1_2_8_41_1
  doi: 10.1038/s41567-019-0673-7
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevLett.113.156401
– ident: e_1_2_8_64_1
  doi: 10.1038/nature06715
– ident: e_1_2_8_4_1
  doi: 10.1038/nature07127
– ident: e_1_2_8_40_1
  doi: 10.1038/nphys2911
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.127.040503
– ident: e_1_2_8_69_1
  doi: 10.1103/PhysRevA.63.023812
– ident: e_1_2_8_76_1
  doi: 10.1088/1361-6455/ab68b5
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.121.203601
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevLett.94.053601
– ident: e_1_2_8_8_1
  doi: 10.1038/nature15759
– ident: e_1_2_8_2_1
  doi: 10.1038/37539
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRev.73.155
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevLett.110.253601
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevLett.68.3663
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevB.100.134421
– ident: e_1_2_8_66_1
  doi: 10.1103/PhysRevB.101.060407
– ident: e_1_2_8_3_1
  doi: 10.1126/science.282.5389.706
– ident: e_1_2_8_15_1
  doi: 10.1038/nature07751
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevLett.109.183901
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevA.81.063837
– ident: e_1_2_8_73_1
  doi: 10.1103/PhysRevLett.95.090503
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevLett.115.250401
– ident: e_1_2_8_31_1
  doi: 10.1103/RevModPhys.85.623
– ident: e_1_2_8_55_1
  doi: 10.1364/OL.401689
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-020-14768-1
– ident: e_1_2_8_45_1
  doi: 10.1126/sciadv.1501286
– ident: e_1_2_8_7_1
  doi: 10.1038/nphoton.2011.35
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevLett.115.250402
– ident: e_1_2_8_71_1
  doi: 10.1103/PhysRevA.65.032314
– ident: e_1_2_8_35_1
  doi: 10.1038/532169a
– ident: e_1_2_8_68_1
  doi: 10.1103/PhysRevLett.46.1
– ident: e_1_2_8_56_1
  doi: 10.1364/PRJ.467595
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevB.102.144438
– ident: e_1_2_8_74_1
  doi: 10.1103/PhysRevA.78.032316
– ident: e_1_2_8_75_1
  doi: 10.1103/PhysRevResearch.2.033244
SSID ssj0055556
Score 2.5815976
Snippet Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms cavity magnomechanics
cavity magnonics
Couplings
Data processing
Dipole interactions
Hybrid systems
Magnetic dipoles
Magnetostriction
Magnons
microwave‐optics entanglement
optomechanics
Quantum entanglement
quantum networks
Quantum phenomena
Radiation pressure
Thermal noise
Title Microwave‐Optics Entanglement Via Cavity Optomagnomechanics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200866
https://www.proquest.com/docview/2900471785
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kKzfWJ1arZCG4mjaTyWOycCGlpYi1Uqx0F-YVEdu02FbBlZ_gN_olzk3StBVE0OxC7oRkZm7m3Mm55yJ0FlDmEC45plIoDIAdM6odrLkOiMMDrQlkI3du_HbfvRp4g5Us_kwfothwA89Iv9fg4FxM60vR0KHBpya-c-AHvg-a20DYAlTUK_SjPHOk6UXMp9iEevZCtdF26uvN11elJdRcBazpitMqI7541oxo8lSbz0RNvn2TcfzPy2yjrRyOWpfZ_NlBGzrZReUcmlq540_30EUHiHuv_EV_vn90J6DtbDUTAywfMvq5df_IrQaHQhSWuTweAYFvpCGt2Jjuo36reddo47zyApbUBCDYk8wlthLS1rZggctiqmNPEAqCjkTFUoXaRLDKhDPCE9pXKmbaVtqgB8llTOkBKiXjRB8iSwQ2i4lyDVAMXC_0mHAhiAoDEoaxAW8VhBc9H8lclhyqYwyjTFDZiaBvoqJvKui8sJ9kghw_WlYXAxnljjmNnBD0MUnAvApy0hH55S7R9W23V5wd_aXRMdqEIvUZCaaKSrPnuT4xUGYmTtPp-gVY5exp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjihrDkic3MZxFufAAbGoQBdUtYhbFC9BiFIQFJA48Ql8I1-CJxsUCSFBblHGUWJ74vecmTcA2wHjDo1lTJgUiiBgJ5xph-hYB9SJA60pZiM3W369555ceEU0IebCZPoQ5YYbekb6vUYHxw3p2qdqaN8AVEPwHPyD7_vjMIllvVE-_6BTKkh55kgTjLjPiCF7dqHbaDu10faj69In2PwKWdM152gWRPG0WajJdfVxKKry5ZuQ479eZw5mckRq7WVTaB7G9GABZnN0auW-_7AIu02M3XuOn_T761v7DuWdrcOBwZaXWQS6dX4VW_sx1qKwzOXbG4zhu9GYWWxMl6B3dNjdr5O8-AKRzHAQ4knuUlsJaWtb8MDlCdOJJyhDTUeqEqlCbUisMoxGeEL7SiVc20obACFjmTC2DBOD24FeAUsENk-ocg1WDFwv9LhwkUeFAQ3DxOC3CpCi6yOZK5NjgYx-lGkqOxH2TVT2TQV2Svu7TJPjR8v1YiSj3DcfIidEiUwacK8CTjokv9wlapy1O-XZ6l8abcFUvdtsRI3j1ukaTGPN-iwmZh0mhvePesMgm6HYTOfuByqx8IU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLO6KsOSBxMo3jLM6BAwIq1raqAPUWeQtCtKWCAhInPoFv5EvwJGlYJIQEuUUZR4ntid9zZt4AbEaMe1QoQZiSmiBgJ5wZjxhhIuqJyBiK2chn9fDwwj9uB-1PWfy5PkS54YaekX2v0cH7Oq1-iIZ2LD61_M7DH_hhOArjfujGWLxhv1UKSAX2yPKLeMiI5XruULbR9apf239dlj6w5mfEmi05tWkQw4fNI01uth8Gcls9f9Nx_M_bzMBUgUed3XwCzcKI6c3BdIFNncLz7-dh5wwj957Eo3l7eW30UdzZOehZZHmVx587l9fC2RNYicKxl2-7GMHXNZhXbE0X4KJ2cL53SIrSC0Qxy0BIoLhPXS2Va1zJI5-nzKSBpAwVHalOlY6NpbDa8hkZSBNqnXLjamPhgxIqZWwRxnq3PbMEjoxcnlLtW6QY-UEccOkji4ojGsepRW8VIMOeT1ShS47lMTpJrqjsJdg3Sdk3Fdgq7fu5IsePlqvDgUwKz7xPvBgFMmnEgwp42Yj8cpfktNlolWfLf2m0ARPN_VpyelQ_WYFJLFifB8Sswtjg7sGsWVgzkOvZzH0HZDbvNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave%E2%80%90Optics+Entanglement+Via+Cavity+Optomagnomechanics&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Fan%2C+Zhi%E2%80%90Yuan&rft.au=Qiu%2C+Liu&rft.au=Gr%C3%B6blacher%2C+Simon&rft.au=Li%2C+Jie&rft.date=2023-12-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1002%2Flpor.202200866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202200866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon