Microwave‐Optics Entanglement Via Cavity Optomagnomechanics
Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal...
Saved in:
Published in | Laser & photonics reviews Vol. 17; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
A new mechanism to generate microwave‐optics entanglement in a cavity optomagnomechanical system is proposed. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion and further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement finds particularly important applications in hybrid quantum networks and quantum information processing with hybrid systems. |
---|---|
AbstractList | Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. A new mechanism to generate microwave‐optics entanglement in a cavity optomagnomechanical system is proposed. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion and further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement finds particularly important applications in hybrid quantum networks and quantum information processing with hybrid systems. Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto‐ and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down‐conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state‐swap interaction, yielding stationary microwave‐optics entanglement. The microwave‐optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. |
Author | Gröblacher, Simon Fan, Zhi‐Yuan Qiu, Liu Li, Jie |
Author_xml | – sequence: 1 givenname: Zhi‐Yuan surname: Fan fullname: Fan, Zhi‐Yuan organization: School of Physics, Zhejiang University – sequence: 2 givenname: Liu surname: Qiu fullname: Qiu, Liu organization: Institute of Science and Technology Austria – sequence: 3 givenname: Simon surname: Gröblacher fullname: Gröblacher, Simon organization: Delft University of Technology – sequence: 4 givenname: Jie orcidid: 0000-0002-0199-1606 surname: Li fullname: Li, Jie email: jieli007@zju.edu.cn organization: School of Physics, Zhejiang University |
BookMark | eNqFkMFKw0AQhhepYFu9eg54Tp3dZJPNwYOUWoVKRdTrstls6pZkN262Lb35CD6jT2JKpYIgzmUG5v_mZ_4B6hlrFELnGEYYgFxWjXUjAoQAsCQ5Qn3MkihkLMt6h5nBCRq07RKAdpX00dW9ls5uxFp9vn_MG69lG0yMF2ZRqVoZH7xoEYzFWvtt0K1tLRbG1kq-CtNJT9FxKapWnX33IXq-mTyNb8PZfHo3vp6FMqJpElLJYgxFLkFBztKYlZEqaY4jIQngopRFpiiJCpzGOc1VUhQlU1AoiokUsoyiIbrY322cfVup1vOlXTnTWXKSAcQpThntVKO9qvuobZ0qeeN0LdyWY-C7iPguIn6IqAPiX4DUXnhtjXdCV39j2R7b6Ept_zHhs4f54w_7BUA5gDk |
CitedBy_id | crossref_primary_10_1002_lpor_202401348 crossref_primary_10_1364_JOSAB_525408 crossref_primary_10_1088_1361_6455_ad8a0c crossref_primary_10_1103_PhysRevA_110_053502 crossref_primary_10_1103_PhysRevA_111_013713 crossref_primary_10_1007_s11433_024_2432_9 crossref_primary_10_1364_OME_534817 crossref_primary_10_1103_PhysRevA_111_013708 crossref_primary_10_1364_OL_520039 crossref_primary_10_1103_PhysRevApplied_23_024061 crossref_primary_10_1063_5_0190162 crossref_primary_10_1088_1367_2630_ad327c crossref_primary_10_1016_j_physleta_2023_129263 crossref_primary_10_1103_PhysRevA_111_023522 crossref_primary_10_7498_aps_74_20241801 crossref_primary_10_1364_OE_546225 crossref_primary_10_1103_PhysRevA_109_013704 crossref_primary_10_7498_aps_74_20241664 crossref_primary_10_1088_1674_1056_ad8cbb crossref_primary_10_1364_OE_537098 crossref_primary_10_1103_PhysRevResearch_6_023089 crossref_primary_10_1103_PhysRevA_111_013524 crossref_primary_10_1063_5_0228364 crossref_primary_10_1140_epjqt_s40507_024_00218_0 crossref_primary_10_1364_OE_558988 crossref_primary_10_1002_qute_202400350 crossref_primary_10_1364_OL_545127 crossref_primary_10_1049_nde2_12094 crossref_primary_10_1002_qute_202400654 crossref_primary_10_1103_PhysRevA_110_043706 crossref_primary_10_1016_j_chaos_2024_115629 |
Cites_doi | 10.1103/PhysRevLett.111.127003 10.1103/PhysRevLett.113.083603 10.1038/nature08171 10.1103/PhysRevLett.107.113601 10.1103/PhysRevLett.70.1895 10.1103/PhysRevA.101.042331 10.1103/PhysRevLett.84.2513 10.1103/PhysRevLett.124.010511 10.1103/PhysRevLett.98.240401 10.1088/2058-9565/abd982 10.1038/s41534-019-0220-5 10.1103/PhysRevA.105.062454 10.1038/35051009 10.1038/nature04446 10.1088/2058-9565/aca3cf 10.1103/PhysRevApplied.12.054031 10.1103/PhysRevA.105.033507 10.1049/el:20010009 10.1103/RevModPhys.86.1391 10.1103/PhysRevLett.113.023602 10.1103/PhysRevLett.129.123601 10.1103/PhysRevA.84.042342 10.1103/PhysRevLett.98.030405 10.1038/nature13029 10.1073/pnas.1419326112 10.1103/PRXQuantum.2.040344 10.1103/PhysRevA.70.022318 10.1126/science.aam9288 10.1038/s41567-020-0797-9 10.1038/451664a 10.1103/PhysRevApplied.11.024075 10.1103/PhysRevLett.108.123902 10.1103/PhysRevLett.109.250502 10.7567/1882-0786/ab248d 10.1103/PhysRevLett.129.243601 10.1364/OL.26.000367 10.1103/PhysRevLett.75.4337 10.1103/PhysRevLett.110.233602 10.1103/PhysRevLett.124.213604 10.1038/s41586-019-1320-2 10.1038/s41567-019-0673-7 10.1103/PhysRevLett.113.156401 10.1038/nature06715 10.1038/nature07127 10.1038/nphys2911 10.1103/PhysRevLett.127.040503 10.1103/PhysRevA.63.023812 10.1088/1361-6455/ab68b5 10.1103/PhysRevLett.121.203601 10.1103/PhysRevLett.94.053601 10.1038/nature15759 10.1038/37539 10.1103/PhysRev.73.155 10.1103/PhysRevLett.110.253601 10.1103/PhysRevLett.68.3663 10.1103/PhysRevB.100.134421 10.1103/PhysRevB.101.060407 10.1126/science.282.5389.706 10.1038/nature07751 10.1103/PhysRevLett.109.183901 10.1103/PhysRevA.81.063837 10.1103/PhysRevLett.95.090503 10.1103/PhysRevLett.115.250401 10.1103/RevModPhys.85.623 10.1364/OL.401689 10.1038/s41467-020-14768-1 10.1126/sciadv.1501286 10.1038/nphoton.2011.35 10.1103/PhysRevLett.115.250402 10.1103/PhysRevA.65.032314 10.1038/532169a 10.1103/PhysRevLett.46.1 10.1364/PRJ.467595 10.1103/PhysRevB.102.144438 10.1103/PhysRevA.78.032316 10.1103/PhysRevResearch.2.033244 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202200866 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202200866 LPOR202200866 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92265202 – fundername: European Research Council funderid: ERCCoGQ‐ECHOS,101001005 – fundername: National Key Research and Development Program of China funderid: 2022YFA1405200 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3576-5c8410dbc0e0b8748f3ef5b13ac201dfcd9e523d174b5be6ddf8e0de512cacf33 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Fri Jul 25 10:37:39 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Tue Jul 01 04:32:43 EDT 2025 Wed Jan 22 16:17:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3576-5c8410dbc0e0b8748f3ef5b13ac201dfcd9e523d174b5be6ddf8e0de512cacf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0199-1606 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lpor.202200866 |
PQID | 2900471785 |
PQPubID | 1016358 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2900471785 crossref_primary_10_1002_lpor_202200866 crossref_citationtrail_10_1002_lpor_202200866 wiley_primary_10_1002_lpor_202200866_LPOR202200866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 1995; 75 2018; 121 2019; 11 2023; 8 2021; 127 2019; 12 2020; 16 1981; 46 2008; 78 2020; 124 2020; 11 2004; 70 2020; 2 2020; 53 1993; 70 2013; 111 2020; 45 2013; 110 1997; 390 2022; 129 1998; 282 2014; 10 2021; 6 2006; 439 1948; 73 2021; 2 2019; 5 2011; 84 2013; 85 2001; 409 2001; 26 2015; 526 2020; 101 2020; 102 2010; 81 2007; 98 2011; 5 2019; 100 2012; 108 2001; 63 2009; 457 2012; 109 2014; 113 2014; 86 2014; 507 2011; 107 2016; 2 2021; 11 2015; 115 2015; 112 2002; 65 2005; 95 2000; 84 1992; 68 2001; 37 2022; 10 2009; 460 2005; 94 2016; 532 2008; 453 2019; 570 2008; 452 2008; 451 2022; 105 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Potts C. A. (e_1_2_8_48_1) 2021; 11 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 81 year: 2010 publication-title: Phys. Rev. A – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 457 start-page: 859 year: 2009 publication-title: Nature – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 101 year: 2020 publication-title: Phys. Rev. A – volume: 70 start-page: 1895 year: 1993 publication-title: Phys. Rev. Lett. – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 16 start-page: 257 year: 2020 publication-title: Nat. Phys. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 570 start-page: 480 year: 2019 publication-title: Nature – volume: 75 start-page: 4337 year: 1995 publication-title: Phys. Rev. Lett. – volume: 439 start-page: 179 year: 2006 publication-title: Nature – volume: 282 start-page: 706 year: 1998 publication-title: Science – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 45 start-page: 5452 year: 2020 publication-title: Opt. Lett. – volume: 526 start-page: 682 year: 2015 publication-title: Nature – volume: 112 start-page: 3866 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 452 start-page: 72 year: 2008 publication-title: Nature – volume: 46 start-page: 1 year: 1981 publication-title: Phys. Rev. Lett. – volume: 453 start-page: 1023 year: 2008 publication-title: Nature – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 321 year: 2014 publication-title: Nat. Phys. – volume: 532 start-page: 169 year: 2016 publication-title: Nature – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 409 start-page: 46 year: 2001 publication-title: Nature – volume: 94 year: 2005 publication-title: Phys. Rev. Lett. – volume: 86 start-page: 1391 year: 2014 publication-title: Rev. Mod. Phys. – volume: 16 start-page: 69 year: 2020 publication-title: Nat. Phys. – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 101 year: 2020 publication-title: Phys. Rev. B – volume: 460 start-page: 724 year: 2009 publication-title: Nature – volume: 10 start-page: 2786 year: 2022 publication-title: Photonics Res. – volume: 84 start-page: 2513 year: 2000 publication-title: Phys. Rev. Lett. – volume: 362 start-page: 303 year: 2018 publication-title: Science – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 37 start-page: 26 year: 2001 publication-title: Electron. Lett. – volume: 70 year: 2004 publication-title: Phys. Rev. A – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 68 start-page: 3663 year: 1992 publication-title: Phys. Rev. Lett. – volume: 105 year: 2022 publication-title: Phys. Rev. A – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 451 start-page: 664 year: 2008 publication-title: Nature – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 8 year: 2023 publication-title: Quantum Sci. Technol. – volume: 26 start-page: 367 year: 2001 publication-title: Opt. Lett. – volume: 2 year: 2021 publication-title: PRX Quantum – volume: 53 year: 2020 publication-title: J. Phys. B – volume: 507 start-page: 81 year: 2014 publication-title: Nature – volume: 65 year: 2002 publication-title: Phys. Rev. A – volume: 11 year: 2021 publication-title: Phys. Rev. X – volume: 129 year: 2022 publication-title: Phys. Rev. Lett. – volume: 12 year: 2019 publication-title: Appl. Phys. Express – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 78 year: 2008 publication-title: Phys. Rev. A – volume: 390 start-page: 575 year: 1997 publication-title: Nature – volume: 5 start-page: 108 year: 2019 publication-title: NPJ Quantum Inf. – volume: 85 start-page: 623 year: 2013 publication-title: Rev. Mod. Phys. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 943 year: 2020 publication-title: Nat. Commun. – volume: 73 start-page: 155 year: 1948 publication-title: Phys. Rev. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 6 year: 2021 publication-title: Quantum Sci. Technol. – volume: 63 year: 2001 publication-title: Phys. Rev. A – volume: 5 start-page: 222 year: 2011 publication-title: Nat. Photon. – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevLett.111.127003 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevLett.113.083603 – ident: e_1_2_8_63_1 doi: 10.1038/nature08171 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.107.113601 – ident: e_1_2_8_1_1 doi: 10.1103/PhysRevLett.70.1895 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevA.101.042331 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.84.2513 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevLett.124.010511 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.98.240401 – ident: e_1_2_8_77_1 doi: 10.1088/2058-9565/abd982 – ident: e_1_2_8_43_1 doi: 10.1038/s41534-019-0220-5 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevA.105.062454 – ident: e_1_2_8_6_1 doi: 10.1038/35051009 – ident: e_1_2_8_18_1 doi: 10.1038/nature04446 – ident: e_1_2_8_61_1 doi: 10.1088/2058-9565/aca3cf – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevApplied.12.054031 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevA.105.033507 – ident: e_1_2_8_19_1 doi: 10.1049/el:20010009 – ident: e_1_2_8_60_1 doi: 10.1103/RevModPhys.86.1391 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevLett.113.023602 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevLett.129.123601 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevA.84.042342 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevLett.98.030405 – ident: e_1_2_8_39_1 doi: 10.1038/nature13029 – volume: 11 year: 2021 ident: e_1_2_8_48_1 publication-title: Phys. Rev. X – ident: e_1_2_8_32_1 doi: 10.1073/pnas.1419326112 – ident: e_1_2_8_37_1 doi: 10.1103/PRXQuantum.2.040344 – ident: e_1_2_8_72_1 doi: 10.1103/PhysRevA.70.022318 – ident: e_1_2_8_5_1 doi: 10.1126/science.aam9288 – ident: e_1_2_8_33_1 doi: 10.1038/s41567-020-0797-9 – ident: e_1_2_8_34_1 doi: 10.1038/451664a – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevApplied.11.024075 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevLett.108.123902 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevLett.109.250502 – ident: e_1_2_8_54_1 doi: 10.7567/1882-0786/ab248d – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevLett.129.243601 – ident: e_1_2_8_13_1 doi: 10.1364/OL.26.000367 – ident: e_1_2_8_12_1 doi: 10.1103/PhysRevLett.75.4337 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.110.233602 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.124.213604 – ident: e_1_2_8_29_1 doi: 10.1038/s41586-019-1320-2 – ident: e_1_2_8_41_1 doi: 10.1038/s41567-019-0673-7 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevLett.113.156401 – ident: e_1_2_8_64_1 doi: 10.1038/nature06715 – ident: e_1_2_8_4_1 doi: 10.1038/nature07127 – ident: e_1_2_8_40_1 doi: 10.1038/nphys2911 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.127.040503 – ident: e_1_2_8_69_1 doi: 10.1103/PhysRevA.63.023812 – ident: e_1_2_8_76_1 doi: 10.1088/1361-6455/ab68b5 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.121.203601 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevLett.94.053601 – ident: e_1_2_8_8_1 doi: 10.1038/nature15759 – ident: e_1_2_8_2_1 doi: 10.1038/37539 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRev.73.155 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevLett.110.253601 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevLett.68.3663 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevB.100.134421 – ident: e_1_2_8_66_1 doi: 10.1103/PhysRevB.101.060407 – ident: e_1_2_8_3_1 doi: 10.1126/science.282.5389.706 – ident: e_1_2_8_15_1 doi: 10.1038/nature07751 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevLett.109.183901 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevA.81.063837 – ident: e_1_2_8_73_1 doi: 10.1103/PhysRevLett.95.090503 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevLett.115.250401 – ident: e_1_2_8_31_1 doi: 10.1103/RevModPhys.85.623 – ident: e_1_2_8_55_1 doi: 10.1364/OL.401689 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-020-14768-1 – ident: e_1_2_8_45_1 doi: 10.1126/sciadv.1501286 – ident: e_1_2_8_7_1 doi: 10.1038/nphoton.2011.35 – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevLett.115.250402 – ident: e_1_2_8_71_1 doi: 10.1103/PhysRevA.65.032314 – ident: e_1_2_8_35_1 doi: 10.1038/532169a – ident: e_1_2_8_68_1 doi: 10.1103/PhysRevLett.46.1 – ident: e_1_2_8_56_1 doi: 10.1364/PRJ.467595 – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevB.102.144438 – ident: e_1_2_8_74_1 doi: 10.1103/PhysRevA.78.032316 – ident: e_1_2_8_75_1 doi: 10.1103/PhysRevResearch.2.033244 |
SSID | ssj0055556 |
Score | 2.5815976 |
Snippet | Microwave‐optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | cavity magnomechanics cavity magnonics Couplings Data processing Dipole interactions Hybrid systems Magnetic dipoles Magnetostriction Magnons microwave‐optics entanglement optomechanics Quantum entanglement quantum networks Quantum phenomena Radiation pressure Thermal noise |
Title | Microwave‐Optics Entanglement Via Cavity Optomagnomechanics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200866 https://www.proquest.com/docview/2900471785 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kKzfWJ1arZCG4mjaTyWOycCGlpYi1Uqx0F-YVEdu02FbBlZ_gN_olzk3StBVE0OxC7oRkZm7m3Mm55yJ0FlDmEC45plIoDIAdM6odrLkOiMMDrQlkI3du_HbfvRp4g5Us_kwfothwA89Iv9fg4FxM60vR0KHBpya-c-AHvg-a20DYAlTUK_SjPHOk6UXMp9iEevZCtdF26uvN11elJdRcBazpitMqI7541oxo8lSbz0RNvn2TcfzPy2yjrRyOWpfZ_NlBGzrZReUcmlq540_30EUHiHuv_EV_vn90J6DtbDUTAywfMvq5df_IrQaHQhSWuTweAYFvpCGt2Jjuo36reddo47zyApbUBCDYk8wlthLS1rZggctiqmNPEAqCjkTFUoXaRLDKhDPCE9pXKmbaVtqgB8llTOkBKiXjRB8iSwQ2i4lyDVAMXC_0mHAhiAoDEoaxAW8VhBc9H8lclhyqYwyjTFDZiaBvoqJvKui8sJ9kghw_WlYXAxnljjmNnBD0MUnAvApy0hH55S7R9W23V5wd_aXRMdqEIvUZCaaKSrPnuT4xUGYmTtPp-gVY5exp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjihrDkic3MZxFufAAbGoQBdUtYhbFC9BiFIQFJA48Ql8I1-CJxsUCSFBblHGUWJ74vecmTcA2wHjDo1lTJgUiiBgJ5xph-hYB9SJA60pZiM3W369555ceEU0IebCZPoQ5YYbekb6vUYHxw3p2qdqaN8AVEPwHPyD7_vjMIllvVE-_6BTKkh55kgTjLjPiCF7dqHbaDu10faj69In2PwKWdM152gWRPG0WajJdfVxKKry5ZuQ479eZw5mckRq7WVTaB7G9GABZnN0auW-_7AIu02M3XuOn_T761v7DuWdrcOBwZaXWQS6dX4VW_sx1qKwzOXbG4zhu9GYWWxMl6B3dNjdr5O8-AKRzHAQ4knuUlsJaWtb8MDlCdOJJyhDTUeqEqlCbUisMoxGeEL7SiVc20obACFjmTC2DBOD24FeAUsENk-ocg1WDFwv9LhwkUeFAQ3DxOC3CpCi6yOZK5NjgYx-lGkqOxH2TVT2TQV2Svu7TJPjR8v1YiSj3DcfIidEiUwacK8CTjokv9wlapy1O-XZ6l8abcFUvdtsRI3j1ukaTGPN-iwmZh0mhvePesMgm6HYTOfuByqx8IU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSIgLO6KsOSBxMo3jLM6BAwIq1raqAPUWeQtCtKWCAhInPoFv5EvwJGlYJIQEuUUZR4ntid9zZt4AbEaMe1QoQZiSmiBgJ5wZjxhhIuqJyBiK2chn9fDwwj9uB-1PWfy5PkS54YaekX2v0cH7Oq1-iIZ2LD61_M7DH_hhOArjfujGWLxhv1UKSAX2yPKLeMiI5XruULbR9apf239dlj6w5mfEmi05tWkQw4fNI01uth8Gcls9f9Nx_M_bzMBUgUed3XwCzcKI6c3BdIFNncLz7-dh5wwj957Eo3l7eW30UdzZOehZZHmVx587l9fC2RNYicKxl2-7GMHXNZhXbE0X4KJ2cL53SIrSC0Qxy0BIoLhPXS2Va1zJI5-nzKSBpAwVHalOlY6NpbDa8hkZSBNqnXLjamPhgxIqZWwRxnq3PbMEjoxcnlLtW6QY-UEccOkji4ojGsepRW8VIMOeT1ShS47lMTpJrqjsJdg3Sdk3Fdgq7fu5IsePlqvDgUwKz7xPvBgFMmnEgwp42Yj8cpfktNlolWfLf2m0ARPN_VpyelQ_WYFJLFifB8Sswtjg7sGsWVgzkOvZzH0HZDbvNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave%E2%80%90Optics+Entanglement+Via+Cavity+Optomagnomechanics&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Fan%2C+Zhi%E2%80%90Yuan&rft.au=Qiu%2C+Liu&rft.au=Gr%C3%B6blacher%2C+Simon&rft.au=Li%2C+Jie&rft.date=2023-12-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1002%2Flpor.202200866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202200866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |