JAMSTEC Model Intercomparision Project (JMIP)

The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models...

Full description

Saved in:
Bibliographic Details
Published inJAMSTEC REPORT OF RESEARCH AND DEVELOPMENT Vol. 28; pp. 5 - 34
Main Authors Watanabe, Shingo, Kuwano-Yoshida, Akira, Kodama, Chihiro, Doi, Takeshi, Nasuno, Tomoe, Kashimura, Hiroki
Format Journal Article
LanguageEnglish
Published Yokohama Japan Agency for Marine-Earth Science and Technology 01.04.2019
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1880-1153
2186-358X
DOI10.5918/jamstecr.28.5

Cover

Abstract The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models (AFES and MIROC5), atmospheric model with slab ocean (NICAM.12), and fully coupled model (SINTEX-F1 and SINTEX-F2). In these simulations, the sea surface temperature is fixed (for AFES and MIROC5) or nudged (NICAM.12, SINTEX-F1, and SINTEX-F2) to the observed historical one. We focus on the climatology and variability of precipitation and its associated phenomena, including the basic state, the energy budget of the atmosphere, extratropical cyclones, teleconnection, and the Asian monsoon. We further discuss the possible causes of similarities and differences among the five JMIP models. Though some or most of the dynamical and physical packages in the JMIP models have been developed independently, common model biases are found among them. The AFES and MIROC5, and the SINTEX-F1 and SINTEX-F2, show strong similarities. In many respects, NICAM.12 shows unique characteristics, such as the distributions of precipitation, shortwave radiation, and explosive extratropical cyclones and the onset of the Asian summer monsoon. To some extent, the similarities and differences among the JMIP models overlap with those among the Coupled Model Intercomparison Project Phase-5 (CMIP5) models, suggesting that JMIP can be used as a simple and in-depth version of CMIP to investigate the mechanisms of model bias. We suggest that this JMIP framework could be expanded to an intercomparison of weekly-to-seasonal scale weather forecasting; here, more fruitful discussion is expected through intensive collaboration among modeling and observation groups.
AbstractList The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models (AFES and MIROC5), atmospheric model with slab ocean (NICAM.12), and fully coupled model (SINTEX-F1 and SINTEX-F2). In these simulations, the sea surface temperature is fixed (for AFES and MIROC5) or nudged (NICAM.12, SINTEX-F1, and SINTEX-F2) to the observed historical one. We focus on the climatology and variability of precipitation and its associated phenomena, including the basic state, the energy budget of the atmosphere, extratropical cyclones, teleconnection, and the Asian monsoon. We further discuss the possible causes of similarities and differences among the five JMIP models. Though some or most of the dynamical and physical packages in the JMIP models have been developed independently, common model biases are found among them. The AFES and MIROC5, and the SINTEX-F1 and SINTEX-F2, show strong similarities. In many respects, NICAM.12 shows unique characteristics, such as the distributions of precipitation, shortwave radiation, and explosive extratropical cyclones and the onset of the Asian summer monsoon. To some extent, the similarities and differences among the JMIP models overlap with those among the Coupled Model Intercomparison Project Phase-5 (CMIP5) models, suggesting that JMIP can be used as a simple and in-depth version of CMIP to investigate the mechanisms of model bias. We suggest that this JMIP framework could be expanded to an intercomparison of weekly-to-seasonal scale weather forecasting; here, more fruitful discussion is expected through intensive collaboration among modeling and observation groups.
Author Doi, Takeshi
Nasuno, Tomoe
Kodama, Chihiro
Kuwano-Yoshida, Akira
Kashimura, Hiroki
Watanabe, Shingo
Author_xml – sequence: 1
  fullname: Watanabe, Shingo
  organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Kuwano-Yoshida, Akira
  organization: Disaster Prevention Research Institute, Kyoto University, Japan
– sequence: 1
  fullname: Kodama, Chihiro
  organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Doi, Takeshi
  organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Nasuno, Tomoe
  organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Kashimura, Hiroki
  organization: Department of Planetology/Center for Planetary Science, Kobe University, Japan
BookMark eNp90E1PAjEQBuDGYCIiR--beNFDsZ-77U1CUCEQScTEW9PtzupuYIvtcvDfC6IkXjzNYZ6ZybznqNP4BhC6pGQgNVW3tV3HFlwYMDWQJ6jLqEoxl-q1g7pUKYIplfwM9WOsCSGcMSK07CI8Hc6fl-NRMvcFrJJJ00Jwfr2xoYqVb5JF8DW4NrmezieLmwt0WtpVhP5P7aGX-_Fy9IhnTw-T0XCGHZeZxDlhrMx4ap21GlwmRaFZoXNBcp1zIXLuClo6yC3NLCuVBClUXlitCZROAO-hq8PeTfAfW4itqf02NLuThrGUp1zxlP6vOJOU7z_tIXxQLvgYA5RmE6q1DZ-GErOPzvxGZ5gycufvDr6OrX2Do7ahrdwK_mjyPXJsuXcbDDT8C3nHepI
Cites_doi 10.1016/j.jcp.2007.02.006
10.1175/JCLI-D-16-0331.1
10.1002/qj.2907
10.1175/JCLI-D-15-0112.1
10.1029/89JD01597
10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
10.1175/JAS-D-12-0195.1
10.1016/j.jqsrt.2008.07.013
10.1175/2008JCLI2544.1
10.2151/jmsj.2015-024
10.1109/SC.2002.10053
10.1038/srep02892
10.2151/jmsj.2017-022
10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
10.1002/2014JC010562
10.2151/jmsj.2012-A12
10.1007/s10546-005-9030-8
10.1023/B:BOUN.0000020164.04146.98
10.1007/978-0-387-49791-4_15
10.1029/2005GL022734
10.1175/JAS-D-14-0265.1
10.2151/jmsj.86A.121
10.1175/JCLI-D-17-0068.1
10.1002/qj.660
10.1016/j.fluiddyn.2004.03.003
10.1175/2007JCLI1824.1
10.1175/JAS3740.1
10.1175/2007JCLI1412.1
10.1021/es3003684
10.1175/JCLI3404.1
10.1175/2007MWR1873.1
10.1109/MC.2015.332
10.1002/jgrd.50316
10.1002/grl.50541
10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2
10.1175/2010JCLI3679.1
10.1007/s00382-009-0694-5
10.1007/s00704-015-1456-4
10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
10.1029/97JC00480
10.1038/s41598-017-09461-1
10.1023/A:1018915827400
10.2151/jmsj.2015-025
10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
10.2467/mripapers.55.75
10.1007/s00382-008-0397-3
10.1007/s00382-012-1607-6
10.1007/s00382-016-3219-z
10.1029/2002GL016831
10.1175/JCLI-D-12-00542.1
10.1175/JCLI3526.1
10.1029/2004JD005029
10.2151/sola.2007-012
10.1142/9789814696623_0001
10.1002/grl.50944
10.1016/S0065-2687(08)60005-9
10.1038/nature06690
10.1175/JCLI4953.1
10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2
10.5194/gmd-9-2293-2016
10.1175/JAS-D-13-034.1
10.1007/s00382-012-1593-8
10.1007/s00382-012-1555-1
10.1175/JCLI-D-11-00295.1
10.1029/2002JD002670
10.1038/43854
10.1029/2011GL049922
10.1038/srep17252
10.1007/s00382-011-1247-2
10.1175/2008JCLI2637.1
10.1029/2007GL032793
10.1002/qj.49712555707
10.2151/sola.2016-053
10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
10.1175/BAMS-84-11-1547
10.1175/2011JCLI3946.1
10.1007/s00382-013-1839-0
10.1175/JAS3705.1
10.2151/sola.2014-016
10.1007/s00382-015-2919-0
10.1175/JCLI4132.1
10.1002/2016MS000744
10.1073/pnas.0406982101
10.1016/S0921-8181(03)00030-4
10.1126/science.1148443
10.1029/2007JD009620
10.2151/sola.2014-042
10.1029/1998JD200008
10.1175/JAS-D-12-0226.1
10.1175/JCLI-D-14-00241.1
10.1029/2012JD018619
10.1007/s00382-008-0489-0
10.1029/2012GL053305
10.1175/JCLI-D-15-0668.1
10.1175/JCLI-D-16-0915.1
10.1016/j.atmosres.2009.05.007
10.1002/2016JC012197
10.1186/s40645-014-0018-1
10.1038/ncomms4769
10.1007/s00382-012-1351-y
10.1007/978-0-387-49791-4_5
10.1175/2010JCLI3261.1
10.1088/1748-9326/8/1/014003
10.1175/2010JAS3316.1
10.2151/jmsj.2015-001
10.5194/acp-7-3425-2007
10.1034/j.1600-0870.1995.t01-1-00004.x
10.1029/97JD00237
10.1002/2017JE005449
10.1175/MWR-D-12-00161.1
10.1175/JCLI-D-17-0200.1
10.1007/BF01022521
10.5194/gmd-10-1363-2017
ContentType Journal Article
Copyright Japan Agency for Marine-Earth Science and Technology
Copyright Japan Science and Technology Agency 2019
Copyright 2019
Copyright_xml – notice: Japan Agency for Marine-Earth Science and Technology
– notice: Copyright Japan Science and Technology Agency 2019
– notice: Copyright 2019
DBID AAYXX
CITATION
8FD
C1K
F1W
FR3
H95
H96
H97
H98
H99
L.F
L.G
P64
DOI 10.5918/jamstecr.28.5
DatabaseName CrossRef
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
EISSN 2186-358X
EndPage 34
ExternalDocumentID 10_5918_jamstecr_28_5
article_jamstecr_28_0_28_5_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
OK1
RJT
RZJ
AAYXX
CITATION
8FD
C1K
F1W
FR3
H95
H96
H97
H98
H99
L.F
L.G
P64
ID FETCH-LOGICAL-c3575-b022f736acaa9ec754d92d9b40b9b344b3cd1fceba17a2f85e548bda990efc4e3
ISSN 1880-1153
IngestDate Mon Jun 30 11:56:27 EDT 2025
Mon Jun 30 03:16:22 EDT 2025
Tue Jul 01 01:35:51 EDT 2025
Wed Sep 03 06:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3575-b022f736acaa9ec754d92d9b40b9b344b3cd1fceba17a2f85e548bda990efc4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jamstecr/28/0/28_5/_article/-char/en
PQID 2232513000
PQPubID 2029001
PageCount 30
ParticipantIDs proquest_journals_2263638361
proquest_journals_2232513000
crossref_primary_10_5918_jamstecr_28_5
jstage_primary_article_jamstecr_28_0_28_5_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019/04/01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019/04/01
  day: 01
PublicationDecade 2010
PublicationPlace Yokohama
PublicationPlace_xml – name: Yokohama
PublicationTitle JAMSTEC REPORT OF RESEARCH AND DEVELOPMENT
PublicationTitleAlternate JAMSTEC Rep. Res. Dev.
PublicationYear 2019
Publisher Japan Agency for Marine-Earth Science and Technology
Japan Science and Technology Agency
Publisher_xml – name: Japan Agency for Marine-Earth Science and Technology
– name: Japan Science and Technology Agency
References Guan, Z. and T. Yamagata (2003), The unusual summer of 1994 in East Asia: IOD teleconnections, Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.
Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori (2014), Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only, SOLA, 10, 78-82, doi:10.2151/sola.2014-016.
Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.
Emanuel, K.A. (1991), A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313-2335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.
Watanabe, M. and F.-F. Jin (2003), A moist linear baroclinic model: Coupled dynamical-convective response to El Niño, J. Clim., 16, 1121-1139, doi:10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.
Masson, S., P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi (2012), Impact of intra-daily SST variability on ENSO characteristics in a coupled model, Clim. Dyn., 39, 681-707, doi:10.1007/s00382-011-1247-2.
Watanabe, M., and Coauthors (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 6312-6335, doi:10.1175/2010JCLI3679.1.
Tomita, H. (2008), New microphysical schemes with five and six categories by diagnostic generation of cloud ice, J. Meteorol. Soc. Japan. Ser. II, 86A, 121-142, doi:10.2151/jmsj.86A.121.
Taylor, K.E., D. Williamson, and F. Zwiers (2000), The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations.
Wang, B., R. Wu, and K.-M. Lau (2001), Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons, J. Clim., 14, 4073-4090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.
Suzuki, K., G. Stephens, A. Bodas-Salcedo, M. Wang, J.-C. Golaz, T. Yokohata, and T. Koshiro (2015), Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations, J. Atmos. Sci., 72, 3996-4014, doi:10.1175/JAS-D-14-0265.1.
Chikira, M. and M. Sugiyama (2010), A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles, J. Atmos. Sci., 67, 2171-2193, doi:10.1175/2010JAS3316.1.
Nakano, M., and Coauthors (2017), Global 7km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, doi:10.5194/gmd-10-1363-2017.
Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida (2012), Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front, Geophys. Res. Lett., 39, doi:10.1029/2011GL049922.
Nakanishi, M. (2001), Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data, Boundary-Layer Meteorol., 99, 349-378, doi:10.1023/A:1018915827400.
Miyoshi, T., K. Kondo, and K. Terasaki (2015), Big ensemble data assimilation in numerical weather prediction, Computer (Long Beach, Calif.), 48, 15-21, doi:10.1109/MC.2015.332.
Reynolds, R.W., T.M. Smith, C. Liu, D.B. Chelton, K.S. Casey, and M.G. Schlax (2007), Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473-5496, doi:10.1175/2007JCLI1824.1.
Fouquart, Y. and B. Bonnell (1980), Computations of solar heating of the Earth's atmosphere: A new parameterization, Contrib. Atmos. Phys., 53, 35-62.
Fukutomi, Y., C. Kodama, Y. Yamada, A.T. Noda, and M. Satoh (2015), Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model, Theor. Appl. Climatol., 124, 737-755, doi:10.1007/s00704-015-1456-4.
Hirota, N. and Y.N. Takayabu (2013), Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3, Clim. Dyn., 41, 2909-2920, doi:10.1007/s00382-013-1839-0.
Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno (2017), Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model, J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1.
Adler, R.F., and Coauthors (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeorol., 4, 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Tomita, H. and M. Satoh (2004), A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dyn. Res., 34, 357-400, doi:10.1016/j.fluiddyn.2004.03.003.
Doi, T., S.K. Behera, and T. Yamagata (2013), Predictability of the Ningaloo Niño/Niña, Sci. Rep., 3, 2892, doi:10.1038/srep02892.
Peng, M.S., J.A. Ridout, and T.F. Hogan (2004), Recent modifications of the Emanuel convective scheme in the navy operational global atmospheric prediction system, Mon. Wea. Rev., 132, 1254-1268, doi:10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2.
Takata, K., S. Emori, and T. Watanabe (2003), Development of the minimal advanced treatments of surface interaction and runoff, Glob. Planet. Change, 38, 209-222, doi:10.1016/S0921-8181(03)00030-4.
Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003), Breaking the cloud parameterization deadlock, Bull. Amer. Meteor. Soc., 84, 1547-1564, doi:10.1175/BAMS-84-11-1547.
Doi, T., S.K. Behera, and T. Yamagata (2015a), An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s, J. Geophys. Res. Oceans, 120, 1388-1396, doi:10.1002/2014JC010562.
Langenbrunner, B. and J.D. Neelin (2013), Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation, J. Clim., 26, 4431-4446, doi:10.1175/JCLI-D-12-00542.1.
Roeckner, E., and Coauthors (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max-Planck-Institut fur Meteorol. Rep., 218, 90 pp.
Madec, G., P. Delecluse, M. Imbard, and C. Levy (1998), OPA 8.1 ocean general circulation model reference manual. LODYC/ IPSL Tech. Rep. Note 11, 91 pp.
O'Reilly, C.H., S. Minobe, and A. Kuwano-Yoshida (2016), The influence of the Gulf Stream on wintertime European blocking, Clim. Dyn., 47, 1545-1567, doi:10.1007/s00382-015-2919-0.
Fichefet, T. and M.A. Morales Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res. Oceans, 102, 12609-12646, doi:10.1029/97JC00480.
Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi (2010a), An improved PDF cloud scheme for climate simulations, Q. J. R. Meteorol. Soc., 136, 1583-1597, doi:10.1002/qj.660.
Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Wea. Rev., 117, 1779-1800.
Yuan, C. and T. Yamagata (2015), Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades, Sci. Rep., 5, 17252, doi:10.1038/srep17252.
Bodas-Salcedo, A., M.J. Webb, M.E. Brooks, M.A. Ringer, K.D. Williams, S.F. Milton, and D.R. Wilson (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.
Yashiro, H., K. Terasaki, T. Miyoshi, and H. Tomita (2016b), Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF, Geosci. Model Dev., 9, 2293-2300, doi:10.5194/gmd-9-2293-2016.
Seiki, T., C. Kodama, A.T. Noda, and M. Satoh (2015), Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme, J. Clim., 28, 2405-2419, doi:10.1175/JCLI-D-14-00241.1.
Wang, R., and Coauthors (2012), Black Carbon Emissions in China from 1949 to 2050, Environ. Sci. Technol., 46, 7595-7603, doi:10.1021/es3003684.
Satoh, M., Y. Yamada, M. Sugi, C. Kodama, and A.T. Noda (2015), Constraint on future change in global frequency of tropical cyclones due to global warming, J. Meteorol. Soc. Japan. Ser. II, 93, 489-500, doi:10.2151/jmsj.2015-025.
Yamagata, T., Y. Morioka, and S.K. Behera (2016), Old and new faces of climate variations, S.K. Behera and T. Yamagata (Eds.) World Scientific Series on Asia-Pacific Weather and Climate: Volume 7, Indo-Pacific Climate Variability and Predictability, 1-23 pp., doi:10.1142/9789814696623_0001.
Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A.T. Noda, and Y. Yamada (2017), Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Clim. Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z.
Koepke, P., M. Hess, I. Schult, and E.P. Shettle (1997), Global aerosol data set, Report No. 243, Hamburg, 1-44 pp.
Yashiro, H., Y. Kajikawa, Y. Miyamoto, T. Yamaura, R. Yoshida, and H. Tomita (2016a), Resolution dependence of the diurnal cycle of precipitation simulated by a global cloud-system resolving model, SOLA, 12, 272-276, doi:10.2151/sola.2016-053.
Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486-3514, doi:10.1016/j.jcp.2007.02.006.
Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita (2013), Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944.
Noda, A.T., K. Oouchi, M. Satoh, and H. Tomita (2012), Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization, J. Clim., 25, 5119-5134, doi:10.1175/JCLI-D-11-00295.1.
Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie (2010b), Precipitation response to the Gul
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: Miyakawa, T., and Coauthors (2014), Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer, Nat. Commun., 5, 3769, doi:10.1038/ncomms4769.
– reference: Doi, T., S.K. Behera, and T. Yamagata (2016), Improved seasonal prediction using the SINTEX-F2 coupled model, J. Adv. Model. Earth Syst., 8, 1847-1867, doi:10.1002/2016MS000744.
– reference: Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi (1997), Description of CCSR/NIES atmospheric general circulation model, Study on the climate system and mass transport by a climate model, CGER's Supercomputer Monograph Report No. 3, 1-48.
– reference: Shingu, S., and Coauthors (2002), A 26.58 Tflops global atmospheric simulation with the spectral transform method on the Earth Simulator, Proceedings of the ACM/IEEE SC 2002 Conference (SC'02), IEEE.
– reference: Suzuki, K., G. Stephens, A. Bodas-Salcedo, M. Wang, J.-C. Golaz, T. Yokohata, and T. Koshiro (2015), Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations, J. Atmos. Sci., 72, 3996-4014, doi:10.1175/JAS-D-14-0265.1.
– reference: Doi, T., C. Yuan, S.K. Behera, and T. Yamagata (2015b), Predictability of the California Niño/Niña, J. Clim., 28, 7237-7249, doi:10.1175/JCLI-D-15-0112.1.
– reference: Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata (2008a), Successful prediction of the consecutive IOD in 2006 and 2007, Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793.
– reference: Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori (2014), Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only, SOLA, 10, 78-82, doi:10.2151/sola.2014-016.
– reference: Seiki, T., C. Kodama, A.T. Noda, and M. Satoh (2015), Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme, J. Clim., 28, 2405-2419, doi:10.1175/JCLI-D-14-00241.1.
– reference: Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A.T. Noda, and Y. Yamada (2017), Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Clim. Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z.
– reference: O'Reilly, C.H., S. Minobe, and A. Kuwano-Yoshida (2016), The influence of the Gulf Stream on wintertime European blocking, Clim. Dyn., 47, 1545-1567, doi:10.1007/s00382-015-2919-0.
– reference: Wang, B., R. Wu, and X. Fu (2000), Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?, J. Clim., 13, 1517-1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
– reference: Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A.T. Wittenberg (2012), Uncertainty in the ENSO amplitude change from the past to the future, Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305.
– reference: O'Reilly, C.H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings (2017), The Gulf Stream influence on wintertime North Atlantic jet variability, Q. J. R. Meteorol. Soc., 143, 173-183, doi:10.1002/qj.2907.
– reference: Fortuin, J.P.F. and H. Kelder (1998), An ozone climatology based on ozonesonde and satellite measurements, J. Geophys. Res. Atmos., 103, 31709-31734, doi:10.1029/1998JD200008.
– reference: Wang, B., R. Wu, and K.-M. Lau (2001), Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons, J. Clim., 14, 4073-4090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.
– reference: Seiki, T. and T. Nakajima (2014), Aerosol effects of the condensation process on a convective cloud simulation, J. Atmos. Sci., 71, 833-853, doi:10.1175/JAS-D-12-0195.1.
– reference: Masson, S., P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi (2012), Impact of intra-daily SST variability on ENSO characteristics in a coupled model, Clim. Dyn., 39, 681-707, doi:10.1007/s00382-011-1247-2.
– reference: Wang, H. and W. Su (2013), Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations, J. Geophys. Res. Atmos., 118, 683-699, doi:10.1029/2012JD018619.
– reference: Wang, R., and Coauthors (2012), Black Carbon Emissions in China from 1949 to 2050, Environ. Sci. Technol., 46, 7595-7603, doi:10.1021/es3003684.
– reference: Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata (1999), A dipole mode in the tropical Indian Ocean, Nature, 401, 360-363, doi:10.1038/43854.
– reference: Sasaki, W., K.J. Richards, and J.-J. Luo (2013), Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM, Clim. Dyn., 41, 443-453, doi:10.1007/s00382-012-1593-8.
– reference: Satoh, M., Y. Yamada, M. Sugi, C. Kodama, and A.T. Noda (2015), Constraint on future change in global frequency of tropical cyclones due to global warming, J. Meteorol. Soc. Japan. Ser. II, 93, 489-500, doi:10.2151/jmsj.2015-025.
– reference: Kobayashi, S., and Coauthors (2015), The JRA-55 reanalysis: general specifications and basic characteristics, J. Meteorol. Soc. Japan. Ser. II, 93, 5-48, doi:10.2151/jmsj.2015-001.
– reference: Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata (2005b), Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics, J. Clim., 18, 2344-2360, doi:10.1175/JCLI3404.1.
– reference: Luo, J.-J., S. Masson, S. Behera, and T. Yamagata (2007), Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM, J. Clim., 20, 2178-2190, doi:10.1175/JCLI4132.1.
– reference: Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno (2017), Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model, J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1.
– reference: Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Wea. Rev., 117, 1779-1800.
– reference: Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe (2009), Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño, J. Clim., 22, 730-747, doi:10.1175/2008JCLI2544.1.
– reference: Kamae, Y. and M. Watanabe (2013), Tropospheric adjustment to increasing CO2: its timescale and the role of land-sea contrast, Clim. Dyn., 41, 3007-3024, doi:10.1007/s00382-012-1555-1.
– reference: Sato, K., J. Inoue, A. Yamazaki, J.-H. Kim, M. Maturilli, K. Dethloff, S.R. Hudson, and M.A. Granskog (2017), Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations, J. Geophys. Res. Oceans, 122, 775-787, doi:10.1002/2016JC012197.
– reference: Watanabe, M. and F.-F. Jin (2003), A moist linear baroclinic model: Coupled dynamical-convective response to El Niño, J. Clim., 16, 1121-1139, doi:10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.
– reference: Adler, R.F., and Coauthors (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeorol., 4, 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
– reference: Langenbrunner, B. and J.D. Neelin (2013), Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation, J. Clim., 26, 4431-4446, doi:10.1175/JCLI-D-12-00542.1.
– reference: Medeiros, B. and B. Stevens (2011), Revealing differences in GCM representations of low clouds, Clim. Dyn., 36, 385-399, doi:10.1007/s00382-009-0694-5.
– reference: Shibata, K., M. Deushi, T.T. Sekiyama, and H. Yoshimura (2005), Development of an MRI chemical transport model for the study of stratospheric chemistry, Pap. Meteor. Geophys., 55, 75-119, doi:10.2467/mripapers.55.75.
– reference: Yashiro, H., Y. Kajikawa, Y. Miyamoto, T. Yamaura, R. Yoshida, and H. Tomita (2016a), Resolution dependence of the diurnal cycle of precipitation simulated by a global cloud-system resolving model, SOLA, 12, 272-276, doi:10.2151/sola.2016-053.
– reference: Doi, T., S.K. Behera, and T. Yamagata (2015a), An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s, J. Geophys. Res. Oceans, 120, 1388-1396, doi:10.1002/2014JC010562.
– reference: Nordeng, T.E. (1994), Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Reading, United Kingdom, 41pp.
– reference: Mizuta, R., and Coauthors (2012), Climate simulations using MRI-AGCM3.2 with 20-km grid, J. Meteorol. Soc. Japan. Ser. II, 90A, 233-258, doi:10.2151/jmsj.2012-A12.
– reference: Noda, A.T., K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima (2010), Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations, Atmos. Res., 96, 208-217, doi:10.1016/j.atmosres.2009.05.007.
– reference: Sekiguchi, M. and T. Nakajima (2008), A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model, J. Quant. Spectrosc. Radiat. Transf., 109, 2779-2793, doi:10.1016/j.jqsrt.2008.07.013.
– reference: Liang, X.-Z., W.-C. Wang, and J.S. Boyle (1997), Atmospheric ozone climatology for use in general circulation models, <https://pcmdi.llnl.gov/report/ab43.html>, (accessed 2018-12-14).
– reference: Takata, K., S. Emori, and T. Watanabe (2003), Development of the minimal advanced treatments of surface interaction and runoff, Glob. Planet. Change, 38, 209-222, doi:10.1016/S0921-8181(03)00030-4.
– reference: Doi, T., S.K. Behera, and T. Yamagata (2013), Predictability of the Ningaloo Niño/Niña, Sci. Rep., 3, 2892, doi:10.1038/srep02892.
– reference: Fukutomi, Y., C. Kodama, Y. Yamada, A.T. Noda, and M. Satoh (2015), Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model, Theor. Appl. Climatol., 124, 737-755, doi:10.1007/s00704-015-1456-4.
– reference: Roeckner, E., and Coauthors (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max-Planck-Institut fur Meteorol. Rep., 218, 90 pp.
– reference: Chikira, M. and M. Sugiyama (2010), A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles, J. Atmos. Sci., 67, 2171-2193, doi:10.1175/2010JAS3316.1.
– reference: Reynolds, R.W., T.M. Smith, C. Liu, D.B. Chelton, K.S. Casey, and M.G. Schlax (2007), Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473-5496, doi:10.1175/2007JCLI1824.1.
– reference: Loeb, N.G., B.A. Wielicki, D.R. Doelling, G.L. Smith, D.F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong (2009), Toward optimal closure of the Earth's top-of-atmosphere radiation budget, J. Clim., 22, 748-766, doi:10.1175/2008JCLI2637.1.
– reference: Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev., 97, 163-172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
– reference: Takagi, M., N. Sugimoto, H. Ando, and Y. Matsuda (2018), Three-dimensional structures of thermal tides simulated by a Venus GCM, J. Geophys. Res. Planets, 123, 335-352, doi:10.1002/2017JE005449.
– reference: Wilson, D.R. and S.P. Ballard (1999), A microphysically based precipitation scheme for the UK meteorological office unified model, Q. J. R. Meteorol. Soc., 125, 1607-1636, doi:10.1002/qj.49712555707.
– reference: Holland, G.J. (1995), Scale interaction in the western Pacific monsoon, Meteorol. Atmos. Phys., 56, 57-79, doi:10.1007/BF01022521.
– reference: Jin, E.K., and Coauthors (2008), Current status of ENSO prediction skill in coupled ocean-atmosphere models, Clim. Dyn., 31, 647-664, doi:10.1007/s00382-008-0397-3.
– reference: Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003), Breaking the cloud parameterization deadlock, Bull. Amer. Meteor. Soc., 84, 1547-1564, doi:10.1175/BAMS-84-11-1547.
– reference: Nakanishi, M. and H. Niino (2006), An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog, Boundary-Layer Meteorol., 119, 397-407, doi:10.1007/s10546-005-9030-8.
– reference: Eyring, V., and Coauthors (2008), Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report, SPARC Newsl., 30, 20-26.
– reference: Miyoshi, T. and S. Yamane (2007), Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution, Mon. Wea. Rev., 135, 3841-3861, doi:10.1175/2007MWR1873.1.
– reference: Sugimoto, N., A. Yamazaki, T. Kouyama, H. Kashimura, T. Enomoto, and M. Takagi (2017), Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere, Sci. Rep., 7, 9321, doi:10.1038/s41598-017-09461-1.
– reference: Chikamoto, Y., and Coauthors (2013), An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC, Clim. Dyn., 40, 1201-1222, doi:10.1007/s00382-012-1351-y.
– reference: Eyring, V., and Coauthors (2013), Long-term ozone changes and associated climate impacts in CMIP5 simulations, J. Geophys. Res. Atmos., 118, 5029-5060, doi:10.1002/jgrd.50316.
– reference: Ohfuchi, W., and Coauthors (2004), 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: Preliminary outcomes of AFES (AGCM for the Earth Simulator), J. Earth Simulator, 1, 8-34.
– reference: Gates, W.L. (1992), AMIP: The atmospheric model intercomparison project, Bull. Amer. Meteor. Soc., 73, 1962-1970, doi:10.1175/1520-0477(1992)073<1962:atamip>2.0.CO;2.
– reference: Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida (2012), Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front, Geophys. Res. Lett., 39, doi:10.1029/2011GL049922.
– reference: Kodama, C., and Coauthors (2015), A 20-year climatology of a NICAM AMIP-type simulation, J. Meteorol. Soc. Japan. Ser. II, 93, 393-424, doi:10.2151/jmsj.2015-024.
– reference: Satoh, M., and Coauthors (2014), The non-hydrostatic icosahedral atmospheric model: Description and development, Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.
– reference: Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486-3514, doi:10.1016/j.jcp.2007.02.006.
– reference: Chikira, M. and M. Sugiyama (2013), Eastward-propagating intraseasonal oscillation represented by Chikira-Sugiyama cumulus parameterization. Part I: comparison with observation and reanalysis, J. Atmos. Sci., 70, 3920-3939, doi:10.1175/JAS-D-13-034.1.
– reference: Valcke, S., A. Caubel, R. Vogelsang, and D. Declat (2004), OASIS3 ocean atmosphere sea ice soil user's guide. Tech. Rep. TR/CMGC/04/68, CERFACS, Toulouse, Fr., 70 pp.
– reference: Fouquart, Y. and B. Bonnell (1980), Computations of solar heating of the Earth's atmosphere: A new parameterization, Contrib. Atmos. Phys., 53, 35-62.
– reference: Sperber, K.R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou (2013), The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dyn., 41, 2711-2744, doi:10.1007/s00382-012-1607-6.
– reference: Klimont, Z., S.J. Smith, and J. Cofala (2013), The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions, Environ. Res. Lett., 8, 014003, doi:10.1088/1748-9326/8/1/014003.
– reference: Watanabe, M., and Coauthors (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 6312-6335, doi:10.1175/2010JCLI3679.1.
– reference: Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie (2010b), Precipitation response to the Gulf stream in an atmospheric GCM, J. Clim., 23, 3676-3698, doi:10.1175/2010JCLI3261.1.
– reference: Pauluis, O. and S. Garner (2006), Sensitivity of radiative-convective equilibrium simulations to horizontal resolution, J. Atmos. Sci., 63, 1910-1923, doi:10.1175/JAS3705.1.
– reference: Bjerknes, J. (1964), Atlantic air-sea interaction, Adv. Geophys., 10, 1-82, doi:10.1016/S0065-2687(08)60005-9.
– reference: Tomita, H. (2008), New microphysical schemes with five and six categories by diagnostic generation of cloud ice, J. Meteorol. Soc. Japan. Ser. II, 86A, 121-142, doi:10.2151/jmsj.86A.121.
– reference: Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita (2013), Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944.
– reference: Emanuel, K.A. and M. Živković-Rothman (1999), Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56, 1766-1782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.
– reference: Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi (2008), Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi Eds., Springer, New York, 77-97.
– reference: Kuwano-Yoshida, A. and S. Minobe (2017), Storm-track response to SST fronts in the northwestern Pacific region in an AGCM, J. Clim., 30, 1081-1102, doi:10.1175/JCLI-D-16-0331.1.
– reference: Valcke, S., L. Terray, and A. Piacentini (2000), The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, Toulouse, Fr., 85 pp.
– reference: Nakanishi, M. (2001), Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data, Boundary-Layer Meteorol., 99, 349-378, doi:10.1023/A:1018915827400.
– reference: Roeckner, E., and Coauthors (2003), The atmospheric general circulation model ECHAM5. Part I: model description. MPI-Rep. 349, Max-Planck-Institut ur Meteorol. Hamburg, Ger., 349, 140 pp.
– reference: Wielicki, B.A., B.R. Barkstrom, E.F. Harrison, R.B. Lee, G. Louis Smith, and J.E. Cooper (1996), Clouds and the earth's radiant energy system (CERES): An earth observing system experiment, Bull. Amer. Meteor. Soc., 77, 853-868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
– reference: Takahashi, K., X. Peng, R. Onishi, M. Ohdaira, K. Goto, H. Fuchigami, and T. Sugimura (2008), Impact of coupled nonhydrostatic atmosphere-ocean-land model with high resolution, K. Hamilton and W. Ohfuch (Eds.) High Resolution Numerical Modelling of the Atmosphere and Ocean, Springer, NY, 261-273.
– reference: Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi (2010a), An improved PDF cloud scheme for climate simulations, Q. J. R. Meteorol. Soc., 136, 1583-1597, doi:10.1002/qj.660.
– reference: Chen, Y.-W., T. Seiki, C. Kodama, M. Satoh, A.T. Noda, and Y. Yamada (2016), High Cloud Responses to Global Warming Simulated by Two Different Cloud Microphysics Schemes Implemented in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), J. Clim., 29, 5949-5964, doi:10.1175/JCLI-D-15-0668.1.
– reference: Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse (2003), Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM, Ann. Geophys., 46, 1-26.
– reference: Kuwano-Yoshida, A. (2014), Using the local deepening rate to indicate extratropical cyclone activity, SOLA, 10, 199-203, doi:10.2151/sola.2014-042.
– reference: Rayner, N.A., D.E. Parker, E.B. Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.
– reference: Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka (2018), Mechanisms for the maintenance of the wintertime basin-scale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone, J. Clim., 31, 297-315, doi:10.1175/JCLI-D-17-0200.1.
– reference: Peng, M.S., J.A. Ridout, and T.F. Hogan (2004), Recent modifications of the Emanuel convective scheme in the navy operational global atmospheric prediction system, Mon. Wea. Rev., 132, 1254-1268, doi:10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2.
– reference: Guan, Z. and T. Yamagata (2003), The unusual summer of 1994 in East Asia: IOD teleconnections, Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.
– reference: Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S.A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
– reference: Takemura, T., T. Nozawa, S. Emori, T.Y. Nakajima, and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.
– reference: Nasuno, T., K. Kikuchi, M. Nakano, Y. Yamada, M. Ikeda, and H. Taniguchi (2017), Evaluation of the near real-time forecasts using a global nonhydrostatic model during the CINDY2011/DYNAMO, J. Meteorol. Soc. Japan. Ser. II, 95, 345-368, doi:10.2151/jmsj.2017-022.
– reference: Noda, A.T., K. Oouchi, M. Satoh, and H. Tomita (2012), Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization, J. Clim., 25, 5119-5134, doi:10.1175/JCLI-D-11-00295.1.
– reference: Emanuel, K.A. (1991), A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313-2335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.
– reference: Taylor, K.E., D. Williamson, and F. Zwiers (2000), The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations.
– reference: Tomita, H. and M. Satoh (2004), A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dyn. Res., 34, 357-400, doi:10.1016/j.fluiddyn.2004.03.003.
– reference: Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys., 7, 3425-3446, doi:10.5194/acp-7-3425-2007.
– reference: Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang (2002), An improved in situ and satellite SST analysis for climate, J. Clim., 15, 1609-1625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
– reference: Madec, G., P. Delecluse, M. Imbard, and C. Levy (1998), OPA 8.1 ocean general circulation model reference manual. LODYC/ IPSL Tech. Rep. Note 11, 91 pp.
– reference: Chiang, J.C.H. and D.J. Vimont (2004), Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability, J. Clim., 17, 4143-4158, doi:10.1175/JCLI4953.1.
– reference: Miura, H., M. Satoh, T. Nasuno, A.T. Noda, and K. Oouchi (2007), A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model, Science, 318, 1763-1765, doi:10.1126/science.1148443.
– reference: Nakano, M., and Coauthors (2017), Global 7km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, doi:10.5194/gmd-10-1363-2017.
– reference: Brinkop, S. and E. Roeckner (1995), Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer, Tellus A, 47, 197-220, doi:10.1034/j.1600-0870.1995.t01-1-00004.x.
– reference: Koepke, P., M. Hess, I. Schult, and E.P. Shettle (1997), Global aerosol data set, Report No. 243, Hamburg, 1-44 pp.
– reference: Yuan, C. and T. Yamagata (2015), Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades, Sci. Rep., 5, 17252, doi:10.1038/srep17252.
– reference: Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.
– reference: Nakanishi, M. and H. Niino (2004), An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification, Boundary-Layer Meteorol., 112, 1-31, doi:10.1023/B:BOUN.0000020164.04146.98.
– reference: Miyoshi, T., K. Kondo, and K. Terasaki (2015), Big ensemble data assimilation in numerical weather prediction, Computer (Long Beach, Calif.), 48, 15-21, doi:10.1109/MC.2015.332.
– reference: Watanabe, M., Y. Kamae, M. Yoshimori, A. Oka, M. Sato, M. Ishii, T. Mochizuki, and M. Kimoto (2013), Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus, Geophys. Res. Lett., 40, 3175-3179, doi:10.1002/grl.50541.
– reference: Donohoe, A. and D.S. Battisti (2011), Atmospheric and surface contributions to planetary albedo, J. Clim., 24, 4402-4418, doi:10.1175/2011JCLI3946.1.
– reference: Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata (2008b), Extended ENSO predictions using a fully coupled ocean-atmosphere model, J. Clim., 21, 84-93.
– reference: Fichefet, T. and M.A. Morales Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res. Oceans, 102, 12609-12646, doi:10.1029/97JC00480.
– reference: Hirota, N. and Y.N. Takayabu (2013), Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3, Clim. Dyn., 41, 2909-2920, doi:10.1007/s00382-013-1839-0.
– reference: Watanabe, M., S. Emori, M. Satoh, and H. Miura (2009), A PDF-based hybrid prognostic cloud scheme for general circulation models, Clim. Dyn., 33, 795-816, doi:10.1007/s00382-008-0489-0.
– reference: Yashiro, H., K. Terasaki, T. Miyoshi, and H. Tomita (2016b), Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF, Geosci. Model Dev., 9, 2293-2300, doi:10.5194/gmd-9-2293-2016.
– reference: Morcrette, J.-J. (1991), Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system, J. Geophys. Res., 96, 9121, doi:10.1029/89JD01597.
– reference: Willison, J., W.A. Robinson, and G.M. Lackmann (2013), The Importance of resolving mesoscale latent heating in the North Atlantic storm track, J. Atmos. Sci., 70, 2234-2250, doi:10.1175/JAS-D-12-0226.1.
– reference: Bodas-Salcedo, A., M.J. Webb, M.E. Brooks, M.A. Ringer, K.D. Williams, S.F. Milton, and D.R. Wilson (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.
– reference: Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata (2005a), Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts, J. Clim., 18, 4474-4497, doi:10.1175/JCLI3526.1.
– reference: Yamagata, T., Y. Morioka, and S.K. Behera (2016), Old and new faces of climate variations, S.K. Behera and T. Yamagata (Eds.) World Scientific Series on Asia-Pacific Weather and Climate: Volume 7, Indo-Pacific Climate Variability and Predictability, 1-23 pp., doi:10.1142/9789814696623_0001.
– reference: Kuwano-Yoshida, A. and T. Enomoto (2013), Predictability of explosive cyclogenesis over the Northwestern Pacific region using ensemble reanalysis, Mon. Wea. Rev., 141, 3769-3785, doi:10.1175/MWR-D-12-00161.1.
– reference: Miyoshi, T., S. Yamane, and T. Enomoto (2007), The AFES-LETKF Experimental Ensemble Reanalysis: ALERA, SOLA, 3, 45-48, doi:10.2151/sola.2007-012.
– reference: Grabowski, W.W. (2006), Impact of explicit atmosphere-ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations, J. Atmos. Sci., 63, 2289-2306, doi:10.1175/JAS3740.1.
– reference: Madec, G. (2008), NEMO ocean engine, version 3.0. Note du Pole modelisation l'Institut Pierre-Simon Laplace 27, ISSN 1288-1619, Inst. Pierre-Simon Laplace, Fr., 209 pp.
– reference: Hansen, J. and M. Sato (2004), Greenhouse gas growth rates, Proc. Natl. Acad. Sci., 101, 16109-16114, doi:10.1073/pnas.0406982101.
– reference: Doi, T., A. Storto, S.K. Behera, A. Navarra, and T. Yamagata (2017), Improved prediction of the Indian Ocean Dipole Mode by use of subsurface ocean observations, J. Clim., 30, 7953-7970, doi:10.1175/JCLI-D-16-0915.1.
– reference: Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R.J. Small (2008), Influence of the Gulf Stream on the troposphere, Nature, 452, 206-209, doi:10.1038/nature06690.
– ident: 94
  doi: 10.1016/j.jcp.2007.02.006
– ident: 43
  doi: 10.1175/JCLI-D-16-0331.1
– ident: 79
  doi: 10.1002/qj.2907
– ident: 13
  doi: 10.1175/JCLI-D-15-0112.1
– ident: 68
  doi: 10.1029/89JD01597
– ident: 87
  doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
– ident: 97
  doi: 10.1175/JAS-D-12-0195.1
– ident: 99
  doi: 10.1016/j.jqsrt.2008.07.013
– ident: 128
  doi: 10.1175/2008JCLI2544.1
– ident: 39
  doi: 10.2151/jmsj.2015-024
– ident: 101
  doi: 10.1109/SC.2002.10053
– ident: 11
  doi: 10.1038/srep02892
– ident: 73
  doi: 10.2151/jmsj.2017-022
– ident: 116
  doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
– ident: 1
– ident: 12
  doi: 10.1002/2014JC010562
– ident: 66
  doi: 10.2151/jmsj.2012-A12
– ident: 71
  doi: 10.1007/s10546-005-9030-8
– ident: 70
  doi: 10.1023/B:BOUN.0000020164.04146.98
– ident: 106
  doi: 10.1007/978-0-387-49791-4_15
– ident: 117
  doi: 10.1029/2005GL022734
– ident: 104
  doi: 10.1175/JAS-D-14-0265.1
– ident: 113
– ident: 111
  doi: 10.2151/jmsj.86A.121
– ident: 129
  doi: 10.1175/JCLI-D-17-0068.1
– ident: 44
  doi: 10.1002/qj.660
– ident: 112
  doi: 10.1016/j.fluiddyn.2004.03.003
– ident: 88
  doi: 10.1175/2007JCLI1824.1
– ident: 40
– ident: 27
  doi: 10.1175/JAS3740.1
– ident: 54
  doi: 10.1175/2007JCLI1412.1
– ident: 119
  doi: 10.1021/es3003684
– ident: 51
  doi: 10.1175/JCLI3404.1
– ident: 63
  doi: 10.1175/2007MWR1873.1
– ident: 65
  doi: 10.1109/MC.2015.332
– ident: 21
  doi: 10.1002/jgrd.50316
– ident: 124
  doi: 10.1002/grl.50541
– ident: 84
  doi: 10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2
– ident: 114
– ident: 122
  doi: 10.1175/2010JCLI3679.1
– ident: 58
  doi: 10.1007/s00382-009-0694-5
– ident: 25
  doi: 10.1007/s00704-015-1456-4
– ident: 18
  doi: 10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
– ident: 24
– ident: 22
  doi: 10.1029/97JC00480
– ident: 103
  doi: 10.1038/s41598-017-09461-1
– ident: 69
  doi: 10.1023/A:1018915827400
– ident: 96
  doi: 10.2151/jmsj.2015-025
– ident: 125
  doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
– ident: 100
  doi: 10.2467/mripapers.55.75
– ident: 33
  doi: 10.1007/s00382-008-0397-3
– ident: 102
  doi: 10.1007/s00382-012-1607-6
– ident: 35
  doi: 10.1007/s00382-016-3219-z
– ident: 29
  doi: 10.1029/2002GL016831
– ident: 77
– ident: 46
  doi: 10.1175/JCLI-D-12-00542.1
– ident: 50
  doi: 10.1175/JCLI3526.1
– ident: 108
  doi: 10.1029/2004JD005029
– ident: 64
  doi: 10.2151/sola.2007-012
– ident: 130
  doi: 10.1142/9789814696623_0001
– ident: 62
  doi: 10.1002/grl.50944
– ident: 2
  doi: 10.1016/S0065-2687(08)60005-9
– ident: 59
  doi: 10.1038/nature06690
– ident: 7
  doi: 10.1175/JCLI4953.1
– ident: 120
  doi: 10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2
– ident: 132
  doi: 10.5194/gmd-9-2293-2016
– ident: 10
  doi: 10.1175/JAS-D-13-034.1
– ident: 55
– ident: 92
  doi: 10.1007/s00382-012-1593-8
– ident: 26
– ident: 109
– ident: 34
  doi: 10.1007/s00382-012-1555-1
– ident: 75
  doi: 10.1175/JCLI-D-11-00295.1
– ident: 86
  doi: 10.1029/2002JD002670
– ident: 91
  doi: 10.1038/43854
– ident: 80
  doi: 10.1029/2011GL049922
– ident: 133
  doi: 10.1038/srep17252
– ident: 57
  doi: 10.1007/s00382-011-1247-2
– ident: 48
  doi: 10.1175/2008JCLI2637.1
– ident: 53
  doi: 10.1029/2007GL032793
– ident: 127
  doi: 10.1002/qj.49712555707
– ident: 131
  doi: 10.2151/sola.2016-053
– ident: 17
  doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
– ident: 85
  doi: 10.1175/BAMS-84-11-1547
– ident: 16
  doi: 10.1175/2011JCLI3946.1
– ident: 31
  doi: 10.1007/s00382-013-1839-0
– ident: 83
  doi: 10.1175/JAS3705.1
– ident: 37
  doi: 10.2151/sola.2014-016
– ident: 78
  doi: 10.1007/s00382-015-2919-0
– ident: 52
  doi: 10.1175/JCLI4132.1
– ident: 14
  doi: 10.1002/2016MS000744
– ident: 30
  doi: 10.1073/pnas.0406982101
– ident: 107
  doi: 10.1016/S0921-8181(03)00030-4
– ident: 60
  doi: 10.1126/science.1148443
– ident: 4
  doi: 10.1029/2007JD009620
– ident: 89
– ident: 41
  doi: 10.2151/sola.2014-042
– ident: 23
  doi: 10.1029/1998JD200008
– ident: 126
  doi: 10.1175/JAS-D-12-0226.1
– ident: 110
– ident: 98
  doi: 10.1175/JCLI-D-14-00241.1
– ident: 118
  doi: 10.1029/2012JD018619
– ident: 121
  doi: 10.1007/s00382-008-0489-0
– ident: 123
  doi: 10.1029/2012GL053305
– ident: 6
  doi: 10.1175/JCLI-D-15-0668.1
– ident: 15
  doi: 10.1175/JCLI-D-16-0915.1
– ident: 28
– ident: 81
– ident: 74
  doi: 10.1016/j.atmosres.2009.05.007
– ident: 93
  doi: 10.1002/2016JC012197
– ident: 76
– ident: 95
  doi: 10.1186/s40645-014-0018-1
– ident: 61
  doi: 10.1038/ncomms4769
– ident: 47
– ident: 8
  doi: 10.1007/s00382-012-1351-y
– ident: 19
  doi: 10.1007/978-0-387-49791-4_5
– ident: 20
– ident: 3
– ident: 45
  doi: 10.1175/2010JCLI3261.1
– ident: 90
– ident: 36
  doi: 10.1088/1748-9326/8/1/014003
– ident: 9
  doi: 10.1175/2010JAS3316.1
– ident: 38
  doi: 10.2151/jmsj.2015-001
– ident: 49
  doi: 10.5194/acp-7-3425-2007
– ident: 115
– ident: 56
– ident: 5
  doi: 10.1034/j.1600-0870.1995.t01-1-00004.x
– ident: 67
  doi: 10.1029/97JD00237
– ident: 105
  doi: 10.1002/2017JE005449
– ident: 42
  doi: 10.1175/MWR-D-12-00161.1
– ident: 82
  doi: 10.1175/JCLI-D-17-0200.1
– ident: 32
  doi: 10.1007/BF01022521
– ident: 72
  doi: 10.5194/gmd-10-1363-2017
SSID ssj0003220495
Score 1.6852926
Snippet The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 5
SubjectTerms Atmospheric model intercomparison
Atmospheric precipitations
Climate prediction
climate simulation
Climatology
Cyclones
Intercomparison
large-scale circulation
Monsoons
Precipitation
Radiation
teleconnection
Teleconnections
Weather forecasting
Title JAMSTEC Model Intercomparision Project (JMIP)
URI https://www.jstage.jst.go.jp/article/jamstecr/28/0/28_5/_article/-char/en
https://www.proquest.com/docview/2232513000
https://www.proquest.com/docview/2263638361
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JAMSTEC Report of Research and Development, 2019/04/01, Vol.28, pp.5-34
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfK4IGXCQSIsoHygBAIuTRxHNuP0ygam4qG6KTxFPkrrPtIUNcJaX_O_lLOuST9AKQBL1HlxI3jO9_97nznI-SlkxJguhdUebB0UuEl1VkiKUsKoaDP0BYhOXn8Kds7SveP-XGvd7MUtXQ1NwN7_du8kn-hKrQBXUOW7F9QtvtTaIDfQF-4AoXheisag8T8Mhnt1gXNztG5Z5u6goGqh-hlCSByf_zxsDX6T1c7IwTHQ0kaHwiGJ3fRRAunOyBJbdBpHTxX1WIj6IcuK_q1ujyZOvTUnk1nncQ_qJy-0Li7Pz2Zzrp-76s6mGCizzz0XPZAxGopcKXWDqDVy7c7mCoaYiPHOiQu0pEOG0-tiAojX9stQIkLAoQCLEUp5-u2UCeLMl7XHO7EdJNDjnKWLylsdIauqwKuYoklCGC12NkgkQO-0HldJGJDu7x9Lk9kPgwXnre3QvobcNsdcjcRog4FOPgsOz8eCEQwskKkbPcleJRrGMC7ldevQJ97p4D-v_0KAWpcM3lANhuDJNrBYTwkPV8-IrRhjqjmrGids6KGs6LXga_ePCZHH0aT3T3aFNaglgE8pwaAWyFYpq3WylvBU6cSp0w6NMqwNDXMuriw3uhY6KSQ3INda5wG5OILm3r2hGyUVemfkij13AebukDj2aoMDGhlnE2VE37o-uRV-835dzw_JQe7M0zOypzzPlE4I91jtydNn2y3k5g3y_MyB9wL2J3BuP5wO2Oge1gWP_uPN2-R-4sVsU025rMr_xxQ6ty8qNnkJ_bgmrw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JAMSTEC+Model+Intercomparision+Project+%28JMIP%29&rft.jtitle=JAMSTEC+Report+of+Research+and+Development&rft.au=Watanabe%2C+Shingo&rft.au=Kuwano-Yoshida%2C+Akira&rft.au=Kodama%2C+Chihiro&rft.au=Doi%2C+Takeshi&rft.date=2019-04-01&rft.pub=Japan+Agency+for+Marine-Earth+Science+and+Technology&rft.issn=1880-1153&rft.eissn=2186-358X&rft.volume=28&rft.spage=5&rft.epage=34&rft_id=info:doi/10.5918%2Fjamstecr.28.5&rft.externalDocID=article_jamstecr_28_0_28_5_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-1153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-1153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-1153&client=summon