JAMSTEC Model Intercomparision Project (JMIP)
The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models...
Saved in:
Published in | JAMSTEC REPORT OF RESEARCH AND DEVELOPMENT Vol. 28; pp. 5 - 34 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Yokohama
Japan Agency for Marine-Earth Science and Technology
01.04.2019
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1880-1153 2186-358X |
DOI | 10.5918/jamstecr.28.5 |
Cover
Abstract | The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models (AFES and MIROC5), atmospheric model with slab ocean (NICAM.12), and fully coupled model (SINTEX-F1 and SINTEX-F2). In these simulations, the sea surface temperature is fixed (for AFES and MIROC5) or nudged (NICAM.12, SINTEX-F1, and SINTEX-F2) to the observed historical one. We focus on the climatology and variability of precipitation and its associated phenomena, including the basic state, the energy budget of the atmosphere, extratropical cyclones, teleconnection, and the Asian monsoon. We further discuss the possible causes of similarities and differences among the five JMIP models. Though some or most of the dynamical and physical packages in the JMIP models have been developed independently, common model biases are found among them. The AFES and MIROC5, and the SINTEX-F1 and SINTEX-F2, show strong similarities. In many respects, NICAM.12 shows unique characteristics, such as the distributions of precipitation, shortwave radiation, and explosive extratropical cyclones and the onset of the Asian summer monsoon. To some extent, the similarities and differences among the JMIP models overlap with those among the Coupled Model Intercomparison Project Phase-5 (CMIP5) models, suggesting that JMIP can be used as a simple and in-depth version of CMIP to investigate the mechanisms of model bias. We suggest that this JMIP framework could be expanded to an intercomparison of weekly-to-seasonal scale weather forecasting; here, more fruitful discussion is expected through intensive collaboration among modeling and observation groups. |
---|---|
AbstractList | The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC with the aim of moving toward better weather and climate predictions. Here, we evaluate climate simulations obtained from atmospheric models (AFES and MIROC5), atmospheric model with slab ocean (NICAM.12), and fully coupled model (SINTEX-F1 and SINTEX-F2). In these simulations, the sea surface temperature is fixed (for AFES and MIROC5) or nudged (NICAM.12, SINTEX-F1, and SINTEX-F2) to the observed historical one. We focus on the climatology and variability of precipitation and its associated phenomena, including the basic state, the energy budget of the atmosphere, extratropical cyclones, teleconnection, and the Asian monsoon. We further discuss the possible causes of similarities and differences among the five JMIP models. Though some or most of the dynamical and physical packages in the JMIP models have been developed independently, common model biases are found among them. The AFES and MIROC5, and the SINTEX-F1 and SINTEX-F2, show strong similarities. In many respects, NICAM.12 shows unique characteristics, such as the distributions of precipitation, shortwave radiation, and explosive extratropical cyclones and the onset of the Asian summer monsoon. To some extent, the similarities and differences among the JMIP models overlap with those among the Coupled Model Intercomparison Project Phase-5 (CMIP5) models, suggesting that JMIP can be used as a simple and in-depth version of CMIP to investigate the mechanisms of model bias. We suggest that this JMIP framework could be expanded to an intercomparison of weekly-to-seasonal scale weather forecasting; here, more fruitful discussion is expected through intensive collaboration among modeling and observation groups. |
Author | Doi, Takeshi Nasuno, Tomoe Kodama, Chihiro Kuwano-Yoshida, Akira Kashimura, Hiroki Watanabe, Shingo |
Author_xml | – sequence: 1 fullname: Watanabe, Shingo organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Kuwano-Yoshida, Akira organization: Disaster Prevention Research Institute, Kyoto University, Japan – sequence: 1 fullname: Kodama, Chihiro organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Doi, Takeshi organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Nasuno, Tomoe organization: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Kashimura, Hiroki organization: Department of Planetology/Center for Planetary Science, Kobe University, Japan |
BookMark | eNp90E1PAjEQBuDGYCIiR--beNFDsZ-77U1CUCEQScTEW9PtzupuYIvtcvDfC6IkXjzNYZ6ZybznqNP4BhC6pGQgNVW3tV3HFlwYMDWQJ6jLqEoxl-q1g7pUKYIplfwM9WOsCSGcMSK07CI8Hc6fl-NRMvcFrJJJ00Jwfr2xoYqVb5JF8DW4NrmezieLmwt0WtpVhP5P7aGX-_Fy9IhnTw-T0XCGHZeZxDlhrMx4ap21GlwmRaFZoXNBcp1zIXLuClo6yC3NLCuVBClUXlitCZROAO-hq8PeTfAfW4itqf02NLuThrGUp1zxlP6vOJOU7z_tIXxQLvgYA5RmE6q1DZ-GErOPzvxGZ5gycufvDr6OrX2Do7ahrdwK_mjyPXJsuXcbDDT8C3nHepI |
Cites_doi | 10.1016/j.jcp.2007.02.006 10.1175/JCLI-D-16-0331.1 10.1002/qj.2907 10.1175/JCLI-D-15-0112.1 10.1029/89JD01597 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 10.1175/JAS-D-12-0195.1 10.1016/j.jqsrt.2008.07.013 10.1175/2008JCLI2544.1 10.2151/jmsj.2015-024 10.1109/SC.2002.10053 10.1038/srep02892 10.2151/jmsj.2017-022 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 10.1002/2014JC010562 10.2151/jmsj.2012-A12 10.1007/s10546-005-9030-8 10.1023/B:BOUN.0000020164.04146.98 10.1007/978-0-387-49791-4_15 10.1029/2005GL022734 10.1175/JAS-D-14-0265.1 10.2151/jmsj.86A.121 10.1175/JCLI-D-17-0068.1 10.1002/qj.660 10.1016/j.fluiddyn.2004.03.003 10.1175/2007JCLI1824.1 10.1175/JAS3740.1 10.1175/2007JCLI1412.1 10.1021/es3003684 10.1175/JCLI3404.1 10.1175/2007MWR1873.1 10.1109/MC.2015.332 10.1002/jgrd.50316 10.1002/grl.50541 10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2 10.1175/2010JCLI3679.1 10.1007/s00382-009-0694-5 10.1007/s00704-015-1456-4 10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2 10.1029/97JC00480 10.1038/s41598-017-09461-1 10.1023/A:1018915827400 10.2151/jmsj.2015-025 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 10.2467/mripapers.55.75 10.1007/s00382-008-0397-3 10.1007/s00382-012-1607-6 10.1007/s00382-016-3219-z 10.1029/2002GL016831 10.1175/JCLI-D-12-00542.1 10.1175/JCLI3526.1 10.1029/2004JD005029 10.2151/sola.2007-012 10.1142/9789814696623_0001 10.1002/grl.50944 10.1016/S0065-2687(08)60005-9 10.1038/nature06690 10.1175/JCLI4953.1 10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2 10.5194/gmd-9-2293-2016 10.1175/JAS-D-13-034.1 10.1007/s00382-012-1593-8 10.1007/s00382-012-1555-1 10.1175/JCLI-D-11-00295.1 10.1029/2002JD002670 10.1038/43854 10.1029/2011GL049922 10.1038/srep17252 10.1007/s00382-011-1247-2 10.1175/2008JCLI2637.1 10.1029/2007GL032793 10.1002/qj.49712555707 10.2151/sola.2016-053 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2 10.1175/BAMS-84-11-1547 10.1175/2011JCLI3946.1 10.1007/s00382-013-1839-0 10.1175/JAS3705.1 10.2151/sola.2014-016 10.1007/s00382-015-2919-0 10.1175/JCLI4132.1 10.1002/2016MS000744 10.1073/pnas.0406982101 10.1016/S0921-8181(03)00030-4 10.1126/science.1148443 10.1029/2007JD009620 10.2151/sola.2014-042 10.1029/1998JD200008 10.1175/JAS-D-12-0226.1 10.1175/JCLI-D-14-00241.1 10.1029/2012JD018619 10.1007/s00382-008-0489-0 10.1029/2012GL053305 10.1175/JCLI-D-15-0668.1 10.1175/JCLI-D-16-0915.1 10.1016/j.atmosres.2009.05.007 10.1002/2016JC012197 10.1186/s40645-014-0018-1 10.1038/ncomms4769 10.1007/s00382-012-1351-y 10.1007/978-0-387-49791-4_5 10.1175/2010JCLI3261.1 10.1088/1748-9326/8/1/014003 10.1175/2010JAS3316.1 10.2151/jmsj.2015-001 10.5194/acp-7-3425-2007 10.1034/j.1600-0870.1995.t01-1-00004.x 10.1029/97JD00237 10.1002/2017JE005449 10.1175/MWR-D-12-00161.1 10.1175/JCLI-D-17-0200.1 10.1007/BF01022521 10.5194/gmd-10-1363-2017 |
ContentType | Journal Article |
Copyright | Japan Agency for Marine-Earth Science and Technology Copyright Japan Science and Technology Agency 2019 Copyright 2019 |
Copyright_xml | – notice: Japan Agency for Marine-Earth Science and Technology – notice: Copyright Japan Science and Technology Agency 2019 – notice: Copyright 2019 |
DBID | AAYXX CITATION 8FD C1K F1W FR3 H95 H96 H97 H98 H99 L.F L.G P64 |
DOI | 10.5918/jamstecr.28.5 |
DatabaseName | CrossRef Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2186-358X |
EndPage | 34 |
ExternalDocumentID | 10_5918_jamstecr_28_5 article_jamstecr_28_0_28_5_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION 8FD C1K F1W FR3 H95 H96 H97 H98 H99 L.F L.G P64 |
ID | FETCH-LOGICAL-c3575-b022f736acaa9ec754d92d9b40b9b344b3cd1fceba17a2f85e548bda990efc4e3 |
ISSN | 1880-1153 |
IngestDate | Mon Jun 30 11:56:27 EDT 2025 Mon Jun 30 03:16:22 EDT 2025 Tue Jul 01 01:35:51 EDT 2025 Wed Sep 03 06:30:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3575-b022f736acaa9ec754d92d9b40b9b344b3cd1fceba17a2f85e548bda990efc4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jamstecr/28/0/28_5/_article/-char/en |
PQID | 2232513000 |
PQPubID | 2029001 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2263638361 proquest_journals_2232513000 crossref_primary_10_5918_jamstecr_28_5 jstage_primary_article_jamstecr_28_0_28_5_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019/04/01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019/04/01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Yokohama |
PublicationPlace_xml | – name: Yokohama |
PublicationTitle | JAMSTEC REPORT OF RESEARCH AND DEVELOPMENT |
PublicationTitleAlternate | JAMSTEC Rep. Res. Dev. |
PublicationYear | 2019 |
Publisher | Japan Agency for Marine-Earth Science and Technology Japan Science and Technology Agency |
Publisher_xml | – name: Japan Agency for Marine-Earth Science and Technology – name: Japan Science and Technology Agency |
References | Guan, Z. and T. Yamagata (2003), The unusual summer of 1994 in East Asia: IOD teleconnections, Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831. Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori (2014), Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only, SOLA, 10, 78-82, doi:10.2151/sola.2014-016. Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734. Emanuel, K.A. (1991), A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313-2335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2. Watanabe, M. and F.-F. Jin (2003), A moist linear baroclinic model: Coupled dynamical-convective response to El Niño, J. Clim., 16, 1121-1139, doi:10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2. Masson, S., P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi (2012), Impact of intra-daily SST variability on ENSO characteristics in a coupled model, Clim. Dyn., 39, 681-707, doi:10.1007/s00382-011-1247-2. Watanabe, M., and Coauthors (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 6312-6335, doi:10.1175/2010JCLI3679.1. Tomita, H. (2008), New microphysical schemes with five and six categories by diagnostic generation of cloud ice, J. Meteorol. Soc. Japan. Ser. II, 86A, 121-142, doi:10.2151/jmsj.86A.121. Taylor, K.E., D. Williamson, and F. Zwiers (2000), The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Wang, B., R. Wu, and K.-M. Lau (2001), Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons, J. Clim., 14, 4073-4090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2. Suzuki, K., G. Stephens, A. Bodas-Salcedo, M. Wang, J.-C. Golaz, T. Yokohata, and T. Koshiro (2015), Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations, J. Atmos. Sci., 72, 3996-4014, doi:10.1175/JAS-D-14-0265.1. Chikira, M. and M. Sugiyama (2010), A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles, J. Atmos. Sci., 67, 2171-2193, doi:10.1175/2010JAS3316.1. Nakano, M., and Coauthors (2017), Global 7km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, doi:10.5194/gmd-10-1363-2017. Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida (2012), Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front, Geophys. Res. Lett., 39, doi:10.1029/2011GL049922. Nakanishi, M. (2001), Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data, Boundary-Layer Meteorol., 99, 349-378, doi:10.1023/A:1018915827400. Miyoshi, T., K. Kondo, and K. Terasaki (2015), Big ensemble data assimilation in numerical weather prediction, Computer (Long Beach, Calif.), 48, 15-21, doi:10.1109/MC.2015.332. Reynolds, R.W., T.M. Smith, C. Liu, D.B. Chelton, K.S. Casey, and M.G. Schlax (2007), Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473-5496, doi:10.1175/2007JCLI1824.1. Fouquart, Y. and B. Bonnell (1980), Computations of solar heating of the Earth's atmosphere: A new parameterization, Contrib. Atmos. Phys., 53, 35-62. Fukutomi, Y., C. Kodama, Y. Yamada, A.T. Noda, and M. Satoh (2015), Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model, Theor. Appl. Climatol., 124, 737-755, doi:10.1007/s00704-015-1456-4. Hirota, N. and Y.N. Takayabu (2013), Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3, Clim. Dyn., 41, 2909-2920, doi:10.1007/s00382-013-1839-0. Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno (2017), Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model, J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1. Adler, R.F., and Coauthors (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeorol., 4, 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2. Tomita, H. and M. Satoh (2004), A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dyn. Res., 34, 357-400, doi:10.1016/j.fluiddyn.2004.03.003. Doi, T., S.K. Behera, and T. Yamagata (2013), Predictability of the Ningaloo Niño/Niña, Sci. Rep., 3, 2892, doi:10.1038/srep02892. Peng, M.S., J.A. Ridout, and T.F. Hogan (2004), Recent modifications of the Emanuel convective scheme in the navy operational global atmospheric prediction system, Mon. Wea. Rev., 132, 1254-1268, doi:10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2. Takata, K., S. Emori, and T. Watanabe (2003), Development of the minimal advanced treatments of surface interaction and runoff, Glob. Planet. Change, 38, 209-222, doi:10.1016/S0921-8181(03)00030-4. Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003), Breaking the cloud parameterization deadlock, Bull. Amer. Meteor. Soc., 84, 1547-1564, doi:10.1175/BAMS-84-11-1547. Doi, T., S.K. Behera, and T. Yamagata (2015a), An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s, J. Geophys. Res. Oceans, 120, 1388-1396, doi:10.1002/2014JC010562. Langenbrunner, B. and J.D. Neelin (2013), Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation, J. Clim., 26, 4431-4446, doi:10.1175/JCLI-D-12-00542.1. Roeckner, E., and Coauthors (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max-Planck-Institut fur Meteorol. Rep., 218, 90 pp. Madec, G., P. Delecluse, M. Imbard, and C. Levy (1998), OPA 8.1 ocean general circulation model reference manual. LODYC/ IPSL Tech. Rep. Note 11, 91 pp. O'Reilly, C.H., S. Minobe, and A. Kuwano-Yoshida (2016), The influence of the Gulf Stream on wintertime European blocking, Clim. Dyn., 47, 1545-1567, doi:10.1007/s00382-015-2919-0. Fichefet, T. and M.A. Morales Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res. Oceans, 102, 12609-12646, doi:10.1029/97JC00480. Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi (2010a), An improved PDF cloud scheme for climate simulations, Q. J. R. Meteorol. Soc., 136, 1583-1597, doi:10.1002/qj.660. Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Wea. Rev., 117, 1779-1800. Yuan, C. and T. Yamagata (2015), Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades, Sci. Rep., 5, 17252, doi:10.1038/srep17252. Bodas-Salcedo, A., M.J. Webb, M.E. Brooks, M.A. Ringer, K.D. Williams, S.F. Milton, and D.R. Wilson (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620. Yashiro, H., K. Terasaki, T. Miyoshi, and H. Tomita (2016b), Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF, Geosci. Model Dev., 9, 2293-2300, doi:10.5194/gmd-9-2293-2016. Seiki, T., C. Kodama, A.T. Noda, and M. Satoh (2015), Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme, J. Clim., 28, 2405-2419, doi:10.1175/JCLI-D-14-00241.1. Wang, R., and Coauthors (2012), Black Carbon Emissions in China from 1949 to 2050, Environ. Sci. Technol., 46, 7595-7603, doi:10.1021/es3003684. Satoh, M., Y. Yamada, M. Sugi, C. Kodama, and A.T. Noda (2015), Constraint on future change in global frequency of tropical cyclones due to global warming, J. Meteorol. Soc. Japan. Ser. II, 93, 489-500, doi:10.2151/jmsj.2015-025. Yamagata, T., Y. Morioka, and S.K. Behera (2016), Old and new faces of climate variations, S.K. Behera and T. Yamagata (Eds.) World Scientific Series on Asia-Pacific Weather and Climate: Volume 7, Indo-Pacific Climate Variability and Predictability, 1-23 pp., doi:10.1142/9789814696623_0001. Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A.T. Noda, and Y. Yamada (2017), Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Clim. Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z. Koepke, P., M. Hess, I. Schult, and E.P. Shettle (1997), Global aerosol data set, Report No. 243, Hamburg, 1-44 pp. Yashiro, H., Y. Kajikawa, Y. Miyamoto, T. Yamaura, R. Yoshida, and H. Tomita (2016a), Resolution dependence of the diurnal cycle of precipitation simulated by a global cloud-system resolving model, SOLA, 12, 272-276, doi:10.2151/sola.2016-053. Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486-3514, doi:10.1016/j.jcp.2007.02.006. Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita (2013), Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944. Noda, A.T., K. Oouchi, M. Satoh, and H. Tomita (2012), Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization, J. Clim., 25, 5119-5134, doi:10.1175/JCLI-D-11-00295.1. Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie (2010b), Precipitation response to the Gul 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: Miyakawa, T., and Coauthors (2014), Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer, Nat. Commun., 5, 3769, doi:10.1038/ncomms4769. – reference: Doi, T., S.K. Behera, and T. Yamagata (2016), Improved seasonal prediction using the SINTEX-F2 coupled model, J. Adv. Model. Earth Syst., 8, 1847-1867, doi:10.1002/2016MS000744. – reference: Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi (1997), Description of CCSR/NIES atmospheric general circulation model, Study on the climate system and mass transport by a climate model, CGER's Supercomputer Monograph Report No. 3, 1-48. – reference: Shingu, S., and Coauthors (2002), A 26.58 Tflops global atmospheric simulation with the spectral transform method on the Earth Simulator, Proceedings of the ACM/IEEE SC 2002 Conference (SC'02), IEEE. – reference: Suzuki, K., G. Stephens, A. Bodas-Salcedo, M. Wang, J.-C. Golaz, T. Yokohata, and T. Koshiro (2015), Evaluation of the Warm Rain Formation Process in Global Models with Satellite Observations, J. Atmos. Sci., 72, 3996-4014, doi:10.1175/JAS-D-14-0265.1. – reference: Doi, T., C. Yuan, S.K. Behera, and T. Yamagata (2015b), Predictability of the California Niño/Niña, J. Clim., 28, 7237-7249, doi:10.1175/JCLI-D-15-0112.1. – reference: Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata (2008a), Successful prediction of the consecutive IOD in 2006 and 2007, Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793. – reference: Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori (2014), Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only, SOLA, 10, 78-82, doi:10.2151/sola.2014-016. – reference: Seiki, T., C. Kodama, A.T. Noda, and M. Satoh (2015), Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme, J. Clim., 28, 2405-2419, doi:10.1175/JCLI-D-14-00241.1. – reference: Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A.T. Noda, and Y. Yamada (2017), Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Clim. Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z. – reference: O'Reilly, C.H., S. Minobe, and A. Kuwano-Yoshida (2016), The influence of the Gulf Stream on wintertime European blocking, Clim. Dyn., 47, 1545-1567, doi:10.1007/s00382-015-2919-0. – reference: Wang, B., R. Wu, and X. Fu (2000), Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?, J. Clim., 13, 1517-1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2. – reference: Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A.T. Wittenberg (2012), Uncertainty in the ENSO amplitude change from the past to the future, Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305. – reference: O'Reilly, C.H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings (2017), The Gulf Stream influence on wintertime North Atlantic jet variability, Q. J. R. Meteorol. Soc., 143, 173-183, doi:10.1002/qj.2907. – reference: Fortuin, J.P.F. and H. Kelder (1998), An ozone climatology based on ozonesonde and satellite measurements, J. Geophys. Res. Atmos., 103, 31709-31734, doi:10.1029/1998JD200008. – reference: Wang, B., R. Wu, and K.-M. Lau (2001), Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons, J. Clim., 14, 4073-4090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2. – reference: Seiki, T. and T. Nakajima (2014), Aerosol effects of the condensation process on a convective cloud simulation, J. Atmos. Sci., 71, 833-853, doi:10.1175/JAS-D-12-0195.1. – reference: Masson, S., P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi (2012), Impact of intra-daily SST variability on ENSO characteristics in a coupled model, Clim. Dyn., 39, 681-707, doi:10.1007/s00382-011-1247-2. – reference: Wang, H. and W. Su (2013), Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations, J. Geophys. Res. Atmos., 118, 683-699, doi:10.1029/2012JD018619. – reference: Wang, R., and Coauthors (2012), Black Carbon Emissions in China from 1949 to 2050, Environ. Sci. Technol., 46, 7595-7603, doi:10.1021/es3003684. – reference: Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata (1999), A dipole mode in the tropical Indian Ocean, Nature, 401, 360-363, doi:10.1038/43854. – reference: Sasaki, W., K.J. Richards, and J.-J. Luo (2013), Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM, Clim. Dyn., 41, 443-453, doi:10.1007/s00382-012-1593-8. – reference: Satoh, M., Y. Yamada, M. Sugi, C. Kodama, and A.T. Noda (2015), Constraint on future change in global frequency of tropical cyclones due to global warming, J. Meteorol. Soc. Japan. Ser. II, 93, 489-500, doi:10.2151/jmsj.2015-025. – reference: Kobayashi, S., and Coauthors (2015), The JRA-55 reanalysis: general specifications and basic characteristics, J. Meteorol. Soc. Japan. Ser. II, 93, 5-48, doi:10.2151/jmsj.2015-001. – reference: Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata (2005b), Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics, J. Clim., 18, 2344-2360, doi:10.1175/JCLI3404.1. – reference: Luo, J.-J., S. Masson, S. Behera, and T. Yamagata (2007), Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM, J. Clim., 20, 2178-2190, doi:10.1175/JCLI4132.1. – reference: Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno (2017), Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model, J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1. – reference: Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Wea. Rev., 117, 1779-1800. – reference: Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe (2009), Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño, J. Clim., 22, 730-747, doi:10.1175/2008JCLI2544.1. – reference: Kamae, Y. and M. Watanabe (2013), Tropospheric adjustment to increasing CO2: its timescale and the role of land-sea contrast, Clim. Dyn., 41, 3007-3024, doi:10.1007/s00382-012-1555-1. – reference: Sato, K., J. Inoue, A. Yamazaki, J.-H. Kim, M. Maturilli, K. Dethloff, S.R. Hudson, and M.A. Granskog (2017), Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations, J. Geophys. Res. Oceans, 122, 775-787, doi:10.1002/2016JC012197. – reference: Watanabe, M. and F.-F. Jin (2003), A moist linear baroclinic model: Coupled dynamical-convective response to El Niño, J. Clim., 16, 1121-1139, doi:10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2. – reference: Adler, R.F., and Coauthors (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), J. Hydrometeorol., 4, 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2. – reference: Langenbrunner, B. and J.D. Neelin (2013), Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation, J. Clim., 26, 4431-4446, doi:10.1175/JCLI-D-12-00542.1. – reference: Medeiros, B. and B. Stevens (2011), Revealing differences in GCM representations of low clouds, Clim. Dyn., 36, 385-399, doi:10.1007/s00382-009-0694-5. – reference: Shibata, K., M. Deushi, T.T. Sekiyama, and H. Yoshimura (2005), Development of an MRI chemical transport model for the study of stratospheric chemistry, Pap. Meteor. Geophys., 55, 75-119, doi:10.2467/mripapers.55.75. – reference: Yashiro, H., Y. Kajikawa, Y. Miyamoto, T. Yamaura, R. Yoshida, and H. Tomita (2016a), Resolution dependence of the diurnal cycle of precipitation simulated by a global cloud-system resolving model, SOLA, 12, 272-276, doi:10.2151/sola.2016-053. – reference: Doi, T., S.K. Behera, and T. Yamagata (2015a), An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s, J. Geophys. Res. Oceans, 120, 1388-1396, doi:10.1002/2014JC010562. – reference: Nordeng, T.E. (1994), Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Reading, United Kingdom, 41pp. – reference: Mizuta, R., and Coauthors (2012), Climate simulations using MRI-AGCM3.2 with 20-km grid, J. Meteorol. Soc. Japan. Ser. II, 90A, 233-258, doi:10.2151/jmsj.2012-A12. – reference: Noda, A.T., K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima (2010), Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations, Atmos. Res., 96, 208-217, doi:10.1016/j.atmosres.2009.05.007. – reference: Sekiguchi, M. and T. Nakajima (2008), A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model, J. Quant. Spectrosc. Radiat. Transf., 109, 2779-2793, doi:10.1016/j.jqsrt.2008.07.013. – reference: Liang, X.-Z., W.-C. Wang, and J.S. Boyle (1997), Atmospheric ozone climatology for use in general circulation models, <https://pcmdi.llnl.gov/report/ab43.html>, (accessed 2018-12-14). – reference: Takata, K., S. Emori, and T. Watanabe (2003), Development of the minimal advanced treatments of surface interaction and runoff, Glob. Planet. Change, 38, 209-222, doi:10.1016/S0921-8181(03)00030-4. – reference: Doi, T., S.K. Behera, and T. Yamagata (2013), Predictability of the Ningaloo Niño/Niña, Sci. Rep., 3, 2892, doi:10.1038/srep02892. – reference: Fukutomi, Y., C. Kodama, Y. Yamada, A.T. Noda, and M. Satoh (2015), Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model, Theor. Appl. Climatol., 124, 737-755, doi:10.1007/s00704-015-1456-4. – reference: Roeckner, E., and Coauthors (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max-Planck-Institut fur Meteorol. Rep., 218, 90 pp. – reference: Chikira, M. and M. Sugiyama (2010), A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles, J. Atmos. Sci., 67, 2171-2193, doi:10.1175/2010JAS3316.1. – reference: Reynolds, R.W., T.M. Smith, C. Liu, D.B. Chelton, K.S. Casey, and M.G. Schlax (2007), Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473-5496, doi:10.1175/2007JCLI1824.1. – reference: Loeb, N.G., B.A. Wielicki, D.R. Doelling, G.L. Smith, D.F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong (2009), Toward optimal closure of the Earth's top-of-atmosphere radiation budget, J. Clim., 22, 748-766, doi:10.1175/2008JCLI2637.1. – reference: Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev., 97, 163-172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2. – reference: Takagi, M., N. Sugimoto, H. Ando, and Y. Matsuda (2018), Three-dimensional structures of thermal tides simulated by a Venus GCM, J. Geophys. Res. Planets, 123, 335-352, doi:10.1002/2017JE005449. – reference: Wilson, D.R. and S.P. Ballard (1999), A microphysically based precipitation scheme for the UK meteorological office unified model, Q. J. R. Meteorol. Soc., 125, 1607-1636, doi:10.1002/qj.49712555707. – reference: Holland, G.J. (1995), Scale interaction in the western Pacific monsoon, Meteorol. Atmos. Phys., 56, 57-79, doi:10.1007/BF01022521. – reference: Jin, E.K., and Coauthors (2008), Current status of ENSO prediction skill in coupled ocean-atmosphere models, Clim. Dyn., 31, 647-664, doi:10.1007/s00382-008-0397-3. – reference: Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003), Breaking the cloud parameterization deadlock, Bull. Amer. Meteor. Soc., 84, 1547-1564, doi:10.1175/BAMS-84-11-1547. – reference: Nakanishi, M. and H. Niino (2006), An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog, Boundary-Layer Meteorol., 119, 397-407, doi:10.1007/s10546-005-9030-8. – reference: Eyring, V., and Coauthors (2008), Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report, SPARC Newsl., 30, 20-26. – reference: Miyoshi, T. and S. Yamane (2007), Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution, Mon. Wea. Rev., 135, 3841-3861, doi:10.1175/2007MWR1873.1. – reference: Sugimoto, N., A. Yamazaki, T. Kouyama, H. Kashimura, T. Enomoto, and M. Takagi (2017), Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere, Sci. Rep., 7, 9321, doi:10.1038/s41598-017-09461-1. – reference: Chikamoto, Y., and Coauthors (2013), An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC, Clim. Dyn., 40, 1201-1222, doi:10.1007/s00382-012-1351-y. – reference: Eyring, V., and Coauthors (2013), Long-term ozone changes and associated climate impacts in CMIP5 simulations, J. Geophys. Res. Atmos., 118, 5029-5060, doi:10.1002/jgrd.50316. – reference: Ohfuchi, W., and Coauthors (2004), 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: Preliminary outcomes of AFES (AGCM for the Earth Simulator), J. Earth Simulator, 1, 8-34. – reference: Gates, W.L. (1992), AMIP: The atmospheric model intercomparison project, Bull. Amer. Meteor. Soc., 73, 1962-1970, doi:10.1175/1520-0477(1992)073<1962:atamip>2.0.CO;2. – reference: Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida (2012), Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front, Geophys. Res. Lett., 39, doi:10.1029/2011GL049922. – reference: Kodama, C., and Coauthors (2015), A 20-year climatology of a NICAM AMIP-type simulation, J. Meteorol. Soc. Japan. Ser. II, 93, 393-424, doi:10.2151/jmsj.2015-024. – reference: Satoh, M., and Coauthors (2014), The non-hydrostatic icosahedral atmospheric model: Description and development, Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1. – reference: Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486-3514, doi:10.1016/j.jcp.2007.02.006. – reference: Chikira, M. and M. Sugiyama (2013), Eastward-propagating intraseasonal oscillation represented by Chikira-Sugiyama cumulus parameterization. Part I: comparison with observation and reanalysis, J. Atmos. Sci., 70, 3920-3939, doi:10.1175/JAS-D-13-034.1. – reference: Valcke, S., A. Caubel, R. Vogelsang, and D. Declat (2004), OASIS3 ocean atmosphere sea ice soil user's guide. Tech. Rep. TR/CMGC/04/68, CERFACS, Toulouse, Fr., 70 pp. – reference: Fouquart, Y. and B. Bonnell (1980), Computations of solar heating of the Earth's atmosphere: A new parameterization, Contrib. Atmos. Phys., 53, 35-62. – reference: Sperber, K.R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou (2013), The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dyn., 41, 2711-2744, doi:10.1007/s00382-012-1607-6. – reference: Klimont, Z., S.J. Smith, and J. Cofala (2013), The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions, Environ. Res. Lett., 8, 014003, doi:10.1088/1748-9326/8/1/014003. – reference: Watanabe, M., and Coauthors (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 6312-6335, doi:10.1175/2010JCLI3679.1. – reference: Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie (2010b), Precipitation response to the Gulf stream in an atmospheric GCM, J. Clim., 23, 3676-3698, doi:10.1175/2010JCLI3261.1. – reference: Pauluis, O. and S. Garner (2006), Sensitivity of radiative-convective equilibrium simulations to horizontal resolution, J. Atmos. Sci., 63, 1910-1923, doi:10.1175/JAS3705.1. – reference: Bjerknes, J. (1964), Atlantic air-sea interaction, Adv. Geophys., 10, 1-82, doi:10.1016/S0065-2687(08)60005-9. – reference: Tomita, H. (2008), New microphysical schemes with five and six categories by diagnostic generation of cloud ice, J. Meteorol. Soc. Japan. Ser. II, 86A, 121-142, doi:10.2151/jmsj.86A.121. – reference: Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita (2013), Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944. – reference: Emanuel, K.A. and M. Živković-Rothman (1999), Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56, 1766-1782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2. – reference: Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi (2008), Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi Eds., Springer, New York, 77-97. – reference: Kuwano-Yoshida, A. and S. Minobe (2017), Storm-track response to SST fronts in the northwestern Pacific region in an AGCM, J. Clim., 30, 1081-1102, doi:10.1175/JCLI-D-16-0331.1. – reference: Valcke, S., L. Terray, and A. Piacentini (2000), The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, Toulouse, Fr., 85 pp. – reference: Nakanishi, M. (2001), Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data, Boundary-Layer Meteorol., 99, 349-378, doi:10.1023/A:1018915827400. – reference: Roeckner, E., and Coauthors (2003), The atmospheric general circulation model ECHAM5. Part I: model description. MPI-Rep. 349, Max-Planck-Institut ur Meteorol. Hamburg, Ger., 349, 140 pp. – reference: Wielicki, B.A., B.R. Barkstrom, E.F. Harrison, R.B. Lee, G. Louis Smith, and J.E. Cooper (1996), Clouds and the earth's radiant energy system (CERES): An earth observing system experiment, Bull. Amer. Meteor. Soc., 77, 853-868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2. – reference: Takahashi, K., X. Peng, R. Onishi, M. Ohdaira, K. Goto, H. Fuchigami, and T. Sugimura (2008), Impact of coupled nonhydrostatic atmosphere-ocean-land model with high resolution, K. Hamilton and W. Ohfuch (Eds.) High Resolution Numerical Modelling of the Atmosphere and Ocean, Springer, NY, 261-273. – reference: Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi (2010a), An improved PDF cloud scheme for climate simulations, Q. J. R. Meteorol. Soc., 136, 1583-1597, doi:10.1002/qj.660. – reference: Chen, Y.-W., T. Seiki, C. Kodama, M. Satoh, A.T. Noda, and Y. Yamada (2016), High Cloud Responses to Global Warming Simulated by Two Different Cloud Microphysics Schemes Implemented in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), J. Clim., 29, 5949-5964, doi:10.1175/JCLI-D-15-0668.1. – reference: Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse (2003), Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM, Ann. Geophys., 46, 1-26. – reference: Kuwano-Yoshida, A. (2014), Using the local deepening rate to indicate extratropical cyclone activity, SOLA, 10, 199-203, doi:10.2151/sola.2014-042. – reference: Rayner, N.A., D.E. Parker, E.B. Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670. – reference: Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka (2018), Mechanisms for the maintenance of the wintertime basin-scale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone, J. Clim., 31, 297-315, doi:10.1175/JCLI-D-17-0200.1. – reference: Peng, M.S., J.A. Ridout, and T.F. Hogan (2004), Recent modifications of the Emanuel convective scheme in the navy operational global atmospheric prediction system, Mon. Wea. Rev., 132, 1254-1268, doi:10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2. – reference: Guan, Z. and T. Yamagata (2003), The unusual summer of 1994 in East Asia: IOD teleconnections, Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831. – reference: Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S.A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237. – reference: Takemura, T., T. Nozawa, S. Emori, T.Y. Nakajima, and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029. – reference: Nasuno, T., K. Kikuchi, M. Nakano, Y. Yamada, M. Ikeda, and H. Taniguchi (2017), Evaluation of the near real-time forecasts using a global nonhydrostatic model during the CINDY2011/DYNAMO, J. Meteorol. Soc. Japan. Ser. II, 95, 345-368, doi:10.2151/jmsj.2017-022. – reference: Noda, A.T., K. Oouchi, M. Satoh, and H. Tomita (2012), Quantitative assessment of diurnal variation of tropical convection simulated by a global nonhydrostatic model without cumulus parameterization, J. Clim., 25, 5119-5134, doi:10.1175/JCLI-D-11-00295.1. – reference: Emanuel, K.A. (1991), A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313-2335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2. – reference: Taylor, K.E., D. Williamson, and F. Zwiers (2000), The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. – reference: Tomita, H. and M. Satoh (2004), A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dyn. Res., 34, 357-400, doi:10.1016/j.fluiddyn.2004.03.003. – reference: Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys., 7, 3425-3446, doi:10.5194/acp-7-3425-2007. – reference: Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang (2002), An improved in situ and satellite SST analysis for climate, J. Clim., 15, 1609-1625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2. – reference: Madec, G., P. Delecluse, M. Imbard, and C. Levy (1998), OPA 8.1 ocean general circulation model reference manual. LODYC/ IPSL Tech. Rep. Note 11, 91 pp. – reference: Chiang, J.C.H. and D.J. Vimont (2004), Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability, J. Clim., 17, 4143-4158, doi:10.1175/JCLI4953.1. – reference: Miura, H., M. Satoh, T. Nasuno, A.T. Noda, and K. Oouchi (2007), A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model, Science, 318, 1763-1765, doi:10.1126/science.1148443. – reference: Nakano, M., and Coauthors (2017), Global 7km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, doi:10.5194/gmd-10-1363-2017. – reference: Brinkop, S. and E. Roeckner (1995), Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer, Tellus A, 47, 197-220, doi:10.1034/j.1600-0870.1995.t01-1-00004.x. – reference: Koepke, P., M. Hess, I. Schult, and E.P. Shettle (1997), Global aerosol data set, Report No. 243, Hamburg, 1-44 pp. – reference: Yuan, C. and T. Yamagata (2015), Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades, Sci. Rep., 5, 17252, doi:10.1038/srep17252. – reference: Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734. – reference: Nakanishi, M. and H. Niino (2004), An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification, Boundary-Layer Meteorol., 112, 1-31, doi:10.1023/B:BOUN.0000020164.04146.98. – reference: Miyoshi, T., K. Kondo, and K. Terasaki (2015), Big ensemble data assimilation in numerical weather prediction, Computer (Long Beach, Calif.), 48, 15-21, doi:10.1109/MC.2015.332. – reference: Watanabe, M., Y. Kamae, M. Yoshimori, A. Oka, M. Sato, M. Ishii, T. Mochizuki, and M. Kimoto (2013), Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus, Geophys. Res. Lett., 40, 3175-3179, doi:10.1002/grl.50541. – reference: Donohoe, A. and D.S. Battisti (2011), Atmospheric and surface contributions to planetary albedo, J. Clim., 24, 4402-4418, doi:10.1175/2011JCLI3946.1. – reference: Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata (2008b), Extended ENSO predictions using a fully coupled ocean-atmosphere model, J. Clim., 21, 84-93. – reference: Fichefet, T. and M.A. Morales Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res. Oceans, 102, 12609-12646, doi:10.1029/97JC00480. – reference: Hirota, N. and Y.N. Takayabu (2013), Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3, Clim. Dyn., 41, 2909-2920, doi:10.1007/s00382-013-1839-0. – reference: Watanabe, M., S. Emori, M. Satoh, and H. Miura (2009), A PDF-based hybrid prognostic cloud scheme for general circulation models, Clim. Dyn., 33, 795-816, doi:10.1007/s00382-008-0489-0. – reference: Yashiro, H., K. Terasaki, T. Miyoshi, and H. Tomita (2016b), Performance evaluation of a throughput-aware framework for ensemble data assimilation: the case of NICAM-LETKF, Geosci. Model Dev., 9, 2293-2300, doi:10.5194/gmd-9-2293-2016. – reference: Morcrette, J.-J. (1991), Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system, J. Geophys. Res., 96, 9121, doi:10.1029/89JD01597. – reference: Willison, J., W.A. Robinson, and G.M. Lackmann (2013), The Importance of resolving mesoscale latent heating in the North Atlantic storm track, J. Atmos. Sci., 70, 2234-2250, doi:10.1175/JAS-D-12-0226.1. – reference: Bodas-Salcedo, A., M.J. Webb, M.E. Brooks, M.A. Ringer, K.D. Williams, S.F. Milton, and D.R. Wilson (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620. – reference: Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata (2005a), Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts, J. Clim., 18, 4474-4497, doi:10.1175/JCLI3526.1. – reference: Yamagata, T., Y. Morioka, and S.K. Behera (2016), Old and new faces of climate variations, S.K. Behera and T. Yamagata (Eds.) World Scientific Series on Asia-Pacific Weather and Climate: Volume 7, Indo-Pacific Climate Variability and Predictability, 1-23 pp., doi:10.1142/9789814696623_0001. – reference: Kuwano-Yoshida, A. and T. Enomoto (2013), Predictability of explosive cyclogenesis over the Northwestern Pacific region using ensemble reanalysis, Mon. Wea. Rev., 141, 3769-3785, doi:10.1175/MWR-D-12-00161.1. – reference: Miyoshi, T., S. Yamane, and T. Enomoto (2007), The AFES-LETKF Experimental Ensemble Reanalysis: ALERA, SOLA, 3, 45-48, doi:10.2151/sola.2007-012. – reference: Grabowski, W.W. (2006), Impact of explicit atmosphere-ocean coupling on MJO-like coherent structures in idealized aquaplanet simulations, J. Atmos. Sci., 63, 2289-2306, doi:10.1175/JAS3740.1. – reference: Madec, G. (2008), NEMO ocean engine, version 3.0. Note du Pole modelisation l'Institut Pierre-Simon Laplace 27, ISSN 1288-1619, Inst. Pierre-Simon Laplace, Fr., 209 pp. – reference: Hansen, J. and M. Sato (2004), Greenhouse gas growth rates, Proc. Natl. Acad. Sci., 101, 16109-16114, doi:10.1073/pnas.0406982101. – reference: Doi, T., A. Storto, S.K. Behera, A. Navarra, and T. Yamagata (2017), Improved prediction of the Indian Ocean Dipole Mode by use of subsurface ocean observations, J. Clim., 30, 7953-7970, doi:10.1175/JCLI-D-16-0915.1. – reference: Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R.J. Small (2008), Influence of the Gulf Stream on the troposphere, Nature, 452, 206-209, doi:10.1038/nature06690. – ident: 94 doi: 10.1016/j.jcp.2007.02.006 – ident: 43 doi: 10.1175/JCLI-D-16-0331.1 – ident: 79 doi: 10.1002/qj.2907 – ident: 13 doi: 10.1175/JCLI-D-15-0112.1 – ident: 68 doi: 10.1029/89JD01597 – ident: 87 doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 – ident: 97 doi: 10.1175/JAS-D-12-0195.1 – ident: 99 doi: 10.1016/j.jqsrt.2008.07.013 – ident: 128 doi: 10.1175/2008JCLI2544.1 – ident: 39 doi: 10.2151/jmsj.2015-024 – ident: 101 doi: 10.1109/SC.2002.10053 – ident: 11 doi: 10.1038/srep02892 – ident: 73 doi: 10.2151/jmsj.2017-022 – ident: 116 doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 – ident: 1 – ident: 12 doi: 10.1002/2014JC010562 – ident: 66 doi: 10.2151/jmsj.2012-A12 – ident: 71 doi: 10.1007/s10546-005-9030-8 – ident: 70 doi: 10.1023/B:BOUN.0000020164.04146.98 – ident: 106 doi: 10.1007/978-0-387-49791-4_15 – ident: 117 doi: 10.1029/2005GL022734 – ident: 104 doi: 10.1175/JAS-D-14-0265.1 – ident: 113 – ident: 111 doi: 10.2151/jmsj.86A.121 – ident: 129 doi: 10.1175/JCLI-D-17-0068.1 – ident: 44 doi: 10.1002/qj.660 – ident: 112 doi: 10.1016/j.fluiddyn.2004.03.003 – ident: 88 doi: 10.1175/2007JCLI1824.1 – ident: 40 – ident: 27 doi: 10.1175/JAS3740.1 – ident: 54 doi: 10.1175/2007JCLI1412.1 – ident: 119 doi: 10.1021/es3003684 – ident: 51 doi: 10.1175/JCLI3404.1 – ident: 63 doi: 10.1175/2007MWR1873.1 – ident: 65 doi: 10.1109/MC.2015.332 – ident: 21 doi: 10.1002/jgrd.50316 – ident: 124 doi: 10.1002/grl.50541 – ident: 84 doi: 10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2 – ident: 114 – ident: 122 doi: 10.1175/2010JCLI3679.1 – ident: 58 doi: 10.1007/s00382-009-0694-5 – ident: 25 doi: 10.1007/s00704-015-1456-4 – ident: 18 doi: 10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2 – ident: 24 – ident: 22 doi: 10.1029/97JC00480 – ident: 103 doi: 10.1038/s41598-017-09461-1 – ident: 69 doi: 10.1023/A:1018915827400 – ident: 96 doi: 10.2151/jmsj.2015-025 – ident: 125 doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 – ident: 100 doi: 10.2467/mripapers.55.75 – ident: 33 doi: 10.1007/s00382-008-0397-3 – ident: 102 doi: 10.1007/s00382-012-1607-6 – ident: 35 doi: 10.1007/s00382-016-3219-z – ident: 29 doi: 10.1029/2002GL016831 – ident: 77 – ident: 46 doi: 10.1175/JCLI-D-12-00542.1 – ident: 50 doi: 10.1175/JCLI3526.1 – ident: 108 doi: 10.1029/2004JD005029 – ident: 64 doi: 10.2151/sola.2007-012 – ident: 130 doi: 10.1142/9789814696623_0001 – ident: 62 doi: 10.1002/grl.50944 – ident: 2 doi: 10.1016/S0065-2687(08)60005-9 – ident: 59 doi: 10.1038/nature06690 – ident: 7 doi: 10.1175/JCLI4953.1 – ident: 120 doi: 10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2 – ident: 132 doi: 10.5194/gmd-9-2293-2016 – ident: 10 doi: 10.1175/JAS-D-13-034.1 – ident: 55 – ident: 92 doi: 10.1007/s00382-012-1593-8 – ident: 26 – ident: 109 – ident: 34 doi: 10.1007/s00382-012-1555-1 – ident: 75 doi: 10.1175/JCLI-D-11-00295.1 – ident: 86 doi: 10.1029/2002JD002670 – ident: 91 doi: 10.1038/43854 – ident: 80 doi: 10.1029/2011GL049922 – ident: 133 doi: 10.1038/srep17252 – ident: 57 doi: 10.1007/s00382-011-1247-2 – ident: 48 doi: 10.1175/2008JCLI2637.1 – ident: 53 doi: 10.1029/2007GL032793 – ident: 127 doi: 10.1002/qj.49712555707 – ident: 131 doi: 10.2151/sola.2016-053 – ident: 17 doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2 – ident: 85 doi: 10.1175/BAMS-84-11-1547 – ident: 16 doi: 10.1175/2011JCLI3946.1 – ident: 31 doi: 10.1007/s00382-013-1839-0 – ident: 83 doi: 10.1175/JAS3705.1 – ident: 37 doi: 10.2151/sola.2014-016 – ident: 78 doi: 10.1007/s00382-015-2919-0 – ident: 52 doi: 10.1175/JCLI4132.1 – ident: 14 doi: 10.1002/2016MS000744 – ident: 30 doi: 10.1073/pnas.0406982101 – ident: 107 doi: 10.1016/S0921-8181(03)00030-4 – ident: 60 doi: 10.1126/science.1148443 – ident: 4 doi: 10.1029/2007JD009620 – ident: 89 – ident: 41 doi: 10.2151/sola.2014-042 – ident: 23 doi: 10.1029/1998JD200008 – ident: 126 doi: 10.1175/JAS-D-12-0226.1 – ident: 110 – ident: 98 doi: 10.1175/JCLI-D-14-00241.1 – ident: 118 doi: 10.1029/2012JD018619 – ident: 121 doi: 10.1007/s00382-008-0489-0 – ident: 123 doi: 10.1029/2012GL053305 – ident: 6 doi: 10.1175/JCLI-D-15-0668.1 – ident: 15 doi: 10.1175/JCLI-D-16-0915.1 – ident: 28 – ident: 81 – ident: 74 doi: 10.1016/j.atmosres.2009.05.007 – ident: 93 doi: 10.1002/2016JC012197 – ident: 76 – ident: 95 doi: 10.1186/s40645-014-0018-1 – ident: 61 doi: 10.1038/ncomms4769 – ident: 47 – ident: 8 doi: 10.1007/s00382-012-1351-y – ident: 19 doi: 10.1007/978-0-387-49791-4_5 – ident: 20 – ident: 3 – ident: 45 doi: 10.1175/2010JCLI3261.1 – ident: 90 – ident: 36 doi: 10.1088/1748-9326/8/1/014003 – ident: 9 doi: 10.1175/2010JAS3316.1 – ident: 38 doi: 10.2151/jmsj.2015-001 – ident: 49 doi: 10.5194/acp-7-3425-2007 – ident: 115 – ident: 56 – ident: 5 doi: 10.1034/j.1600-0870.1995.t01-1-00004.x – ident: 67 doi: 10.1029/97JD00237 – ident: 105 doi: 10.1002/2017JE005449 – ident: 42 doi: 10.1175/MWR-D-12-00161.1 – ident: 82 doi: 10.1175/JCLI-D-17-0200.1 – ident: 32 doi: 10.1007/BF01022521 – ident: 72 doi: 10.5194/gmd-10-1363-2017 |
SSID | ssj0003220495 |
Score | 1.6852926 |
Snippet | The JAMSTEC Model Intercomparison Project (JMIP) provides a first opportunity to systematically compare multiple global models developed and/or used in JAMSTEC... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5 |
SubjectTerms | Atmospheric model intercomparison Atmospheric precipitations Climate prediction climate simulation Climatology Cyclones Intercomparison large-scale circulation Monsoons Precipitation Radiation teleconnection Teleconnections Weather forecasting |
Title | JAMSTEC Model Intercomparision Project (JMIP) |
URI | https://www.jstage.jst.go.jp/article/jamstecr/28/0/28_5/_article/-char/en https://www.proquest.com/docview/2232513000 https://www.proquest.com/docview/2263638361 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JAMSTEC Report of Research and Development, 2019/04/01, Vol.28, pp.5-34 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfK4IGXCQSIsoHygBAIuTRxHNuP0ygam4qG6KTxFPkrrPtIUNcJaX_O_lLOuST9AKQBL1HlxI3jO9_97nznI-SlkxJguhdUebB0UuEl1VkiKUsKoaDP0BYhOXn8Kds7SveP-XGvd7MUtXQ1NwN7_du8kn-hKrQBXUOW7F9QtvtTaIDfQF-4AoXheisag8T8Mhnt1gXNztG5Z5u6goGqh-hlCSByf_zxsDX6T1c7IwTHQ0kaHwiGJ3fRRAunOyBJbdBpHTxX1WIj6IcuK_q1ujyZOvTUnk1nncQ_qJy-0Li7Pz2Zzrp-76s6mGCizzz0XPZAxGopcKXWDqDVy7c7mCoaYiPHOiQu0pEOG0-tiAojX9stQIkLAoQCLEUp5-u2UCeLMl7XHO7EdJNDjnKWLylsdIauqwKuYoklCGC12NkgkQO-0HldJGJDu7x9Lk9kPgwXnre3QvobcNsdcjcRog4FOPgsOz8eCEQwskKkbPcleJRrGMC7ldevQJ97p4D-v_0KAWpcM3lANhuDJNrBYTwkPV8-IrRhjqjmrGids6KGs6LXga_ePCZHH0aT3T3aFNaglgE8pwaAWyFYpq3WylvBU6cSp0w6NMqwNDXMuriw3uhY6KSQ3INda5wG5OILm3r2hGyUVemfkij13AebukDj2aoMDGhlnE2VE37o-uRV-835dzw_JQe7M0zOypzzPlE4I91jtydNn2y3k5g3y_MyB9wL2J3BuP5wO2Oge1gWP_uPN2-R-4sVsU025rMr_xxQ6ty8qNnkJ_bgmrw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JAMSTEC+Model+Intercomparision+Project+%28JMIP%29&rft.jtitle=JAMSTEC+Report+of+Research+and+Development&rft.au=Watanabe%2C+Shingo&rft.au=Kuwano-Yoshida%2C+Akira&rft.au=Kodama%2C+Chihiro&rft.au=Doi%2C+Takeshi&rft.date=2019-04-01&rft.pub=Japan+Agency+for+Marine-Earth+Science+and+Technology&rft.issn=1880-1153&rft.eissn=2186-358X&rft.volume=28&rft.spage=5&rft.epage=34&rft_id=info:doi/10.5918%2Fjamstecr.28.5&rft.externalDocID=article_jamstecr_28_0_28_5_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-1153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-1153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-1153&client=summon |