High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels

Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 18
Main Authors Szklanny, Ariel A., Debbi, Lior, Merdler, Uri, Neale, Dylan, Muñiz, Ayse, Kaplan, Ben, Guo, Shaowei, Lahann, Joerg, Levenberg, Shulamit
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues. A novel two‐step cell seeding on tesselated scaffolds produces highly organized and oriented vessel networks. Different compartment shapes promote vessel sprouting with specific orientations according to the compartment geometry and encourage distinct support cell distributions. Vessels depart from areas with low support cell concentration (side between corners) and are drawn to areas with higher concentration of support cells (corners).
AbstractList Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues. A novel two‐step cell seeding on tesselated scaffolds produces highly organized and oriented vessel networks. Different compartment shapes promote vessel sprouting with specific orientations according to the compartment geometry and encourage distinct support cell distributions. Vessels depart from areas with low support cell concentration (side between corners) and are drawn to areas with higher concentration of support cells (corners).
Abstract Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues.
Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues.
Author Guo, Shaowei
Debbi, Lior
Neale, Dylan
Szklanny, Ariel A.
Merdler, Uri
Kaplan, Ben
Muñiz, Ayse
Lahann, Joerg
Levenberg, Shulamit
Author_xml – sequence: 1
  givenname: Ariel A.
  orcidid: 0000-0001-7913-5626
  surname: Szklanny
  fullname: Szklanny, Ariel A.
  organization: Technion – Israel Institute of Technology
– sequence: 2
  givenname: Lior
  surname: Debbi
  fullname: Debbi, Lior
  organization: Technion – Israel Institute of Technology
– sequence: 3
  givenname: Uri
  surname: Merdler
  fullname: Merdler, Uri
  organization: Technion – Israel Institute of Technology
– sequence: 4
  givenname: Dylan
  surname: Neale
  fullname: Neale, Dylan
  organization: University of Michigan
– sequence: 5
  givenname: Ayse
  surname: Muñiz
  fullname: Muñiz, Ayse
  organization: University of Michigan
– sequence: 6
  givenname: Ben
  surname: Kaplan
  fullname: Kaplan, Ben
  organization: Technion – Israel Institute of Technology
– sequence: 7
  givenname: Shaowei
  surname: Guo
  fullname: Guo, Shaowei
  organization: Technion – Israel Institute of Technology
– sequence: 8
  givenname: Joerg
  surname: Lahann
  fullname: Lahann, Joerg
  organization: University of Michigan
– sequence: 9
  givenname: Shulamit
  orcidid: 0000-0001-5471-7339
  surname: Levenberg
  fullname: Levenberg, Shulamit
  email: Shulamit@bm.technion.ac.il
  organization: Technion – Israel Institute of Technology
BookMark eNqFkLtOwzAUhi1UJMplZbbE3OJLQuKxFApIRQwtiC1ynOM2KImD7YCy8QhMPCBPgksRjEw-0vn-_1jfPho0pgGEjikZU0LYqSx0PWaECkI5j3fQkJ7RsxEnLB38zvRxD-0790QITRIeDdHHdblaf769L9fWdKt123m8UFJrUxV40TsPNdbG4oXvir5sVtivAV9qDcpjo_HcKFnhKzA1eNtj2RR4aVpTmVWPTfMNX8ALVKatofHf-ztbhlH6MuxDw6INd_2m-bwypsAP4BxU7hDtalk5OPp5D9D97HI5vR7N765uppP5SPE4iUcRyARImuZxnjAmdKFUrnOiFBOgYh4FF4LngouIqZyLJBYiDT7ihLCiIJLwA3Sy7Q3feO7A-ezJdLYJJzMW-CjhKdlQ4y2lrHHOgs5aW9bS9hkl2cZ9tnGf_boPAbENvJYV9P_Q2eRidvuX_QJh7oz3
CitedBy_id crossref_primary_10_1002_anbr_202100075
crossref_primary_10_1016_j_copbio_2021_08_012
crossref_primary_10_3390_biomedicines11020427
crossref_primary_10_1002_anbr_202300012
crossref_primary_10_1021_acsbiomaterials_1c01401
crossref_primary_10_1098_rspa_2021_0607
crossref_primary_10_1002_smtd_202300032
crossref_primary_10_1021_acsami_3c04331
crossref_primary_10_1089_ten_tea_2022_29025_abstracts
crossref_primary_10_1002_advs_202004205
crossref_primary_10_1016_j_jbiomech_2021_110263
crossref_primary_10_1016_j_actbio_2022_05_026
crossref_primary_10_1002_adma_202102661
crossref_primary_10_1016_j_actbio_2021_09_042
crossref_primary_10_1002_sstr_202000137
crossref_primary_10_1088_1758_5090_abe5b4
Cites_doi 10.1016/j.biomaterials.2012.04.043
10.1007/s12013-007-9001-4
10.1016/j.msec.2017.02.001
10.1038/nmeth.3839
10.1016/j.tibtech.2016.03.002
10.1016/j.stem.2015.03.004
10.1073/pnas.1522273113
10.3934/nhm.2007.2.333
10.1096/fj.06-7117com
10.1089/ten.tea.2009.0584
10.3389/fbioe.2018.00002
10.1371/journal.pone.0210390
10.1016/j.addr.2011.03.004
10.1007/s10266-013-0116-3
10.1038/nmat1683
10.1116/1.5024601
10.1016/j.actbio.2008.08.020
10.1016/j.biomaterials.2012.08.068
10.1002/adma.201707196
10.3390/molecules21060685
10.1016/S0092-8240(77)80054-2
10.1016/j.biomaterials.2012.01.048
10.1371/journal.pone.0027385
10.1073/pnas.1205816109
10.1016/j.biomaterials.2018.02.012
10.1016/j.cell.2011.08.039
10.1016/j.biomaterials.2017.01.015
10.1016/j.biomaterials.2011.07.003
10.1002/jcp.1041090314
10.1038/srep17840
10.1016/j.coche.2013.11.003
10.1007/s10439-016-1653-z
10.1073/pnas.1201626109
10.1016/j.tibtech.2015.11.001
10.1172/JCI70212
10.1016/j.biomaterials.2013.12.101
10.1016/j.bpj.2013.10.008
10.1038/nbt1109
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201901335
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201901335
ADFM201901335
Genre article
GrantInformation_xml – fundername: University of Michigan
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3575-4ea7e088b5b7229fdccbfb0cc29ec53419093b93942cb39759980285702dd0a03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Sep 13 07:24:22 EDT 2024
Fri Aug 23 02:46:01 EDT 2024
Sat Aug 24 01:07:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3575-4ea7e088b5b7229fdccbfb0cc29ec53419093b93942cb39759980285702dd0a03
ORCID 0000-0001-5471-7339
0000-0001-7913-5626
OpenAccessLink http://deepblue.lib.umich.edu/bitstream/2027.42/155501/2/adfm201901335.pdf
PQID 2397473800
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_2397473800
crossref_primary_10_1002_adfm_201901335
wiley_primary_10_1002_adfm_201901335_ADFM201901335
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 16
2015; 16
2018; 162
2013; 105
2017; 45
2019; 14
2013; 123
1981; 109
2006; 5
2011; 32
2011; 6
2012; 33
2016; 13
2005; 23
2012; 109
2016; 34
1999
2018; 6
2016; 5
2011; 146
2017; 74
2014; 3
2013; 17
1977; 39
2016; 21
2016; 113
2011; 63
2018
2014; 35
2018; 30
2009; 5
2007; 2
2017; 122
2007; 21
2018; 13
2007; 49
2014; 102
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Okeyo K. (e_1_2_8_25_1) 2013; 17
e_1_2_8_26_1
e_1_2_8_27_1
Bose P. (e_1_2_8_12_1) 2018
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 122
  start-page: 72
  year: 2017
  publication-title: Biomaterials
– volume: 13
  year: 2018
  publication-title: Biointerphases
– volume: 109
  start-page: 481
  year: 1981
  publication-title: J. Cell. Physiol.
– volume: 14
  year: 2019
  publication-title: PLoS One
– volume: 23
  start-page: 879
  year: 2005
  publication-title: Nat. Biotechnol.
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 556
  year: 2015
  publication-title: Cell Stem Cell
– volume: 35
  start-page: 3273
  year: 2014
  publication-title: Biomaterials
– volume: 6
  start-page: 2
  year: 2018
  publication-title: Front. Bioeng. Biotechnol.
– volume: 5
  start-page: 590
  year: 2006
  publication-title: Nat. Mater.
– volume: 33
  start-page: 3824
  year: 2012
  publication-title: Biomaterials
– volume: 63
  start-page: 300
  year: 2011
  publication-title: Adv. Drug Delivery Rev.
– volume: 162
  start-page: 99
  year: 2018
  publication-title: Biomaterials
– volume: 16
  start-page: 2255
  year: 2010
  publication-title: Tissue Eng., Part A
– volume: 45
  start-page: 132
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 113
  start-page: 3215
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 74
  start-page: 146
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 32
  start-page: 7856
  year: 2011
  publication-title: Biomaterials
– volume: 2
  start-page: 333
  year: 2007
  publication-title: Networks Heterog. Media
– year: 2018
  publication-title: ACS Biomater. Sci. Eng.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  start-page: 56
  year: 2014
  publication-title: Curr. Opin. Chem. Eng.
– volume: 146
  start-page: 873
  year: 2011
  publication-title: Cell
– volume: 5
  start-page: 29
  year: 2009
  publication-title: Acta Biomater.
– volume: 21
  start-page: 790
  year: 2007
  publication-title: FASEB J.
– volume: 6
  year: 2011
  publication-title: PLoS One
– volume: 21
  start-page: 685
  year: 2016
  publication-title: Molecules
– volume: 49
  start-page: 165
  year: 2007
  publication-title: Cell Biochem. Biophys.
– volume: 33
  start-page: 9009
  year: 2012
  publication-title: Biomaterials
– volume: 33
  start-page: 5732
  year: 2012
  publication-title: Biomaterials
– volume: 123
  start-page: 3190
  year: 2013
  publication-title: J. Clin. Invest.
– volume: 109
  start-page: 6886
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 2240
  year: 2013
  publication-title: Biophys. J.
– volume: 17
  start-page: 27
  year: 2013
  publication-title: μTAS Proc.
– volume: 13
  start-page: 405
  year: 2016
  publication-title: Nat. Methods
– volume: 5
  year: 2016
  publication-title: Sci. Rep.
– volume: 102
  start-page: 259
  year: 2014
  publication-title: Odontology
– volume: 39
  start-page: 509
  year: 1977
  publication-title: Bull. Math. Biol.
– volume: 34
  start-page: 733
  year: 2016
  publication-title: Trends Biotechnol.
– volume: 34
  start-page: 156
  year: 2016
  publication-title: Trends Biotechnol.
– year: 1999
– ident: e_1_2_8_38_1
  doi: 10.1016/j.biomaterials.2012.04.043
– ident: e_1_2_8_24_1
  doi: 10.1007/s12013-007-9001-4
– ident: e_1_2_8_23_1
  doi: 10.1016/j.msec.2017.02.001
– ident: e_1_2_8_29_1
  doi: 10.1038/nmeth.3839
– ident: e_1_2_8_31_1
  doi: 10.1016/j.tibtech.2016.03.002
– ident: e_1_2_8_37_1
  doi: 10.1016/j.stem.2015.03.004
– ident: e_1_2_8_40_1
  doi: 10.1073/pnas.1522273113
– ident: e_1_2_8_22_1
  doi: 10.3934/nhm.2007.2.333
– year: 2018
  ident: e_1_2_8_12_1
  publication-title: ACS Biomater. Sci. Eng.
  contributor:
    fullname: Bose P.
– ident: e_1_2_8_33_1
  doi: 10.1096/fj.06-7117com
– ident: e_1_2_8_10_1
  doi: 10.1089/ten.tea.2009.0584
– ident: e_1_2_8_4_1
  doi: 10.3389/fbioe.2018.00002
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.pone.0210390
– ident: e_1_2_8_1_1
  doi: 10.1016/j.addr.2011.03.004
– ident: e_1_2_8_35_1
  doi: 10.1007/s10266-013-0116-3
– ident: e_1_2_8_21_1
– ident: e_1_2_8_30_1
  doi: 10.1038/nmat1683
– ident: e_1_2_8_15_1
  doi: 10.1116/1.5024601
– ident: e_1_2_8_9_1
  doi: 10.1016/j.actbio.2008.08.020
– ident: e_1_2_8_28_1
  doi: 10.1016/j.biomaterials.2012.08.068
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201707196
– ident: e_1_2_8_34_1
  doi: 10.3390/molecules21060685
– ident: e_1_2_8_20_1
  doi: 10.1016/S0092-8240(77)80054-2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biomaterials.2012.01.048
– ident: e_1_2_8_19_1
  doi: 10.1371/journal.pone.0027385
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.1205816109
– ident: e_1_2_8_36_1
  doi: 10.1016/j.biomaterials.2018.02.012
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2011.08.039
– ident: e_1_2_8_2_1
  doi: 10.1016/j.biomaterials.2017.01.015
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biomaterials.2011.07.003
– ident: e_1_2_8_17_1
  doi: 10.1002/jcp.1041090314
– ident: e_1_2_8_18_1
  doi: 10.1038/srep17840
– ident: e_1_2_8_5_1
  doi: 10.1016/j.coche.2013.11.003
– ident: e_1_2_8_6_1
  doi: 10.1007/s10439-016-1653-z
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.1201626109
– ident: e_1_2_8_32_1
  doi: 10.1016/j.tibtech.2015.11.001
– ident: e_1_2_8_27_1
  doi: 10.1172/JCI70212
– ident: e_1_2_8_11_1
  doi: 10.1016/j.biomaterials.2013.12.101
– ident: e_1_2_8_26_1
  doi: 10.1016/j.bpj.2013.10.008
– volume: 17
  start-page: 27
  year: 2013
  ident: e_1_2_8_25_1
  publication-title: μTAS Proc.
  contributor:
    fullname: Okeyo K.
– ident: e_1_2_8_39_1
  doi: 10.1038/nbt1109
SSID ssj0017734
Score 2.471531
Snippet Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the...
Abstract Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Blood vessels
compartment geometry
Corners
Decisions
Endothelial cells
high throughput analysis
Hydrogels
Materials science
Muscles
Networks
Protocol (computers)
Scaffolds
sprouting
tissue engineering
Topology
vascular development
Title High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901335
https://www.proquest.com/docview/2397473800/abstract/
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgRxQK8gGJU9rEztIcy1IqREGiLeot8hYJUZKqTQ7lxCdw4gP5EjxxVy5IcIwSW8nY43njvHlG6IxIEtSF51qMcGG5NA4t5oRCZ61-nUrKfE6hdrh977d67m3f6y9V8Rt9iPmGG3hGsV6DgzM-ri1EQ5mMoZIcAhqlUGUOanqAih7n-lFOEJjfyr4DBC-nP1NttElttflqVFpAzWXAWkSc5hZis3c1RJOXap7xqnj7IeP4n4_ZRptTOIobZv7soDWV7KKNJZHCPfQJVJCv94-uOdFnmGe4I1gcpwOJjd451sAXAyERSqawRpTYaCLjNMZ3ECvxjUpfVTaaYJZI3DXnMkxwmhQPL_GWivsPo-dpQVQCPXS0AXIgZ-MLINnjJ1A7H4z3Ua953b1sWdPTHCxBNSa0XMUCpdc07vGAkDCWQvCY20KQUAkPZOXskPKQhi4RXKMkTyeCGvx4gU2ktJlND1ApSRN1iLBu7RPO6tJhoevaiuvVXml3Vzrf40wFZXQ-G81oaEQ7IiPPTCKwdDS3dBlVZoMdTZ13HBEKSRbVULqMSDFqv_QSNa6a7fnV0V8aHaN1Apl8QaWsoFI2ytWJhjsZPy2m9DcyU_mD
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6kydB2aJM0Qdy4KYcAmWRLpB7W6D5cp7EdoLYLbwJfAoKkkmHLQzr1J2TqD-wvKU-0_MgSoB0FiYTE4_G-o777CHBOFY1aMvAdToV0fJbGDvdiabLWsMUU46FgWDvcH4Tdsf91ElRsQqyFsfoQqw039IxyvUYHxw3p5lo1lKsUS8kxojEWPIM94_NBmVV9WylIeVFkfyyHHlK8vEml2-jS5nb77bi0BpubkLWMOZ3XIKq3tVST28aiEA3585GQ4399zj68WiJS0rZT6AB2dHYILzd0Ct_Ab2SD_Pn1MLKH-kwXBRlKnqb5nSJW8pwY7EuQk4hVU8SASmJlkUmekh6GS_JF5z90MbsnPFNkZI9muCd5Vj68QV0q71_PbpY1URn2MDQjsEB-NvmAPHvyHQXP7-ZHMO58Hn3sOssDHRzJDCx0fM0jbZY1EYiI0jhVUopUuFLSWMsAleXcmImYxT6VwgClwOSCBv8EkUuVcrnLjmE3yzN9AsS0DqngLeXx2PddLYzxtfF4bVI-wXVUg4vKnMnU6nYkVqGZJjjSyWqka1CvrJ0s_XeeUIZ5FjNouga0NNsTvSTtT53-6urtvzR6D8-7o34v6V0Ork7hBcXEvmRW1mG3mC30O4N-CnFWzu-_3GD9pQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKZDYWZojUMq-CArqLfIWCQFJVdIDnPgETnwgX4InbkvhggTHKLGVjD2eN86bZ4ANqmhUlYHvcCqk47M0drgXS5O1hlWmGA8Fw9rhs_Pw8MY_bgbNgSp-qw_R33BDzyjXa3Twlkq3v0RDuUqxkhwDGmPBMIz6IaM4r2tXfQEpL4rsf-XQQ4aX1-zJNrp0-3v772HpC2sOItYy5NSngPde1jJN7rc6hdiSLz90HP_zNdMw2cWjZMdOoBkY0tksTAyoFM7BO3JBPl7fGvZIn1anINeSp2n-oIgVPCcG-RJkJGLNFDGQklhRZJKn5BSDJTnQ-aMu2s-EZ4o07MEMzyTPyocHiEvl_Yv2XbciKsMero0BOsjOJrvIsie3KHf-8DQPN_X9xt6h0z3OwZHMgELH1zzSZlETgYgojVMlpUiFKyWNtQxQV86NmYhZ7FMpDEwKTCZo0E8QuVQpl7tsAUayPNOLQEzrkApeVR6Pfd_Vwiz32vi7Ngmf4DqqwGZvNJOWVe1IrD4zTdDSSd_SFVjpDXbS9d6nhDLMspjB0hWg5aj90kuyU6uf9a-W_tJoHcYua_Xk9Oj8ZBnGKWb1Ja1yBUaKdkevGuhTiLVydn8C5zr8VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Throughput+Scaffold+System+for+Studying+the+Effect+of+Local+Geometry+and+Topology+on+the+Development+and+Orientation+of+Sprouting+Blood+Vessels&rft.jtitle=Advanced+functional+materials&rft.au=Szklanny%2C+Ariel+A.&rft.au=Debbi%2C+Lior&rft.au=Merdler%2C+Uri&rft.au=Neale%2C+Dylan&rft.date=2020-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=18&rft_id=info:doi/10.1002%2Fadfm.201901335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201901335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon