High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels
Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 18 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues.
A novel two‐step cell seeding on tesselated scaffolds produces highly organized and oriented vessel networks. Different compartment shapes promote vessel sprouting with specific orientations according to the compartment geometry and encourage distinct support cell distributions. Vessels depart from areas with low support cell concentration (side between corners) and are drawn to areas with higher concentration of support cells (corners). |
---|---|
AbstractList | Abstract
Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues. Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues. A novel two‐step cell seeding on tesselated scaffolds produces highly organized and oriented vessel networks. Different compartment shapes promote vessel sprouting with specific orientations according to the compartment geometry and encourage distinct support cell distributions. Vessels depart from areas with low support cell concentration (side between corners) and are drawn to areas with higher concentration of support cells (corners). Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues. |
Author | Guo, Shaowei Debbi, Lior Neale, Dylan Szklanny, Ariel A. Merdler, Uri Kaplan, Ben Muñiz, Ayse Lahann, Joerg Levenberg, Shulamit |
Author_xml | – sequence: 1 givenname: Ariel A. orcidid: 0000-0001-7913-5626 surname: Szklanny fullname: Szklanny, Ariel A. organization: Technion – Israel Institute of Technology – sequence: 2 givenname: Lior surname: Debbi fullname: Debbi, Lior organization: Technion – Israel Institute of Technology – sequence: 3 givenname: Uri surname: Merdler fullname: Merdler, Uri organization: Technion – Israel Institute of Technology – sequence: 4 givenname: Dylan surname: Neale fullname: Neale, Dylan organization: University of Michigan – sequence: 5 givenname: Ayse surname: Muñiz fullname: Muñiz, Ayse organization: University of Michigan – sequence: 6 givenname: Ben surname: Kaplan fullname: Kaplan, Ben organization: Technion – Israel Institute of Technology – sequence: 7 givenname: Shaowei surname: Guo fullname: Guo, Shaowei organization: Technion – Israel Institute of Technology – sequence: 8 givenname: Joerg surname: Lahann fullname: Lahann, Joerg organization: University of Michigan – sequence: 9 givenname: Shulamit orcidid: 0000-0001-5471-7339 surname: Levenberg fullname: Levenberg, Shulamit email: Shulamit@bm.technion.ac.il organization: Technion – Israel Institute of Technology |
BookMark | eNqFkLtOwzAUhi1UJMplZbbE3OJLQuKxFApIRQwtiC1ynOM2KImD7YCy8QhMPCBPgksRjEw-0vn-_1jfPho0pgGEjikZU0LYqSx0PWaECkI5j3fQkJ7RsxEnLB38zvRxD-0790QITRIeDdHHdblaf769L9fWdKt123m8UFJrUxV40TsPNdbG4oXvir5sVtivAV9qDcpjo_HcKFnhKzA1eNtj2RR4aVpTmVWPTfMNX8ALVKatofHf-ztbhlH6MuxDw6INd_2m-bwypsAP4BxU7hDtalk5OPp5D9D97HI5vR7N765uppP5SPE4iUcRyARImuZxnjAmdKFUrnOiFBOgYh4FF4LngouIqZyLJBYiDT7ihLCiIJLwA3Sy7Q3feO7A-ezJdLYJJzMW-CjhKdlQ4y2lrHHOgs5aW9bS9hkl2cZ9tnGf_boPAbENvJYV9P_Q2eRidvuX_QJh7oz3 |
CitedBy_id | crossref_primary_10_1002_anbr_202100075 crossref_primary_10_1016_j_copbio_2021_08_012 crossref_primary_10_3390_biomedicines11020427 crossref_primary_10_1002_anbr_202300012 crossref_primary_10_1021_acsbiomaterials_1c01401 crossref_primary_10_1098_rspa_2021_0607 crossref_primary_10_1002_smtd_202300032 crossref_primary_10_1021_acsami_3c04331 crossref_primary_10_1089_ten_tea_2022_29025_abstracts crossref_primary_10_1002_advs_202004205 crossref_primary_10_1016_j_jbiomech_2021_110263 crossref_primary_10_1016_j_actbio_2022_05_026 crossref_primary_10_1002_adma_202102661 crossref_primary_10_1016_j_actbio_2021_09_042 crossref_primary_10_1002_sstr_202000137 crossref_primary_10_1088_1758_5090_abe5b4 |
Cites_doi | 10.1016/j.biomaterials.2012.04.043 10.1007/s12013-007-9001-4 10.1016/j.msec.2017.02.001 10.1038/nmeth.3839 10.1016/j.tibtech.2016.03.002 10.1016/j.stem.2015.03.004 10.1073/pnas.1522273113 10.3934/nhm.2007.2.333 10.1096/fj.06-7117com 10.1089/ten.tea.2009.0584 10.3389/fbioe.2018.00002 10.1371/journal.pone.0210390 10.1016/j.addr.2011.03.004 10.1007/s10266-013-0116-3 10.1038/nmat1683 10.1116/1.5024601 10.1016/j.actbio.2008.08.020 10.1016/j.biomaterials.2012.08.068 10.1002/adma.201707196 10.3390/molecules21060685 10.1016/S0092-8240(77)80054-2 10.1016/j.biomaterials.2012.01.048 10.1371/journal.pone.0027385 10.1073/pnas.1205816109 10.1016/j.biomaterials.2018.02.012 10.1016/j.cell.2011.08.039 10.1016/j.biomaterials.2017.01.015 10.1016/j.biomaterials.2011.07.003 10.1002/jcp.1041090314 10.1038/srep17840 10.1016/j.coche.2013.11.003 10.1007/s10439-016-1653-z 10.1073/pnas.1201626109 10.1016/j.tibtech.2015.11.001 10.1172/JCI70212 10.1016/j.biomaterials.2013.12.101 10.1016/j.bpj.2013.10.008 10.1038/nbt1109 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201901335 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201901335 ADFM201901335 |
Genre | article |
GrantInformation_xml | – fundername: University of Michigan |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3575-4ea7e088b5b7229fdccbfb0cc29ec53419093b93942cb39759980285702dd0a03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 19:41:13 EDT 2024 Fri Aug 23 02:46:01 EDT 2024 Sat Aug 24 01:07:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3575-4ea7e088b5b7229fdccbfb0cc29ec53419093b93942cb39759980285702dd0a03 |
ORCID | 0000-0001-5471-7339 0000-0001-7913-5626 |
OpenAccessLink | http://deepblue.lib.umich.edu/bitstream/2027.42/155501/2/adfm201901335.pdf |
PQID | 2397473800 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2397473800 crossref_primary_10_1002_adfm_201901335 wiley_primary_10_1002_adfm_201901335_ADFM201901335 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 16 2015; 16 2018; 162 2013; 105 2017; 45 2019; 14 2013; 123 1981; 109 2006; 5 2011; 32 2011; 6 2012; 33 2016; 13 2005; 23 2012; 109 2016; 34 1999 2018; 6 2016; 5 2011; 146 2017; 74 2014; 3 2013; 17 1977; 39 2016; 21 2016; 113 2011; 63 2018 2014; 35 2018; 30 2009; 5 2007; 2 2017; 122 2007; 21 2018; 13 2007; 49 2014; 102 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Okeyo K. (e_1_2_8_25_1) 2013; 17 e_1_2_8_26_1 e_1_2_8_27_1 Bose P. (e_1_2_8_12_1) 2018 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 122 start-page: 72 year: 2017 publication-title: Biomaterials – volume: 13 year: 2018 publication-title: Biointerphases – volume: 109 start-page: 481 year: 1981 publication-title: J. Cell. Physiol. – volume: 14 year: 2019 publication-title: PLoS One – volume: 23 start-page: 879 year: 2005 publication-title: Nat. Biotechnol. – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 556 year: 2015 publication-title: Cell Stem Cell – volume: 35 start-page: 3273 year: 2014 publication-title: Biomaterials – volume: 6 start-page: 2 year: 2018 publication-title: Front. Bioeng. Biotechnol. – volume: 5 start-page: 590 year: 2006 publication-title: Nat. Mater. – volume: 33 start-page: 3824 year: 2012 publication-title: Biomaterials – volume: 63 start-page: 300 year: 2011 publication-title: Adv. Drug Delivery Rev. – volume: 162 start-page: 99 year: 2018 publication-title: Biomaterials – volume: 16 start-page: 2255 year: 2010 publication-title: Tissue Eng., Part A – volume: 45 start-page: 132 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 113 start-page: 3215 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 74 start-page: 146 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 32 start-page: 7856 year: 2011 publication-title: Biomaterials – volume: 2 start-page: 333 year: 2007 publication-title: Networks Heterog. Media – year: 2018 publication-title: ACS Biomater. Sci. Eng. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 start-page: 56 year: 2014 publication-title: Curr. Opin. Chem. Eng. – volume: 146 start-page: 873 year: 2011 publication-title: Cell – volume: 5 start-page: 29 year: 2009 publication-title: Acta Biomater. – volume: 21 start-page: 790 year: 2007 publication-title: FASEB J. – volume: 6 year: 2011 publication-title: PLoS One – volume: 21 start-page: 685 year: 2016 publication-title: Molecules – volume: 49 start-page: 165 year: 2007 publication-title: Cell Biochem. Biophys. – volume: 33 start-page: 9009 year: 2012 publication-title: Biomaterials – volume: 33 start-page: 5732 year: 2012 publication-title: Biomaterials – volume: 123 start-page: 3190 year: 2013 publication-title: J. Clin. Invest. – volume: 109 start-page: 6886 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 105 start-page: 2240 year: 2013 publication-title: Biophys. J. – volume: 17 start-page: 27 year: 2013 publication-title: μTAS Proc. – volume: 13 start-page: 405 year: 2016 publication-title: Nat. Methods – volume: 5 year: 2016 publication-title: Sci. Rep. – volume: 102 start-page: 259 year: 2014 publication-title: Odontology – volume: 39 start-page: 509 year: 1977 publication-title: Bull. Math. Biol. – volume: 34 start-page: 733 year: 2016 publication-title: Trends Biotechnol. – volume: 34 start-page: 156 year: 2016 publication-title: Trends Biotechnol. – year: 1999 – ident: e_1_2_8_38_1 doi: 10.1016/j.biomaterials.2012.04.043 – ident: e_1_2_8_24_1 doi: 10.1007/s12013-007-9001-4 – ident: e_1_2_8_23_1 doi: 10.1016/j.msec.2017.02.001 – ident: e_1_2_8_29_1 doi: 10.1038/nmeth.3839 – ident: e_1_2_8_31_1 doi: 10.1016/j.tibtech.2016.03.002 – ident: e_1_2_8_37_1 doi: 10.1016/j.stem.2015.03.004 – ident: e_1_2_8_40_1 doi: 10.1073/pnas.1522273113 – ident: e_1_2_8_22_1 doi: 10.3934/nhm.2007.2.333 – year: 2018 ident: e_1_2_8_12_1 publication-title: ACS Biomater. Sci. Eng. contributor: fullname: Bose P. – ident: e_1_2_8_33_1 doi: 10.1096/fj.06-7117com – ident: e_1_2_8_10_1 doi: 10.1089/ten.tea.2009.0584 – ident: e_1_2_8_4_1 doi: 10.3389/fbioe.2018.00002 – ident: e_1_2_8_8_1 doi: 10.1371/journal.pone.0210390 – ident: e_1_2_8_1_1 doi: 10.1016/j.addr.2011.03.004 – ident: e_1_2_8_35_1 doi: 10.1007/s10266-013-0116-3 – ident: e_1_2_8_21_1 – ident: e_1_2_8_30_1 doi: 10.1038/nmat1683 – ident: e_1_2_8_15_1 doi: 10.1116/1.5024601 – ident: e_1_2_8_9_1 doi: 10.1016/j.actbio.2008.08.020 – ident: e_1_2_8_28_1 doi: 10.1016/j.biomaterials.2012.08.068 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201707196 – ident: e_1_2_8_34_1 doi: 10.3390/molecules21060685 – ident: e_1_2_8_20_1 doi: 10.1016/S0092-8240(77)80054-2 – ident: e_1_2_8_14_1 doi: 10.1016/j.biomaterials.2012.01.048 – ident: e_1_2_8_19_1 doi: 10.1371/journal.pone.0027385 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1205816109 – ident: e_1_2_8_36_1 doi: 10.1016/j.biomaterials.2018.02.012 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2011.08.039 – ident: e_1_2_8_2_1 doi: 10.1016/j.biomaterials.2017.01.015 – ident: e_1_2_8_3_1 doi: 10.1016/j.biomaterials.2011.07.003 – ident: e_1_2_8_17_1 doi: 10.1002/jcp.1041090314 – ident: e_1_2_8_18_1 doi: 10.1038/srep17840 – ident: e_1_2_8_5_1 doi: 10.1016/j.coche.2013.11.003 – ident: e_1_2_8_6_1 doi: 10.1007/s10439-016-1653-z – ident: e_1_2_8_13_1 doi: 10.1073/pnas.1201626109 – ident: e_1_2_8_32_1 doi: 10.1016/j.tibtech.2015.11.001 – ident: e_1_2_8_27_1 doi: 10.1172/JCI70212 – ident: e_1_2_8_11_1 doi: 10.1016/j.biomaterials.2013.12.101 – ident: e_1_2_8_26_1 doi: 10.1016/j.bpj.2013.10.008 – volume: 17 start-page: 27 year: 2013 ident: e_1_2_8_25_1 publication-title: μTAS Proc. contributor: fullname: Okeyo K. – ident: e_1_2_8_39_1 doi: 10.1038/nbt1109 |
SSID | ssj0017734 |
Score | 2.4778564 |
Snippet | Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the... Abstract Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Blood vessels compartment geometry Corners Decisions Endothelial cells high throughput analysis Hydrogels Materials science Muscles Networks Protocol (computers) Scaffolds sprouting tissue engineering Topology vascular development |
Title | High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901335 https://www.proquest.com/docview/2397473800 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwI8omH5A4pTh2FnJkKwixSLSg3iJvkRAlqdrkUE58Aic-kC_BEzdtygUJjlFiK5mxPW-cN88IHXDtMZ0wZgZvqB3PY6ETSZc6ng78SPJA8rLC-_YuuHr0rrt-t1bFb_UhJhtuMDPK9RomOBfDo6loKFcJVJJDQGMMqsxdFgKn6_xhoh_lhqH9rRy4QPByu5VqI6FHs81no9IUatYBaxlxWsuIV-9qiSYvzSIXTfn2Q8bxPx-zgpbGcBSf2PGziuZ0uoYWayKF6-gTqCBf7x8de6JPv8hxW_IkyXoKW71zbIAvBkIilExhgyix1UTGWYJvIFbiS5296nwwwjxVuGPPZRjhLC0frvGWyvv3g-dxQVQKPbSNAQogZ-NTINnjJ1A77w030GPronN25YxPc3AkM5jQeJ-H2qxpwhchpVGipBSJIFLSSEsfZOVIxETEIo9KYVCSbxJBA378kFClCCdsE82nWaq3ENZUBq5gwuSGx55SUgiXaE1cIUy3KiENdFh5M-5b0Y7YyjPTGCwdTyzdQLuVs-Px5B3GlEGSxQyUbiBaeu2XXuKT89bt5Gr7L4120AKFTL6kUu6i-XxQ6D0Dd3KxXw7pb66m-k8 |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFEDBjVhOF0hUAcfOQUquZYFdkGBBdFF8REJAgpZsARWfQMUH8iV44s2y0CBBGSW2EnvG88Z58wywkWiP65RzY7yhdjyPh04kXeZ4OvAjmQQyKSu8W2dB48o7ufErNiHWwlh9iP6GG3pGuV6jg-OG9PaXamiiUiwlx4jGuT8Mo8bnOR5icHDRV5Byw9D-WA5cpHi5N5VuI2Xb39t_j0tfYHMQspYxpz4FonpbSzW52-oWYku-_BBy_NfnTMNkD5GSXWtCMzCks1mYGNApnIN3ZIN8vL617aE-j92CXMokTfN7RazkOTHYlyAnEaumiAGVxMoikzwlTQyX5EjnD7roPJMkU6Rtj2Z4JnlWPjxAXSrvn3duezVRGfZwaUagi_xssoc8e3KNguf3T_NwVT9s7zec3oEOjuQGFhoDSEJtljXhi5CxKFVSilRQKVmkpY_KcjTiIuKRx6QwQMk3uaDBP35ImVI0oXwBRrI804tANJOBK7gw6eGOp5QUwqVaU1cI061KaQ02q-mMH61uR2wVmlmMIx33R7oGK9Vsxz3_fYoZxzyLGzRdA1ZO2y-9xLsH9Vb_aukvjdZhrNFuNePm8dnpMowzTOxLZuUKjBSdrl416KcQa6V9fwJKzf5p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB2kKVA0h-5B3DgtDwF6kk2RWqqjU8d12ixFbRe-CVyBoqlkOPLBOeUTcsoH5kvCEW3H6aVAexQkEtIMyXlDvXkE2Bcm4sZy7gZvaoIo4mmQqZAFkUniTIlEibrC--Q06Y-iL-N4vFbF7_UhVhtuODPq9Ron-ETb9r1oqNAWK8kxoHEeP4LHUcIpkrq631cCUmGa-v_KSYgMr3C8lG2krP2w_cOwdI811xFrHXJ6z0EsX9YzTX61ZpVsqcs_dBz_52tewLMFHiUdP4BewoYpXsHWmkrha7hBLsjt1fXQH-kzmVVkoIS15bkmXvCcOORLkJGINVPEQUriRZFJackxBkvy2ZS_TTWdE1FoMvQHM8xJWdQPrxGX6vtn05-LiqgCexg4A8yQnU0OkGVPfqDc-fnFGxj1Doef-sHiOIdAcQcKnftFatyiJmOZMpZZrZS0kirFMqNi1JWjGZcZzyKmpINJscsEHfqJU8q0poLybdgsysLsADFMJaHk0iWHHyOtlZQhNYaGUrputaUN-LD0Zj7xqh2512dmOVo6X1m6Ac2ls_PF7L3IGccsizss3QBWe-0vveSdbu9kdfX2Xxq9hyffur38-Oj06y48ZZjV17TKJmxW05nZc9Cnku_q0X0HVRz9GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Throughput+Scaffold+System+for+Studying+the+Effect+of+Local+Geometry+and+Topology+on+the+Development+and+Orientation+of+Sprouting+Blood+Vessels&rft.jtitle=Advanced+functional+materials&rft.au=Szklanny%2C+Ariel+A.&rft.au=Debbi%2C+Lior&rft.au=Merdler%2C+Uri&rft.au=Neale%2C+Dylan&rft.date=2020-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901335&rft.externalDBID=10.1002%252Fadfm.201901335&rft.externalDocID=ADFM201901335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |