Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios

We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat elect...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. B. Basic research Vol. 247; no. 4; pp. 829 - 845
Main Authors Otto, Christian, Lüdge, Kathy, Schöll, Eckehard
Format Journal Article Conference Proceeding
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.04.2010
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text
ISSN0370-1972
1521-3951
DOI10.1002/pssb.200945434

Cover

Abstract We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser. Quantum dot (QD) lasers are promising devices for future telecommunication applications due to their higher tolerance to optical feedback in comparison to quantum well (QW) lasers. In this work a systematic study of the complex dynamics of a QD laser subjected to optical feedback from a short external cavity is presented. The QD model consists of a Lang‐Kobayashi‐like equation for the electric field combined with a system of microscopically based rate equations for the carriers. The dynamics of electrons and holes in the QDs and the surrounding wetting layer are separately treated. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations.
AbstractList We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser.
We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser. Quantum dot (QD) lasers are promising devices for future telecommunication applications due to their higher tolerance to optical feedback in comparison to quantum well (QW) lasers. In this work a systematic study of the complex dynamics of a QD laser subjected to optical feedback from a short external cavity is presented. The QD model consists of a Lang‐Kobayashi‐like equation for the electric field combined with a system of microscopically based rate equations for the carriers. The dynamics of electrons and holes in the QDs and the surrounding wetting layer are separately treated. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations.
Author Otto, Christian
Lüdge, Kathy
Schöll, Eckehard
Author_xml – sequence: 1
  givenname: Christian
  surname: Otto
  fullname: Otto, Christian
  email: otto@itp.physik.tu-berlin.de
  organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
– sequence: 2
  givenname: Kathy
  surname: Lüdge
  fullname: Lüdge, Kathy
  organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
– sequence: 3
  givenname: Eckehard
  surname: Schöll
  fullname: Schöll, Eckehard
  organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22607595$$DView record in Pascal Francis
BookMark eNqFkE1PGzEYhK2KSg1prz37wnHT1_bajrlB1KZI4UMKFVIvlu21i2Gzm9pOQ_49gRSEkBCnuTzPaDT7aK_rO4_QVwIjAkC_LXO2Iwqgal6z-gMaEE5JxRQne2gATEJFlKSf0H7ONwAgCSMDdHXaN76N3R_8d2W6slrgpi-4NdmnjNexXON-WaIzLQ7eN9a420OcfZdjif9i2eA-YBvDKjlTYt_h7HxnUuzzZ_QxmDb7L_9ziH79-H45-VnNzqcnk6NZ5RiXddU475UlNggQ4Btm7dgqMZa0CUJYEoihTjoqvRKUSeG2yRxIZkBxClyxITrY9S5N3q4MyXQuZr1McWHSRlMqQHLFt1y941zqc04-aBfL4-aSTGw1Af1won44UT-fuNVGr7Sn5jcFtRPWsfWbd2h9MZ8fv3SrnRtz8XfPrkm3Wkgmub46m2r1e8bUmBA9YfeGJJeu
CODEN PSSBBD
CitedBy_id crossref_primary_10_1103_PhysRevA_89_041801
crossref_primary_10_1109_JQE_2019_2953518
crossref_primary_10_1063_1_3587244
crossref_primary_10_1088_1367_2630_15_9_093031
crossref_primary_10_1016_j_chaos_2022_111850
crossref_primary_10_1063_1_3488004
crossref_primary_10_1103_PhysRevB_82_235301
crossref_primary_10_1038_s41377_021_00670_y
crossref_primary_10_1109_JQE_2019_2951110
crossref_primary_10_1088_0268_1242_26_1_014008
crossref_primary_10_1515_nanoph_2019_0570
crossref_primary_10_3390_photonics2020402
crossref_primary_10_1515_joc_2022_0154
crossref_primary_10_1049_iet_opt_2013_0078
crossref_primary_10_1063_1_4754588
crossref_primary_10_1103_PhysRevE_86_046201
crossref_primary_10_1007_s13538_020_00780_9
crossref_primary_10_1103_PhysRevE_86_065201
crossref_primary_10_1088_1367_2630_14_5_053018
crossref_primary_10_1002_pssb_202100345
crossref_primary_10_1007_s11082_014_9878_2
crossref_primary_10_1364_OE_22_013288
crossref_primary_10_1364_OE_426268
crossref_primary_10_1088_1367_2630_aae998
crossref_primary_10_1063_1_4953651
crossref_primary_10_1364_OE_28_003361
crossref_primary_10_1016_j_optcom_2013_07_034
crossref_primary_10_1103_PhysRevA_101_023803
crossref_primary_10_1002_pssb_200945433
crossref_primary_10_1098_rsta_2018_0124
crossref_primary_10_1140_epjd_e2010_00041_8
crossref_primary_10_1103_PhysRevLett_110_013601
crossref_primary_10_1142_S021812741250246X
crossref_primary_10_1088_1367_2630_17_5_053038
crossref_primary_10_1007_s12596_024_01939_2
crossref_primary_10_1109_JSTQE_2013_2246776
crossref_primary_10_1364_JOSAB_450966
crossref_primary_10_1007_s12043_016_1193_y
crossref_primary_10_1109_JQE_2010_2066959
crossref_primary_10_1109_JQE_2020_3010812
crossref_primary_10_1364_AO_54_005186
crossref_primary_10_1038_s42005_024_01858_5
crossref_primary_10_1364_OE_22_004867
crossref_primary_10_1103_PhysRevA_92_063832
crossref_primary_10_1088_1367_2630_14_11_113033
Cites_doi 10.1049/ip-opt:20010243
10.1364/OL.29.001072
10.1103/PhysRevE.78.056213
10.1103/PhysRevLett.97.213902
10.1049/el:20031153
10.1103/PhysRevLett.92.043902
10.1109/2944.401230
10.1016/S0079-6727(98)00008-1
10.1002/pssb.200945433
10.1002/pssa.200303971
10.1103/PhysRevLett.87.243901
10.1364/OL.32.001268
10.1016/0167-2789(83)90126-4
10.1109/JSTQE.2006.885332
10.1016/j.physrep.2005.06.003
10.1103/PhysRevE.76.056201
10.1103/PhysRevE.79.065201
10.1103/PhysRevE.67.066214
10.1103/PhysRevLett.82.1148
10.1142/S0218127408021348
10.1007/978-1-4757-2421-9
10.1002/0470856211
10.1109/3.119502
10.1109/68.87893
10.1103/PhysRevA.50.2719
10.1103/PhysRevLett.87.193901
10.1109/JSTQE.2007.905148
10.1016/S0030-4018(00)00574-5
10.1109/JQE.1980.1070479
10.1364/OE.14.010831
10.1103/PhysRevA.55.4443
10.1103/PhysRevB.78.035316
10.1103/PhysRevA.52.R3436
10.1103/PhysRevE.76.066202
10.1137/S0036139999360131
10.1142/S0218127407017914
10.1109/JQE.2009.2028159
10.1103/PhysRevE.77.066207
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/pssb.200945434
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage 845
ExternalDocumentID 22607595
10_1002_pssb_200945434
PSSB200945434
ark_67375_WNG_9ZL39811_C
Genre article
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
IQODW
ID FETCH-LOGICAL-c3574-dcee9b1bf6060ed3bb8b96872df66b1f1a2c7c27e962376ce963c073a09520593
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Mon Jul 21 09:15:23 EDT 2025
Tue Jul 01 00:57:47 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Wed Jan 22 16:41:04 EST 2025
Wed Oct 30 09:55:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Quantum dot lasers
Optical confinement
Semiconductor lasers
Optical feedback
Feedback
Quantum dots
Quantum wells
Rate equation
Quantum well lasers
Optical multistability
External cavity
Electric fields
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3574-dcee9b1bf6060ed3bb8b96872df66b1f1a2c7c27e962376ce963c073a09520593
Notes ark:/67375/WNG-9ZL39811-C
ArticleID:PSSB200945434
istex:4E115C6D3F835ACC3336C5AEAF8F2C70C7A1717F
PageCount 17
ParticipantIDs pascalfrancis_primary_22607595
crossref_citationtrail_10_1002_pssb_200945434
crossref_primary_10_1002_pssb_200945434
wiley_primary_10_1002_pssb_200945434_PSSB200945434
istex_primary_ark_67375_WNG_9ZL39811_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Physica status solidi. B. Basic research
PublicationTitleAlternate phys. stat. sol. (b)
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 78( 5), 056213 (2008).
E. A. Viktorov, P. Mandel, and G. Huyet, Opt. Lett. 32( 10), 1268- 1270 (2007).
D. O'Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, Electron. Lett. 39, 25 (2003).
D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, SIAM J. Appl. Math. 61( 3), 966- 982 (2000).
V. Flunkert, O. D'Huys, J. Danckaert, I. Fischer, and E. Schöll, Phys. Rev. E 79, 065201 (R) (2009).
C. W. Gardiner, Handbook of Stochastic Methods ( Springer, Berlin, Heidelberg, New York, 1985).
G. H. M. van Tartwijk, and D. Lenstra, Quantum Semiclass. Opt. 7, 84 (1995).
R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, IEE Proc. Optoelectron. 148( 1), 7- 12 (2001).
V. Flunkert and E. Schöll, Phys. Rev. E 76, 066202 (2007).
O. Carroll, I. O'Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, and P. Mandel, Opt. Express 14( 22), 10831- 10837 (2006).
B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll, Phys. Rev. E 77( 6), 066207 (2008).
V. Rottschäfer and B. Krauskopf, Int. J. Bif. Chaos 17( 5), 1575- 1588 (2007).
D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures ( John Wiley & Sons Ltd., New York, 1999).
S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006).
G. Lythe, T. Erneux, A. Gavrielides, and V. Kovanis, Phys. Rev. A 55( 6), 4443- 4448 (1997).
D. M. Kane, K. A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers ( Wiley-VCH, Weinheim, 2005).
T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, Phys. Rev. E 67, 066214 (2003).
T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 76( 5), 056201 (2007).
W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals ( Springer, Berlin, 2004).
T. Sano, Phys. Rev. A 50( 3), 2719- 2726 (1994).
M. R. Dachner, E. Malić, M. Richter, A. Carmele, J. Kabuß, A. Wilms, J. E. Kim, G. Hartmann, J. Wolters, U. Bandelow, and A. Knorr, Phys. Status Solidi B 247, No. 4 (2010), this issue.
M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, IEEE J. Sel. Top. Quantum Electron. 13( 1), 136- 142 (2007).
S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, Phys. Rep. 416( 1-2), 1- 128 (2005).
A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148- 1151 (1999).
B. Krauskopf and D. Lenstra (eds.), Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548 ( American Institute of Physics, Melville, New York, 2000).
J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron. 28, 93 (1992).
D. O'Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. 29( 10), 1072- 1074 (2004).
K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45( 11), 1396- 1403 (2009).
R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
J. Hizanidis, R. Aust, and E. Schöll, Int. J. Bifur. Chaos 18( 6), 1759- 1765 (2008).
A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52( 5), R3436-R3439 (1995).
G. H. M. van Tartwijk, and G. P. Agrawal, Prog. Quantum Electron. 22( 2), 43- 122 (1998).
K. Lüdge, M. J. P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, Phys. Rev. B 78( 3), 035316 (2008).
O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004).
T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, Phys. Rev. Lett. 87, 243901 (2001).
G. H. M. van Tartwijk, A. M. Levine, and D. Lenstra, IEEE J. Sel. Topics Quantum Electron. 1( 2), 466 (1995).
E. Malić, M. J. P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, IEEE J. Sel. Top. Quantum Electron. 13( 5), 1242- 1248 (2007).
G. Huyet, D. O'Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, Phys. Status Solidi B 201( 2), 345- 352 (2004).
N. Schunk and K. Petermann, IEEE Photonics Technol. Lett. 1( 3), 49- 51 (1989).
B. Krauskopf, G. H. M. van Tartwijk, and G. R. Gray, Opt. Commun. 177( 1-6), 347 (2000).
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory ( Springer, New York, 1995).
C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181- 200 (1983).
D. Pieroux, T. Erneux, B. Haegeman, K. Engelborghs, and D. Roose, Phys. Rev. Lett. 87, 19, (2001).
2009; 45
2007; 17
1995; 52
2006; 97
1989; 1
2004; 201
2004; 29
2008; 18
2010; 247
1983; 7
2006; 14
2005; 416
2008; 78
1995
2003; 39
2005
2004
2008; 77
2000; 177
1999; 82
2007; 76
2007; 32
1995; 1
2007; 13
2001; 148
1998; 22
1999
2001; 87
1995; 7
1980; 16
2009; 79
2004; 92
1997; 55
2000
1992; 28
2000; 61
1985
1994; 50
2003; 67
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_41_2
Chow W. W. (e_1_2_10_3_2) 2004
e_1_2_10_40_2
Bimberg D. (e_1_2_10_2_2) 1999
e_1_2_10_19_2
e_1_2_10_17_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
van Tartwijk G. H. M. (e_1_2_10_34_2) 1995; 7
Gardiner C. W. (e_1_2_10_35_2) 1985
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
Krauskopf B. (e_1_2_10_36_2) 2000
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: D. M. Kane, K. A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers ( Wiley-VCH, Weinheim, 2005).
– reference: D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, SIAM J. Appl. Math. 61( 3), 966- 982 (2000).
– reference: C. W. Gardiner, Handbook of Stochastic Methods ( Springer, Berlin, Heidelberg, New York, 1985).
– reference: A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148- 1151 (1999).
– reference: T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 76( 5), 056201 (2007).
– reference: B. Krauskopf, G. H. M. van Tartwijk, and G. R. Gray, Opt. Commun. 177( 1-6), 347 (2000).
– reference: K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45( 11), 1396- 1403 (2009).
– reference: T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 78( 5), 056213 (2008).
– reference: G. Lythe, T. Erneux, A. Gavrielides, and V. Kovanis, Phys. Rev. A 55( 6), 4443- 4448 (1997).
– reference: R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, IEE Proc. Optoelectron. 148( 1), 7- 12 (2001).
– reference: S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006).
– reference: W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals ( Springer, Berlin, 2004).
– reference: R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
– reference: E. Malić, M. J. P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, IEEE J. Sel. Top. Quantum Electron. 13( 5), 1242- 1248 (2007).
– reference: O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004).
– reference: Y. A. Kuznetsov, Elements of Applied Bifurcation Theory ( Springer, New York, 1995).
– reference: B. Krauskopf and D. Lenstra (eds.), Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548 ( American Institute of Physics, Melville, New York, 2000).
– reference: T. Sano, Phys. Rev. A 50( 3), 2719- 2726 (1994).
– reference: M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, IEEE J. Sel. Top. Quantum Electron. 13( 1), 136- 142 (2007).
– reference: E. A. Viktorov, P. Mandel, and G. Huyet, Opt. Lett. 32( 10), 1268- 1270 (2007).
– reference: J. Hizanidis, R. Aust, and E. Schöll, Int. J. Bifur. Chaos 18( 6), 1759- 1765 (2008).
– reference: V. Flunkert and E. Schöll, Phys. Rev. E 76, 066202 (2007).
– reference: A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52( 5), R3436-R3439 (1995).
– reference: M. R. Dachner, E. Malić, M. Richter, A. Carmele, J. Kabuß, A. Wilms, J. E. Kim, G. Hartmann, J. Wolters, U. Bandelow, and A. Knorr, Phys. Status Solidi B 247, No. 4 (2010), this issue.
– reference: N. Schunk and K. Petermann, IEEE Photonics Technol. Lett. 1( 3), 49- 51 (1989).
– reference: C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181- 200 (1983).
– reference: D. O'Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, Electron. Lett. 39, 25 (2003).
– reference: G. H. M. van Tartwijk, and D. Lenstra, Quantum Semiclass. Opt. 7, 84 (1995).
– reference: T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, Phys. Rev. E 67, 066214 (2003).
– reference: V. Rottschäfer and B. Krauskopf, Int. J. Bif. Chaos 17( 5), 1575- 1588 (2007).
– reference: G. H. M. van Tartwijk, and G. P. Agrawal, Prog. Quantum Electron. 22( 2), 43- 122 (1998).
– reference: K. Lüdge, M. J. P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, Phys. Rev. B 78( 3), 035316 (2008).
– reference: D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures ( John Wiley & Sons Ltd., New York, 1999).
– reference: G. Huyet, D. O'Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, Phys. Status Solidi B 201( 2), 345- 352 (2004).
– reference: O. Carroll, I. O'Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, and P. Mandel, Opt. Express 14( 22), 10831- 10837 (2006).
– reference: V. Flunkert, O. D'Huys, J. Danckaert, I. Fischer, and E. Schöll, Phys. Rev. E 79, 065201 (R) (2009).
– reference: S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, Phys. Rep. 416( 1-2), 1- 128 (2005).
– reference: D. Pieroux, T. Erneux, B. Haegeman, K. Engelborghs, and D. Roose, Phys. Rev. Lett. 87, 19, (2001).
– reference: G. H. M. van Tartwijk, A. M. Levine, and D. Lenstra, IEEE J. Sel. Topics Quantum Electron. 1( 2), 466 (1995).
– reference: T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, Phys. Rev. Lett. 87, 243901 (2001).
– reference: B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll, Phys. Rev. E 77( 6), 066207 (2008).
– reference: J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron. 28, 93 (1992).
– reference: D. O'Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. 29( 10), 1072- 1074 (2004).
– year: 1985
– volume: 76
  start-page: 066202
  year: 2007
  publication-title: Phys. Rev. E
– volume: 78
  start-page: 035316
  issue: 3
  year: 2008
  publication-title: Phys. Rev. B
– volume: 247
  year: 2010
  publication-title: Phys. Status Solidi B
– volume: 78
  start-page: 056213
  issue: 5
  year: 2008
  publication-title: Phys. Rev. E
– volume: 76
  start-page: 056201
  issue: 5
  year: 2007
  publication-title: Phys. Rev. E
– volume: 7
  start-page: 181
  year: 1983
  end-page: 200
  publication-title: Physica D
– volume: 13
  start-page: 1242
  issue: 5
  year: 2007
  end-page: 1248
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 29
  start-page: 1072
  issue: 10
  year: 2004
  end-page: 1074
  publication-title: Opt. Lett.
– volume: 87
  start-page: 243901
  year: 2001
  publication-title: Phys. Rev. Lett.
– year: 2005
– volume: 77
  start-page: 066207
  issue: 6
  year: 2008
  publication-title: Phys. Rev. E
– volume: 55
  start-page: 4443
  issue: 6
  year: 1997
  end-page: 4448
  publication-title: Phys. Rev. A
– volume: 61
  start-page: 966
  issue: 3
  year: 2000
  end-page: 982
  publication-title: SIAM J. Appl. Math.
– volume: 92
  start-page: 043902
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 43
  issue: 2
  year: 1998
  end-page: 122
  publication-title: Prog. Quantum Electron.
– volume: 1
  start-page: 466
  issue: 2
  year: 1995
  publication-title: IEEE J. Sel. Topics Quantum Electron.
– year: 2000
– volume: 177
  start-page: 347
  issue: 1–6
  year: 2000
  publication-title: Opt. Commun.
– volume: 28
  start-page: 93
  year: 1992
  publication-title: IEEE J. Quantum Electron.
– volume: 201
  start-page: 345
  issue: 2
  year: 2004
  end-page: 352
  publication-title: Phys. Status Solidi B
– volume: 39
  start-page: 25
  year: 2003
  publication-title: Electron. Lett.
– volume: 45
  start-page: 1396
  issue: 11
  year: 2009
  end-page: 1403
  publication-title: IEEE J. Quantum Electron.
– volume: 52
  start-page: R3436–R3439
  issue: 5
  year: 1995
  publication-title: Phys. Rev. A
– volume: 97
  start-page: 213902
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 84
  year: 1995
  publication-title: Quantum Semiclass. Opt.
– volume: 14
  start-page: 10831
  issue: 22
  year: 2006
  end-page: 10837
  publication-title: Opt. Express
– volume: 416
  start-page: 1
  issue: 1–2
  year: 2005
  end-page: 128
  publication-title: Phys. Rep.
– volume: 148
  start-page: 7
  issue: 1
  year: 2001
  end-page: 12
  publication-title: IEE Proc. Optoelectron.
– volume: 13
  start-page: 136
  issue: 1
  year: 2007
  end-page: 142
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 82
  start-page: 1148
  year: 1999
  end-page: 1151
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 1575
  issue: 5
  year: 2007
  end-page: 1588
  publication-title: Int. J. Bif. Chaos
– volume: 87
  start-page: 19
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 1759
  issue: 6
  year: 2008
  end-page: 1765
  publication-title: Int. J. Bifur. Chaos
– volume: 50
  start-page: 2719
  issue: 3
  year: 1994
  end-page: 2726
  publication-title: Phys. Rev. A
– volume: 67
  start-page: 066214
  year: 2003
  publication-title: Phys. Rev. E
– year: 2004
– volume: 32
  start-page: 1268
  issue: 10
  year: 2007
  end-page: 1270
  publication-title: Opt. Lett.
– volume: 16
  start-page: 347
  year: 1980
  publication-title: IEEE J. Quantum Electron.
– year: 1995
– volume: 1
  start-page: 49
  issue: 3
  year: 1989
  end-page: 51
  publication-title: IEEE Photonics Technol. Lett.
– volume: 79
  year: 2009
  publication-title: Phys. Rev. E
– year: 1999
– ident: e_1_2_10_29_2
  doi: 10.1049/ip-opt:20010243
– ident: e_1_2_10_6_2
  doi: 10.1364/OL.29.001072
– ident: e_1_2_10_17_2
  doi: 10.1103/PhysRevE.78.056213
– ident: e_1_2_10_14_2
  doi: 10.1103/PhysRevLett.97.213902
– ident: e_1_2_10_5_2
  doi: 10.1049/el:20031153
– ident: e_1_2_10_10_2
  doi: 10.1103/PhysRevLett.92.043902
– ident: e_1_2_10_30_2
  doi: 10.1109/2944.401230
– ident: e_1_2_10_12_2
  doi: 10.1016/S0079-6727(98)00008-1
– ident: e_1_2_10_4_2
  doi: 10.1002/pssb.200945433
– ident: e_1_2_10_7_2
  doi: 10.1002/pssa.200303971
– ident: e_1_2_10_31_2
  doi: 10.1103/PhysRevLett.87.243901
– ident: e_1_2_10_27_2
  doi: 10.1364/OL.32.001268
– ident: e_1_2_10_44_2
  doi: 10.1016/0167-2789(83)90126-4
– volume-title: Semiconductor‐Laser Fundamentals
  year: 2004
  ident: e_1_2_10_3_2
– ident: e_1_2_10_9_2
  doi: 10.1109/JSTQE.2006.885332
– ident: e_1_2_10_13_2
  doi: 10.1016/j.physrep.2005.06.003
– ident: e_1_2_10_16_2
  doi: 10.1103/PhysRevE.76.056201
– ident: e_1_2_10_19_2
  doi: 10.1103/PhysRevE.79.065201
– ident: e_1_2_10_26_2
  doi: 10.1103/PhysRevE.67.066214
– ident: e_1_2_10_24_2
  doi: 10.1103/PhysRevLett.82.1148
– ident: e_1_2_10_41_2
  doi: 10.1142/S0218127408021348
– volume: 7
  start-page: 84
  year: 1995
  ident: e_1_2_10_34_2
  publication-title: Quantum Semiclass. Opt.
– ident: e_1_2_10_40_2
  doi: 10.1007/978-1-4757-2421-9
– ident: e_1_2_10_11_2
  doi: 10.1002/0470856211
– volume-title: Quantum Dot Heterostructures
  year: 1999
  ident: e_1_2_10_2_2
– volume-title: Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548
  year: 2000
  ident: e_1_2_10_36_2
– ident: e_1_2_10_22_2
  doi: 10.1109/3.119502
– ident: e_1_2_10_28_2
  doi: 10.1109/68.87893
– ident: e_1_2_10_23_2
  doi: 10.1103/PhysRevA.50.2719
– ident: e_1_2_10_25_2
  doi: 10.1103/PhysRevLett.87.193901
– ident: e_1_2_10_32_2
  doi: 10.1109/JSTQE.2007.905148
– volume-title: Handbook of Stochastic Methods
  year: 1985
  ident: e_1_2_10_35_2
– ident: e_1_2_10_37_2
  doi: 10.1016/S0030-4018(00)00574-5
– ident: e_1_2_10_21_2
  doi: 10.1109/JQE.1980.1070479
– ident: e_1_2_10_8_2
  doi: 10.1364/OE.14.010831
– ident: e_1_2_10_38_2
  doi: 10.1103/PhysRevA.55.4443
– ident: e_1_2_10_33_2
  doi: 10.1103/PhysRevB.78.035316
– ident: e_1_2_10_42_2
  doi: 10.1103/PhysRevA.52.R3436
– ident: e_1_2_10_15_2
  doi: 10.1103/PhysRevE.76.066202
– ident: e_1_2_10_43_2
  doi: 10.1137/S0036139999360131
– ident: e_1_2_10_39_2
  doi: 10.1142/S0218127407017914
– ident: e_1_2_10_20_2
  doi: 10.1109/JQE.2009.2028159
– ident: e_1_2_10_18_2
  doi: 10.1103/PhysRevE.77.066207
SSID ssj0007131
ssj0047196
Score 2.1878052
Snippet We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 829
SubjectTerms 42.55.Px
42.55.Px, 42.60.Da, 85.35.Be
42.60.Da
85.35.Be
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lasers
Nonlinear optics
Optical bistability, multistability and switching, including local field effects
Optics
Physics
Semiconductor lasers; laser diodes
Title Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios
URI https://api.istex.fr/ark:/67375/WNG-9ZL39811-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.200945434
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iCF7cxXEjB9FTdbqliTd3ERFxQfFSkjQBGZ0Zp1MQf73vJTPVEUTQUwkkLclL3tYv3yNk04RxKBNeBCnjJgB7nAUqNdCUokiahS6Mdmyfl-zsLjl_SB--3OL3_BB1wg1PhtPXeMClKnc_SUO7Zanc5b0Eb0eCEg5jhuT5R9ef_FEQgdWAD9DCwv-5zJoBFtsaUjg2o93Rd42YqAlc7TeETMoSVs36chejrqyzRSczRA5n4SEorZ2qr3b0-zeCx_9Mc5ZMDxxVuu931hwZM-15MukAo7pcIPdYRA2vstPXCoRTvVAIbym44uBOUkzu0k7XpcmpBfuopG7t0RLB8r5aBe1Yqp5s1fMZQ4qcUhC1d8pFcndyfHt4FgyKNAQaBJsEBVhZoUJlIRJqmiJWiivBeBYVljEV2lBGOtNRZgRDAI6GZ6xBr0jw7SKsJ7hExtudtlkmlPMkjiyLwwRCZW4ZF2GiY1EYmTIjWdYgwVAuuR4wmGMhjefccy9HOS5WXi9Wg2zX_bueu-PHnltOzHU32Wsh4i1L8_vL01w8XsSCQ6R02CAbI_ugHgBeLDhfIm2QyEnzlw_mVzc3B3Vr5S-DVsmURzIgimiNjPd7lVkHB6mvNtwh-AChYAaN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTQhexvglurHhBwRP2ZrEcWze2GAUKBVim4Z4iWzHllChLU0jTfz13NltpiIhJHiKLDmJ7It9310-fwfw1KV5qrmsk0JIl6A_LhNTOGxqVfN-bWtng9rnSAwu-LvPxYpNSGdhoj5El3CjlRH2a1rglJA-ulYNnTWNCaf3OB2PvAFbHNEGxV-vPl0rSGEM1lE-cB9W8d9l2U-o3NZKxLGfHa0_bM1JbdF8XxFpUjc4bz4WvFgHs8Ebnd4BsxpHJKGMD9uFObQ_f5N4_K-B7sD2Equyl_HjugsbbnIPbgbOqG3uwyXVUaPT7OxHi_ZpvzOMcBmicUSUjPK7bDoLmXLm0UUabccvWEN8-Viwgk09M199O49JQ0ayUhi4T5sHcHH6-vxkkCzrNCQWbcuTGh2tMqnxGAz1XZ0bI40SssxqL4RJfaozW9qsdEoQB8fiNbe4tWiEdxmVFHwIm5PpxD0CJiXPMy_ylGO0LL2QKuU2V7XThXBalD1IVoap7FLEnGppfKui_HJW0WRV3WT14HnXfxblO_7Y81mwc9dNz8dEeiuL6nL0plJfhrmSGCyd9OBg7UPobkAgi_hLFT3Igjn_8sLq49nZcdfa_ZebnsCtwfmHYTV8O3q_B7cjsYFIRY9hczFv3T7ipYU5CCviFxa9Cqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAX3hXLo_iA4JR2kziOzQ0KS4FqVVGqVlwiPyW0sLtsNhLi1zNj76YsEkKCU2TJTmSP7fnG-fwNwBOfl7nm0mWVkD5Df1xnpvJY1MrxobPO26j2ORaHp_zdeXX-yy3-pA_RH7jRyoj7NS3wuQv7F6Kh87Y18fIep9uRl2GbC4QTBIs-XAhIYQjWMz5wG1bp12U9zCjb1lrDcVjsb75sw0dt03B_J86kbnHYQsp3sYllozMa3QC97kbioEz2uqXZsz9-U3j8n37ehOsrpMpepKl1Cy756W24Ehmjtr0DZ5RFje6ys28dWqf7yjC-ZYjFEU8yOt1ls3k8J2cBHaTRdvKctcSWT-kq2Cww8zl0i3RkyEhUCsP2WXsXTkevPx4cZqssDZlFy_LMoZtVJjcBQ6Ghd6Ux0igh68IFIUwecl3Y2ha1V4IYOBafpcWNRSO4Kyih4A5sTWdTfw-YlLwsgihzjrGyDEKqnNtSOa8r4bWoB5Ct7dLYlYQ5ZdL40iTx5aKhwWr6wRrAs77-PIl3_LHm02jmvppeTIjyVlfN2fhNoz4dlUpiqHQwgN2NedA3QBiL6EtVAyiiNf_yweb45ORlX7r_L40ew9XjV6Pm6O34_QO4llgNxCh6CFvLRecfIVhamt24Hn4C6TgJWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physica+status+solidi.+B.+Basic+research&rft.atitle=Modeling+quantum+dot+lasers+with+optical+feedback%3A+sensitivity+of+bifurcation+scenarios&rft.au=OTTO%2C+Christian&rft.au=L%C3%9CDGE%2C+Kathy&rft.au=SCH%C3%96LL%2C+Eckehard&rft.date=2010-04-01&rft.pub=Wiley-VCH&rft.issn=0370-1972&rft.volume=247&rft.issue=4&rft.spage=829&rft.epage=845&rft_id=info:doi/10.1002%2Fpssb.200945434&rft.externalDBID=n%2Fa&rft.externalDocID=22607595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon