Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios
We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat elect...
Saved in:
Published in | Physica status solidi. B. Basic research Vol. 247; no. 4; pp. 829 - 845 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.04.2010
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 0370-1972 1521-3951 |
DOI | 10.1002/pssb.200945434 |
Cover
Abstract | We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser.
Quantum dot (QD) lasers are promising devices for future telecommunication applications due to their higher tolerance to optical feedback in comparison to quantum well (QW) lasers. In this work a systematic study of the complex dynamics of a QD laser subjected to optical feedback from a short external cavity is presented. The QD model consists of a Lang‐Kobayashi‐like equation for the electric field combined with a system of microscopically based rate equations for the carriers. The dynamics of electrons and holes in the QDs and the surrounding wetting layer are separately treated. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. |
---|---|
AbstractList | We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser. We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model consists of a Lang–Kobayashi like model for the electric field combined with a microscopically based rate equation system. We separately treat electron and hole dynamics in the QDs and the surrounding wetting layer (WL). By tuning the phase–amplitude coupling and the optical confinement factor we are able to discuss various scenarios of the dynamics on the route towards conventional quantum well (QW) lasers. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. In dependence of the feedback strength we analyze complex bifurcation scenarios for the intensity of the emitted laser light as well as time series, power spectra, and phase portraits of all dynamic variables in order to elucidate the internal dynamics of the laser. Quantum dot (QD) lasers are promising devices for future telecommunication applications due to their higher tolerance to optical feedback in comparison to quantum well (QW) lasers. In this work a systematic study of the complex dynamics of a QD laser subjected to optical feedback from a short external cavity is presented. The QD model consists of a Lang‐Kobayashi‐like equation for the electric field combined with a system of microscopically based rate equations for the carriers. The dynamics of electrons and holes in the QDs and the surrounding wetting layer are separately treated. Due to the optical feedback, multistability occurs in our model in form of external cavity modes (ECMs) or delay‐induced intensity pulsations. |
Author | Otto, Christian Lüdge, Kathy Schöll, Eckehard |
Author_xml | – sequence: 1 givenname: Christian surname: Otto fullname: Otto, Christian email: otto@itp.physik.tu-berlin.de organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany – sequence: 2 givenname: Kathy surname: Lüdge fullname: Lüdge, Kathy organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany – sequence: 3 givenname: Eckehard surname: Schöll fullname: Schöll, Eckehard organization: Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22607595$$DView record in Pascal Francis |
BookMark | eNqFkE1PGzEYhK2KSg1prz37wnHT1_bajrlB1KZI4UMKFVIvlu21i2Gzm9pOQ_49gRSEkBCnuTzPaDT7aK_rO4_QVwIjAkC_LXO2Iwqgal6z-gMaEE5JxRQne2gATEJFlKSf0H7ONwAgCSMDdHXaN76N3R_8d2W6slrgpi-4NdmnjNexXON-WaIzLQ7eN9a420OcfZdjif9i2eA-YBvDKjlTYt_h7HxnUuzzZ_QxmDb7L_9ziH79-H45-VnNzqcnk6NZ5RiXddU475UlNggQ4Btm7dgqMZa0CUJYEoihTjoqvRKUSeG2yRxIZkBxClyxITrY9S5N3q4MyXQuZr1McWHSRlMqQHLFt1y941zqc04-aBfL4-aSTGw1Af1won44UT-fuNVGr7Sn5jcFtRPWsfWbd2h9MZ8fv3SrnRtz8XfPrkm3Wkgmub46m2r1e8bUmBA9YfeGJJeu |
CODEN | PSSBBD |
CitedBy_id | crossref_primary_10_1103_PhysRevA_89_041801 crossref_primary_10_1109_JQE_2019_2953518 crossref_primary_10_1063_1_3587244 crossref_primary_10_1088_1367_2630_15_9_093031 crossref_primary_10_1016_j_chaos_2022_111850 crossref_primary_10_1063_1_3488004 crossref_primary_10_1103_PhysRevB_82_235301 crossref_primary_10_1038_s41377_021_00670_y crossref_primary_10_1109_JQE_2019_2951110 crossref_primary_10_1088_0268_1242_26_1_014008 crossref_primary_10_1515_nanoph_2019_0570 crossref_primary_10_3390_photonics2020402 crossref_primary_10_1515_joc_2022_0154 crossref_primary_10_1049_iet_opt_2013_0078 crossref_primary_10_1063_1_4754588 crossref_primary_10_1103_PhysRevE_86_046201 crossref_primary_10_1007_s13538_020_00780_9 crossref_primary_10_1103_PhysRevE_86_065201 crossref_primary_10_1088_1367_2630_14_5_053018 crossref_primary_10_1002_pssb_202100345 crossref_primary_10_1007_s11082_014_9878_2 crossref_primary_10_1364_OE_22_013288 crossref_primary_10_1364_OE_426268 crossref_primary_10_1088_1367_2630_aae998 crossref_primary_10_1063_1_4953651 crossref_primary_10_1364_OE_28_003361 crossref_primary_10_1016_j_optcom_2013_07_034 crossref_primary_10_1103_PhysRevA_101_023803 crossref_primary_10_1002_pssb_200945433 crossref_primary_10_1098_rsta_2018_0124 crossref_primary_10_1140_epjd_e2010_00041_8 crossref_primary_10_1103_PhysRevLett_110_013601 crossref_primary_10_1142_S021812741250246X crossref_primary_10_1088_1367_2630_17_5_053038 crossref_primary_10_1007_s12596_024_01939_2 crossref_primary_10_1109_JSTQE_2013_2246776 crossref_primary_10_1364_JOSAB_450966 crossref_primary_10_1007_s12043_016_1193_y crossref_primary_10_1109_JQE_2010_2066959 crossref_primary_10_1109_JQE_2020_3010812 crossref_primary_10_1364_AO_54_005186 crossref_primary_10_1038_s42005_024_01858_5 crossref_primary_10_1364_OE_22_004867 crossref_primary_10_1103_PhysRevA_92_063832 crossref_primary_10_1088_1367_2630_14_11_113033 |
Cites_doi | 10.1049/ip-opt:20010243 10.1364/OL.29.001072 10.1103/PhysRevE.78.056213 10.1103/PhysRevLett.97.213902 10.1049/el:20031153 10.1103/PhysRevLett.92.043902 10.1109/2944.401230 10.1016/S0079-6727(98)00008-1 10.1002/pssb.200945433 10.1002/pssa.200303971 10.1103/PhysRevLett.87.243901 10.1364/OL.32.001268 10.1016/0167-2789(83)90126-4 10.1109/JSTQE.2006.885332 10.1016/j.physrep.2005.06.003 10.1103/PhysRevE.76.056201 10.1103/PhysRevE.79.065201 10.1103/PhysRevE.67.066214 10.1103/PhysRevLett.82.1148 10.1142/S0218127408021348 10.1007/978-1-4757-2421-9 10.1002/0470856211 10.1109/3.119502 10.1109/68.87893 10.1103/PhysRevA.50.2719 10.1103/PhysRevLett.87.193901 10.1109/JSTQE.2007.905148 10.1016/S0030-4018(00)00574-5 10.1109/JQE.1980.1070479 10.1364/OE.14.010831 10.1103/PhysRevA.55.4443 10.1103/PhysRevB.78.035316 10.1103/PhysRevA.52.R3436 10.1103/PhysRevE.76.066202 10.1137/S0036139999360131 10.1142/S0218127407017914 10.1109/JQE.2009.2028159 10.1103/PhysRevE.77.066207 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/pssb.200945434 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
EndPage | 845 |
ExternalDocumentID | 22607595 10_1002_pssb_200945434 PSSB200945434 ark_67375_WNG_9ZL39811_C |
Genre | article |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFFNX AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AUFTA AZBYB AZFZN AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FEDTE G.N GNP GODZA GYQRN H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SAMSI W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AAYCA AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGYGG CITATION IQODW |
ID | FETCH-LOGICAL-c3574-dcee9b1bf6060ed3bb8b96872df66b1f1a2c7c27e962376ce963c073a09520593 |
IEDL.DBID | DR2 |
ISSN | 0370-1972 |
IngestDate | Mon Jul 21 09:15:23 EDT 2025 Tue Jul 01 00:57:47 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Wed Jan 22 16:41:04 EST 2025 Wed Oct 30 09:55:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Quantum dot lasers Optical confinement Semiconductor lasers Optical feedback Feedback Quantum dots Quantum wells Rate equation Quantum well lasers Optical multistability External cavity Electric fields |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3574-dcee9b1bf6060ed3bb8b96872df66b1f1a2c7c27e962376ce963c073a09520593 |
Notes | ark:/67375/WNG-9ZL39811-C ArticleID:PSSB200945434 istex:4E115C6D3F835ACC3336C5AEAF8F2C70C7A1717F |
PageCount | 17 |
ParticipantIDs | pascalfrancis_primary_22607595 crossref_citationtrail_10_1002_pssb_200945434 crossref_primary_10_1002_pssb_200945434 wiley_primary_10_1002_pssb_200945434_PSSB200945434 istex_primary_ark_67375_WNG_9ZL39811_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2010 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Physica status solidi. B. Basic research |
PublicationTitleAlternate | phys. stat. sol. (b) |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 78( 5), 056213 (2008). E. A. Viktorov, P. Mandel, and G. Huyet, Opt. Lett. 32( 10), 1268- 1270 (2007). D. O'Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, Electron. Lett. 39, 25 (2003). D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, SIAM J. Appl. Math. 61( 3), 966- 982 (2000). V. Flunkert, O. D'Huys, J. Danckaert, I. Fischer, and E. Schöll, Phys. Rev. E 79, 065201 (R) (2009). C. W. Gardiner, Handbook of Stochastic Methods ( Springer, Berlin, Heidelberg, New York, 1985). G. H. M. van Tartwijk, and D. Lenstra, Quantum Semiclass. Opt. 7, 84 (1995). R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, IEE Proc. Optoelectron. 148( 1), 7- 12 (2001). V. Flunkert and E. Schöll, Phys. Rev. E 76, 066202 (2007). O. Carroll, I. O'Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, and P. Mandel, Opt. Express 14( 22), 10831- 10837 (2006). B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll, Phys. Rev. E 77( 6), 066207 (2008). V. Rottschäfer and B. Krauskopf, Int. J. Bif. Chaos 17( 5), 1575- 1588 (2007). D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures ( John Wiley & Sons Ltd., New York, 1999). S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006). G. Lythe, T. Erneux, A. Gavrielides, and V. Kovanis, Phys. Rev. A 55( 6), 4443- 4448 (1997). D. M. Kane, K. A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers ( Wiley-VCH, Weinheim, 2005). T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, Phys. Rev. E 67, 066214 (2003). T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 76( 5), 056201 (2007). W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals ( Springer, Berlin, 2004). T. Sano, Phys. Rev. A 50( 3), 2719- 2726 (1994). M. R. Dachner, E. Malić, M. Richter, A. Carmele, J. Kabuß, A. Wilms, J. E. Kim, G. Hartmann, J. Wolters, U. Bandelow, and A. Knorr, Phys. Status Solidi B 247, No. 4 (2010), this issue. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, IEEE J. Sel. Top. Quantum Electron. 13( 1), 136- 142 (2007). S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, Phys. Rep. 416( 1-2), 1- 128 (2005). A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148- 1151 (1999). B. Krauskopf and D. Lenstra (eds.), Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548 ( American Institute of Physics, Melville, New York, 2000). J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron. 28, 93 (1992). D. O'Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. 29( 10), 1072- 1074 (2004). K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45( 11), 1396- 1403 (2009). R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980). J. Hizanidis, R. Aust, and E. Schöll, Int. J. Bifur. Chaos 18( 6), 1759- 1765 (2008). A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52( 5), R3436-R3439 (1995). G. H. M. van Tartwijk, and G. P. Agrawal, Prog. Quantum Electron. 22( 2), 43- 122 (1998). K. Lüdge, M. J. P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, Phys. Rev. B 78( 3), 035316 (2008). O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004). T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, Phys. Rev. Lett. 87, 243901 (2001). G. H. M. van Tartwijk, A. M. Levine, and D. Lenstra, IEEE J. Sel. Topics Quantum Electron. 1( 2), 466 (1995). E. Malić, M. J. P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, IEEE J. Sel. Top. Quantum Electron. 13( 5), 1242- 1248 (2007). G. Huyet, D. O'Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, Phys. Status Solidi B 201( 2), 345- 352 (2004). N. Schunk and K. Petermann, IEEE Photonics Technol. Lett. 1( 3), 49- 51 (1989). B. Krauskopf, G. H. M. van Tartwijk, and G. R. Gray, Opt. Commun. 177( 1-6), 347 (2000). Y. A. Kuznetsov, Elements of Applied Bifurcation Theory ( Springer, New York, 1995). C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181- 200 (1983). D. Pieroux, T. Erneux, B. Haegeman, K. Engelborghs, and D. Roose, Phys. Rev. Lett. 87, 19, (2001). 2009; 45 2007; 17 1995; 52 2006; 97 1989; 1 2004; 201 2004; 29 2008; 18 2010; 247 1983; 7 2006; 14 2005; 416 2008; 78 1995 2003; 39 2005 2004 2008; 77 2000; 177 1999; 82 2007; 76 2007; 32 1995; 1 2007; 13 2001; 148 1998; 22 1999 2001; 87 1995; 7 1980; 16 2009; 79 2004; 92 1997; 55 2000 1992; 28 2000; 61 1985 1994; 50 2003; 67 e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_41_2 Chow W. W. (e_1_2_10_3_2) 2004 e_1_2_10_40_2 Bimberg D. (e_1_2_10_2_2) 1999 e_1_2_10_19_2 e_1_2_10_17_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 van Tartwijk G. H. M. (e_1_2_10_34_2) 1995; 7 Gardiner C. W. (e_1_2_10_35_2) 1985 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 Krauskopf B. (e_1_2_10_36_2) 2000 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – reference: D. M. Kane, K. A. Shore (eds.), Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers ( Wiley-VCH, Weinheim, 2005). – reference: D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, SIAM J. Appl. Math. 61( 3), 966- 982 (2000). – reference: C. W. Gardiner, Handbook of Stochastic Methods ( Springer, Berlin, Heidelberg, New York, 1985). – reference: A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148- 1151 (1999). – reference: T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 76( 5), 056201 (2007). – reference: B. Krauskopf, G. H. M. van Tartwijk, and G. R. Gray, Opt. Commun. 177( 1-6), 347 (2000). – reference: K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45( 11), 1396- 1403 (2009). – reference: T. Dahms, P. Hövel, and E. Schöll, Phys. Rev. E 78( 5), 056213 (2008). – reference: G. Lythe, T. Erneux, A. Gavrielides, and V. Kovanis, Phys. Rev. A 55( 6), 4443- 4448 (1997). – reference: R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, IEE Proc. Optoelectron. 148( 1), 7- 12 (2001). – reference: S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006). – reference: W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals ( Springer, Berlin, 2004). – reference: R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980). – reference: E. Malić, M. J. P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, IEEE J. Sel. Top. Quantum Electron. 13( 5), 1242- 1248 (2007). – reference: O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004). – reference: Y. A. Kuznetsov, Elements of Applied Bifurcation Theory ( Springer, New York, 1995). – reference: B. Krauskopf and D. Lenstra (eds.), Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548 ( American Institute of Physics, Melville, New York, 2000). – reference: T. Sano, Phys. Rev. A 50( 3), 2719- 2726 (1994). – reference: M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, IEEE J. Sel. Top. Quantum Electron. 13( 1), 136- 142 (2007). – reference: E. A. Viktorov, P. Mandel, and G. Huyet, Opt. Lett. 32( 10), 1268- 1270 (2007). – reference: J. Hizanidis, R. Aust, and E. Schöll, Int. J. Bifur. Chaos 18( 6), 1759- 1765 (2008). – reference: V. Flunkert and E. Schöll, Phys. Rev. E 76, 066202 (2007). – reference: A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52( 5), R3436-R3439 (1995). – reference: M. R. Dachner, E. Malić, M. Richter, A. Carmele, J. Kabuß, A. Wilms, J. E. Kim, G. Hartmann, J. Wolters, U. Bandelow, and A. Knorr, Phys. Status Solidi B 247, No. 4 (2010), this issue. – reference: N. Schunk and K. Petermann, IEEE Photonics Technol. Lett. 1( 3), 49- 51 (1989). – reference: C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181- 200 (1983). – reference: D. O'Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Lämmlin, D. Bimberg, V. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, Electron. Lett. 39, 25 (2003). – reference: G. H. M. van Tartwijk, and D. Lenstra, Quantum Semiclass. Opt. 7, 84 (1995). – reference: T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, Phys. Rev. E 67, 066214 (2003). – reference: V. Rottschäfer and B. Krauskopf, Int. J. Bif. Chaos 17( 5), 1575- 1588 (2007). – reference: G. H. M. van Tartwijk, and G. P. Agrawal, Prog. Quantum Electron. 22( 2), 43- 122 (1998). – reference: K. Lüdge, M. J. P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, Phys. Rev. B 78( 3), 035316 (2008). – reference: D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures ( John Wiley & Sons Ltd., New York, 1999). – reference: G. Huyet, D. O'Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, Phys. Status Solidi B 201( 2), 345- 352 (2004). – reference: O. Carroll, I. O'Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, and P. Mandel, Opt. Express 14( 22), 10831- 10837 (2006). – reference: V. Flunkert, O. D'Huys, J. Danckaert, I. Fischer, and E. Schöll, Phys. Rev. E 79, 065201 (R) (2009). – reference: S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, Phys. Rep. 416( 1-2), 1- 128 (2005). – reference: D. Pieroux, T. Erneux, B. Haegeman, K. Engelborghs, and D. Roose, Phys. Rev. Lett. 87, 19, (2001). – reference: G. H. M. van Tartwijk, A. M. Levine, and D. Lenstra, IEEE J. Sel. Topics Quantum Electron. 1( 2), 466 (1995). – reference: T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, Phys. Rev. Lett. 87, 243901 (2001). – reference: B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll, Phys. Rev. E 77( 6), 066207 (2008). – reference: J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron. 28, 93 (1992). – reference: D. O'Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. 29( 10), 1072- 1074 (2004). – year: 1985 – volume: 76 start-page: 066202 year: 2007 publication-title: Phys. Rev. E – volume: 78 start-page: 035316 issue: 3 year: 2008 publication-title: Phys. Rev. B – volume: 247 year: 2010 publication-title: Phys. Status Solidi B – volume: 78 start-page: 056213 issue: 5 year: 2008 publication-title: Phys. Rev. E – volume: 76 start-page: 056201 issue: 5 year: 2007 publication-title: Phys. Rev. E – volume: 7 start-page: 181 year: 1983 end-page: 200 publication-title: Physica D – volume: 13 start-page: 1242 issue: 5 year: 2007 end-page: 1248 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 29 start-page: 1072 issue: 10 year: 2004 end-page: 1074 publication-title: Opt. Lett. – volume: 87 start-page: 243901 year: 2001 publication-title: Phys. Rev. Lett. – year: 2005 – volume: 77 start-page: 066207 issue: 6 year: 2008 publication-title: Phys. Rev. E – volume: 55 start-page: 4443 issue: 6 year: 1997 end-page: 4448 publication-title: Phys. Rev. A – volume: 61 start-page: 966 issue: 3 year: 2000 end-page: 982 publication-title: SIAM J. Appl. Math. – volume: 92 start-page: 043902 year: 2004 publication-title: Phys. Rev. Lett. – volume: 22 start-page: 43 issue: 2 year: 1998 end-page: 122 publication-title: Prog. Quantum Electron. – volume: 1 start-page: 466 issue: 2 year: 1995 publication-title: IEEE J. Sel. Topics Quantum Electron. – year: 2000 – volume: 177 start-page: 347 issue: 1–6 year: 2000 publication-title: Opt. Commun. – volume: 28 start-page: 93 year: 1992 publication-title: IEEE J. Quantum Electron. – volume: 201 start-page: 345 issue: 2 year: 2004 end-page: 352 publication-title: Phys. Status Solidi B – volume: 39 start-page: 25 year: 2003 publication-title: Electron. Lett. – volume: 45 start-page: 1396 issue: 11 year: 2009 end-page: 1403 publication-title: IEEE J. Quantum Electron. – volume: 52 start-page: R3436–R3439 issue: 5 year: 1995 publication-title: Phys. Rev. A – volume: 97 start-page: 213902 year: 2006 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 84 year: 1995 publication-title: Quantum Semiclass. Opt. – volume: 14 start-page: 10831 issue: 22 year: 2006 end-page: 10837 publication-title: Opt. Express – volume: 416 start-page: 1 issue: 1–2 year: 2005 end-page: 128 publication-title: Phys. Rep. – volume: 148 start-page: 7 issue: 1 year: 2001 end-page: 12 publication-title: IEE Proc. Optoelectron. – volume: 13 start-page: 136 issue: 1 year: 2007 end-page: 142 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 82 start-page: 1148 year: 1999 end-page: 1151 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 1575 issue: 5 year: 2007 end-page: 1588 publication-title: Int. J. Bif. Chaos – volume: 87 start-page: 19 year: 2001 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 1759 issue: 6 year: 2008 end-page: 1765 publication-title: Int. J. Bifur. Chaos – volume: 50 start-page: 2719 issue: 3 year: 1994 end-page: 2726 publication-title: Phys. Rev. A – volume: 67 start-page: 066214 year: 2003 publication-title: Phys. Rev. E – year: 2004 – volume: 32 start-page: 1268 issue: 10 year: 2007 end-page: 1270 publication-title: Opt. Lett. – volume: 16 start-page: 347 year: 1980 publication-title: IEEE J. Quantum Electron. – year: 1995 – volume: 1 start-page: 49 issue: 3 year: 1989 end-page: 51 publication-title: IEEE Photonics Technol. Lett. – volume: 79 year: 2009 publication-title: Phys. Rev. E – year: 1999 – ident: e_1_2_10_29_2 doi: 10.1049/ip-opt:20010243 – ident: e_1_2_10_6_2 doi: 10.1364/OL.29.001072 – ident: e_1_2_10_17_2 doi: 10.1103/PhysRevE.78.056213 – ident: e_1_2_10_14_2 doi: 10.1103/PhysRevLett.97.213902 – ident: e_1_2_10_5_2 doi: 10.1049/el:20031153 – ident: e_1_2_10_10_2 doi: 10.1103/PhysRevLett.92.043902 – ident: e_1_2_10_30_2 doi: 10.1109/2944.401230 – ident: e_1_2_10_12_2 doi: 10.1016/S0079-6727(98)00008-1 – ident: e_1_2_10_4_2 doi: 10.1002/pssb.200945433 – ident: e_1_2_10_7_2 doi: 10.1002/pssa.200303971 – ident: e_1_2_10_31_2 doi: 10.1103/PhysRevLett.87.243901 – ident: e_1_2_10_27_2 doi: 10.1364/OL.32.001268 – ident: e_1_2_10_44_2 doi: 10.1016/0167-2789(83)90126-4 – volume-title: Semiconductor‐Laser Fundamentals year: 2004 ident: e_1_2_10_3_2 – ident: e_1_2_10_9_2 doi: 10.1109/JSTQE.2006.885332 – ident: e_1_2_10_13_2 doi: 10.1016/j.physrep.2005.06.003 – ident: e_1_2_10_16_2 doi: 10.1103/PhysRevE.76.056201 – ident: e_1_2_10_19_2 doi: 10.1103/PhysRevE.79.065201 – ident: e_1_2_10_26_2 doi: 10.1103/PhysRevE.67.066214 – ident: e_1_2_10_24_2 doi: 10.1103/PhysRevLett.82.1148 – ident: e_1_2_10_41_2 doi: 10.1142/S0218127408021348 – volume: 7 start-page: 84 year: 1995 ident: e_1_2_10_34_2 publication-title: Quantum Semiclass. Opt. – ident: e_1_2_10_40_2 doi: 10.1007/978-1-4757-2421-9 – ident: e_1_2_10_11_2 doi: 10.1002/0470856211 – volume-title: Quantum Dot Heterostructures year: 1999 ident: e_1_2_10_2_2 – volume-title: Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings 548 year: 2000 ident: e_1_2_10_36_2 – ident: e_1_2_10_22_2 doi: 10.1109/3.119502 – ident: e_1_2_10_28_2 doi: 10.1109/68.87893 – ident: e_1_2_10_23_2 doi: 10.1103/PhysRevA.50.2719 – ident: e_1_2_10_25_2 doi: 10.1103/PhysRevLett.87.193901 – ident: e_1_2_10_32_2 doi: 10.1109/JSTQE.2007.905148 – volume-title: Handbook of Stochastic Methods year: 1985 ident: e_1_2_10_35_2 – ident: e_1_2_10_37_2 doi: 10.1016/S0030-4018(00)00574-5 – ident: e_1_2_10_21_2 doi: 10.1109/JQE.1980.1070479 – ident: e_1_2_10_8_2 doi: 10.1364/OE.14.010831 – ident: e_1_2_10_38_2 doi: 10.1103/PhysRevA.55.4443 – ident: e_1_2_10_33_2 doi: 10.1103/PhysRevB.78.035316 – ident: e_1_2_10_42_2 doi: 10.1103/PhysRevA.52.R3436 – ident: e_1_2_10_15_2 doi: 10.1103/PhysRevE.76.066202 – ident: e_1_2_10_43_2 doi: 10.1137/S0036139999360131 – ident: e_1_2_10_39_2 doi: 10.1142/S0218127407017914 – ident: e_1_2_10_20_2 doi: 10.1109/JQE.2009.2028159 – ident: e_1_2_10_18_2 doi: 10.1103/PhysRevE.77.066207 |
SSID | ssj0007131 ssj0047196 |
Score | 2.1878052 |
Snippet | We present a systematic study of the complex dynamics of a quantum dot (QD) laser subjected to optical feedback from a short external cavity. Our model... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 829 |
SubjectTerms | 42.55.Px 42.55.Px, 42.60.Da, 85.35.Be 42.60.Da 85.35.Be Exact sciences and technology Fundamental areas of phenomenology (including applications) Lasers Nonlinear optics Optical bistability, multistability and switching, including local field effects Optics Physics Semiconductor lasers; laser diodes |
Title | Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios |
URI | https://api.istex.fr/ark:/67375/WNG-9ZL39811-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.200945434 |
Volume | 247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iCF7cxXEjB9FTdbqliTd3ERFxQfFSkjQBGZ0Zp1MQf73vJTPVEUTQUwkkLclL3tYv3yNk04RxKBNeBCnjJgB7nAUqNdCUokiahS6Mdmyfl-zsLjl_SB--3OL3_BB1wg1PhtPXeMClKnc_SUO7Zanc5b0Eb0eCEg5jhuT5R9ef_FEQgdWAD9DCwv-5zJoBFtsaUjg2o93Rd42YqAlc7TeETMoSVs36chejrqyzRSczRA5n4SEorZ2qr3b0-zeCx_9Mc5ZMDxxVuu931hwZM-15MukAo7pcIPdYRA2vstPXCoRTvVAIbym44uBOUkzu0k7XpcmpBfuopG7t0RLB8r5aBe1Yqp5s1fMZQ4qcUhC1d8pFcndyfHt4FgyKNAQaBJsEBVhZoUJlIRJqmiJWiivBeBYVljEV2lBGOtNRZgRDAI6GZ6xBr0jw7SKsJ7hExtudtlkmlPMkjiyLwwRCZW4ZF2GiY1EYmTIjWdYgwVAuuR4wmGMhjefccy9HOS5WXi9Wg2zX_bueu-PHnltOzHU32Wsh4i1L8_vL01w8XsSCQ6R02CAbI_ugHgBeLDhfIm2QyEnzlw_mVzc3B3Vr5S-DVsmURzIgimiNjPd7lVkHB6mvNtwh-AChYAaN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTQhexvglurHhBwRP2ZrEcWze2GAUKBVim4Z4iWzHllChLU0jTfz13NltpiIhJHiKLDmJ7It9310-fwfw1KV5qrmsk0JIl6A_LhNTOGxqVfN-bWtng9rnSAwu-LvPxYpNSGdhoj5El3CjlRH2a1rglJA-ulYNnTWNCaf3OB2PvAFbHNEGxV-vPl0rSGEM1lE-cB9W8d9l2U-o3NZKxLGfHa0_bM1JbdF8XxFpUjc4bz4WvFgHs8Ebnd4BsxpHJKGMD9uFObQ_f5N4_K-B7sD2Equyl_HjugsbbnIPbgbOqG3uwyXVUaPT7OxHi_ZpvzOMcBmicUSUjPK7bDoLmXLm0UUabccvWEN8-Viwgk09M199O49JQ0ayUhi4T5sHcHH6-vxkkCzrNCQWbcuTGh2tMqnxGAz1XZ0bI40SssxqL4RJfaozW9qsdEoQB8fiNbe4tWiEdxmVFHwIm5PpxD0CJiXPMy_ylGO0LL2QKuU2V7XThXBalD1IVoap7FLEnGppfKui_HJW0WRV3WT14HnXfxblO_7Y81mwc9dNz8dEeiuL6nL0plJfhrmSGCyd9OBg7UPobkAgi_hLFT3Igjn_8sLq49nZcdfa_ZebnsCtwfmHYTV8O3q_B7cjsYFIRY9hczFv3T7ipYU5CCviFxa9Cqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAX3hXLo_iA4JR2kziOzQ0KS4FqVVGqVlwiPyW0sLtsNhLi1zNj76YsEkKCU2TJTmSP7fnG-fwNwBOfl7nm0mWVkD5Df1xnpvJY1MrxobPO26j2ORaHp_zdeXX-yy3-pA_RH7jRyoj7NS3wuQv7F6Kh87Y18fIep9uRl2GbC4QTBIs-XAhIYQjWMz5wG1bp12U9zCjb1lrDcVjsb75sw0dt03B_J86kbnHYQsp3sYllozMa3QC97kbioEz2uqXZsz9-U3j8n37ehOsrpMpepKl1Cy756W24Ehmjtr0DZ5RFje6ys28dWqf7yjC-ZYjFEU8yOt1ls3k8J2cBHaTRdvKctcSWT-kq2Cww8zl0i3RkyEhUCsP2WXsXTkevPx4cZqssDZlFy_LMoZtVJjcBQ6Ghd6Ux0igh68IFIUwecl3Y2ha1V4IYOBafpcWNRSO4Kyih4A5sTWdTfw-YlLwsgihzjrGyDEKqnNtSOa8r4bWoB5Ct7dLYlYQ5ZdL40iTx5aKhwWr6wRrAs77-PIl3_LHm02jmvppeTIjyVlfN2fhNoz4dlUpiqHQwgN2NedA3QBiL6EtVAyiiNf_yweb45ORlX7r_L40ew9XjV6Pm6O34_QO4llgNxCh6CFvLRecfIVhamt24Hn4C6TgJWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physica+status+solidi.+B.+Basic+research&rft.atitle=Modeling+quantum+dot+lasers+with+optical+feedback%3A+sensitivity+of+bifurcation+scenarios&rft.au=OTTO%2C+Christian&rft.au=L%C3%9CDGE%2C+Kathy&rft.au=SCH%C3%96LL%2C+Eckehard&rft.date=2010-04-01&rft.pub=Wiley-VCH&rft.issn=0370-1972&rft.volume=247&rft.issue=4&rft.spage=829&rft.epage=845&rft_id=info:doi/10.1002%2Fpssb.200945434&rft.externalDBID=n%2Fa&rft.externalDocID=22607595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |