First‐Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices

Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 41
Main Authors Li, Meng, Wu, Zhenzhen, Zheng, Mengting, Chen, Hao, Gould, Tim, Zhang, Shanqing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202202763

Cover

Abstract Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials. A series of transition metal benzenehexathiol (TM‐BHT) coordination nanosheets are theoretically investigated for their structure‐property relationship during lithium intercalation. Among them, Cu‐BHT and Ag‐BHT are predicted to have the broadest color changes and the largest modulation ranges in the solar spectrum and mid‐infrared, which facilitates electrochromic applications for optical and thermal management.
AbstractList Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials.
Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials. A series of transition metal benzenehexathiol (TM‐BHT) coordination nanosheets are theoretically investigated for their structure‐property relationship during lithium intercalation. Among them, Cu‐BHT and Ag‐BHT are predicted to have the broadest color changes and the largest modulation ranges in the solar spectrum and mid‐infrared, which facilitates electrochromic applications for optical and thermal management.
Author Zheng, Mengting
Zhang, Shanqing
Gould, Tim
Wu, Zhenzhen
Chen, Hao
Li, Meng
Author_xml – sequence: 1
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Griffith University
– sequence: 2
  givenname: Zhenzhen
  surname: Wu
  fullname: Wu, Zhenzhen
  organization: Griffith University
– sequence: 3
  givenname: Mengting
  surname: Zheng
  fullname: Zheng, Mengting
  organization: Griffith University
– sequence: 4
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Griffith University
– sequence: 5
  givenname: Tim
  surname: Gould
  fullname: Gould, Tim
  email: t.gould@griffith.edu.au
  organization: Griffith University
– sequence: 6
  givenname: Shanqing
  orcidid: 0000-0001-5192-1844
  surname: Zhang
  fullname: Zhang, Shanqing
  email: s.zhang@griffith.edu.au
  organization: Griffith University
BookMark eNqFkE1LAzEQhoNUsK1ePQc8t-Zju-ke-6lC_TgoeFvS7ISmbJOapNp68if4G_0lbq1UEEQYmGF4nxl4GqhmnQWETilpU0LYuSz0os0Iq0qk_ADVaUrTFiesW9vP9PEINUKYE0KF4EkdrcbGh_jx9n7njVVmWULAo_WydF5G4yx2GrMh7oN9BQszWMs4M66UEfDAOV8Yu4vdSOvCDCAGrJ3Hfe9kMZW2wKMSVPROzbxbGIWH8GwUhGN0qGUZ4OS7N9HDeHQ_uGxNbi-uBr1JS_GO4C3JuBIZCF0kHQpsKjokVQmvVrzokjQDLZTMeIdorWRSEC5INqVdIoXo0ikw3kRnu7tL755WEGI-dytvq5c5E4yzNOWZqFLtXUp5F4IHnS-9WUi_ySnJt2rzrdp8r7YCkl-AMvFLRPTSlH9j2Q57MSVs_nmS94bj6x_2E3B4kxU
CitedBy_id crossref_primary_10_1021_acsanm_3c05958
crossref_primary_10_1002_cnl2_38
crossref_primary_10_1007_s12274_023_5600_7
crossref_primary_10_1039_D2MH01472F
crossref_primary_10_1002_adfm_202419378
crossref_primary_10_1002_adfm_202413659
crossref_primary_10_1002_cey2_413
crossref_primary_10_1016_j_nanoen_2023_108427
crossref_primary_10_1007_s12274_023_6321_7
Cites_doi 10.1002/pssa.202000437
10.1107/S0021889811038970
10.1002/jcc.26353
10.1038/ncomms8408
10.1103/PhysRevB.50.17953
10.1021/ja5116937
10.1021/jacs.0c10849
10.1002/adma.202004754
10.1038/ncomms9011
10.1063/1.1329672
10.1103/PhysRevLett.77.3865
10.1021/acsami.0c18422
10.1002/9783527679850.ch19
10.1002/anie.201707568
10.1039/D0TA06949C
10.1002/advs.202100564
10.1021/acs.langmuir.8b03938
10.1103/PhysRev.140.A1133
10.1103/PhysRevB.71.035105
10.1103/PhysRev.136.B864
10.1002/adfm.201802180
10.1021/acsami.8b00942
10.1039/D0CS00317D
10.1103/PhysRevB.83.195131
10.1016/j.ccr.2021.214353
10.1016/j.electacta.2021.137771
10.1021/acs.jpcc.6b09416
10.1002/slct.202000665
10.1021/jacs.9b09956
10.1016/0927-0256(96)00008-0
10.1039/D0NR01152E
10.1021/acsnano.0c05200
10.1002/adfm.201800113
10.1039/C5SC03727A
10.1021/acsami.7b14523
10.1103/PhysRevB.54.11169
10.1021/acs.langmuir.6b00156
10.1021/am900767p
10.1038/s41467-021-22051-0
ContentType Journal Article
Copyright 2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202202763
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202202763
ADFM202202763
Genre article
GrantInformation_xml – fundername: Australia Research Council
  funderid: DP210103266; FT210100663
– fundername: Government of Western Australia
– fundername: Australian Government
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3573-a23c79e7fd451e2b7506c4379e3d8069ef7ca9350ffca4d03709b180a7781be23
IEDL.DBID 24P
ISSN 1616-301X
IngestDate Fri Jul 25 02:42:24 EDT 2025
Tue Jul 01 00:30:32 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Wed Jan 22 16:23:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3573-a23c79e7fd451e2b7506c4379e3d8069ef7ca9350ffca4d03709b180a7781be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5192-1844
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202763
PQID 2723266397
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2723266397
crossref_primary_10_1002_adfm_202202763
crossref_citationtrail_10_1002_adfm_202202763
wiley_primary_10_1002_adfm_202202763_ADFM202202763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2018; 28
2015; 6
2000; 113
2020; 41
1965; 140
2011; 83
2016; 32
2020; 14
2020; 12
2021; 143
2019; 141
2016; 120
2017; 9
1996; 54
2022; 454
1964; 136
1996; 77
2020; 8
2016; 7
2020; 5
2021; 12
2021; 33
2015; 137
2022
2020; 49
2020; 217
2011; 44
2021; 370
2005; 71
2013
2018; 34
2010; 2
2018; 10
1994; 50
1996; 6
2018; 57
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Mardaljevic J. (e_1_2_8_10_1) 2013
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 6
  start-page: 7408
  year: 2015
  publication-title: Nat. Commun.
– volume: 136
  start-page: B864
  year: 1964
  publication-title: Phys. Rev.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– start-page: 571
  year: 2013
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 83
  year: 2011
  publication-title: Phys. Rev. B
– volume: 44
  start-page: 1272
  year: 2011
  publication-title: J. Appl. Crystallogr.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 146
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 118
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 454
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 370
  year: 2021
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 8934
  year: 2020
  publication-title: Nanoscale
– volume: 5
  start-page: 7783
  year: 2020
  publication-title: ChemistrySelect
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1373
  year: 2016
  publication-title: Chem. Sci.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 140
  year: 1965
  publication-title: Phys. Rev.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 32
  start-page: 2527
  year: 2016
  publication-title: Langmuir
– volume: 41
  start-page: 1931
  year: 2020
  publication-title: J. Comput. Chem.
– volume: 217
  year: 2020
  publication-title: Phys. Status Solidi A
– volume: 34
  year: 2018
  publication-title: Langmuir
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– year: 2022
– volume: 49
  start-page: 8687
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 12
  start-page: 1805
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 143
  start-page: 2285
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8011
  year: 2015
  publication-title: Nat. Commun.
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 296
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_27_1
  doi: 10.1002/pssa.202000437
– ident: e_1_2_8_39_1
  doi: 10.1107/S0021889811038970
– ident: e_1_2_8_38_1
  doi: 10.1002/jcc.26353
– ident: e_1_2_8_21_1
  doi: 10.1038/ncomms8408
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_19_1
  doi: 10.1021/ja5116937
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.0c10849
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202004754
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms9011
– ident: e_1_2_8_37_1
  doi: 10.1063/1.1329672
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.0c18422
– ident: e_1_2_8_3_1
– start-page: 571
  volume-title: Electrochromic Materials and Devices
  year: 2013
  ident: e_1_2_8_10_1
  doi: 10.1002/9783527679850.ch19
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.201707568
– ident: e_1_2_8_17_1
  doi: 10.1039/D0TA06949C
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.202100564
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.langmuir.8b03938
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.71.035105
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRev.136.B864
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201802180
– ident: e_1_2_8_29_1
  doi: 10.1021/acsami.8b00942
– ident: e_1_2_8_4_1
  doi: 10.1039/D0CS00317D
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.83.195131
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ccr.2021.214353
– ident: e_1_2_8_7_1
  doi: 10.1016/j.electacta.2021.137771
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.jpcc.6b09416
– ident: e_1_2_8_16_1
  doi: 10.1002/slct.202000665
– ident: e_1_2_8_13_1
  doi: 10.1021/jacs.9b09956
– ident: e_1_2_8_32_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_12_1
  doi: 10.1039/D0NR01152E
– ident: e_1_2_8_28_1
  doi: 10.1021/acsnano.0c05200
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.201800113
– ident: e_1_2_8_11_1
  doi: 10.1039/C5SC03727A
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.7b14523
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.langmuir.6b00156
– ident: e_1_2_8_5_1
  doi: 10.1021/am900767p
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-021-22051-0
SSID ssj0017734
Score 2.4583683
Snippet Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Air conditioning
Bonding strength
Broadband
Chemical bonds
Coordination
coordination nanosheets
Copper
Diffusion barriers
Electrochromic cells
Electrochromism
Energy storage
first‐principles
Heat exchange
Illumination
Lithium
Materials science
Nanosheets
Near infrared radiation
Principles
Silver
Thermal management
transition metal benzenehexathiol
Transition metals
Two dimensional materials
Title First‐Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202763
https://www.proquest.com/docview/2723266397
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA86L3oQ_-J0Sg6Cp7IuaZP2ONeVIUyGONitpO0LG0gnawfiyY_gZ_STmDRt3Q4ieCktJD285L383st7v4fQLRDfkZR5lkcEWI4b25YnaWxxqrCpyzxBSyam8SMbTZ2HmTvbqOI3_BBNwE1rRmmvtYKLOO_-kIaKVOpKcqK9d0Z30Z6ur9XNG4gzae4RODf3yqynM7x6s5q20Sbd7fnbx9IP1txErOWREx6hwwor4r5Z3GO0A9kJOthgEDxF63Ch4NvXx-ekDprn2KTVlRLHS4lJgO8he1c2bQ5vOtdQObMF4MFSuZ0LEwvEysYu8zlAkWMFYrHyzUUaiyzFQ9MlJ5mvdPUyDqA0LGdoGg6fByOr6qRgJdTl1BKEJtwHLlPH7QGJFUxgiWYiBJp6NvNB8kT41LWlTIST2pTbftzzbMG5grVA6DlqZcsMLhBOQLmM4Lu-gl6aWMZj0nNSljIJnCvfr42sWpBRUtGM624XL5EhSCaRFnzUCL6N7prxr4Zg49eRnXpdokrR8ohwBQmZvp1sI1Ku1R9_ifpBOG6-Lv8z6Qrt63eT0tdBrWK1hmsFTYr4ptx96hk8kW_YQtxv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BcigcoKWtWAqtD5U4BRI7sZPjwrJaKIsQAolb5DhjLSpK0G5WQpx4hD5jn6R2vAk_UoUEx0S2lXg842_GM58BfiJNQs147MVUohdGme_FmmWeYAabRjyWrGZiGp3y4WV4fBU12YS2FsbxQ7QBN6sZtb22Cm4D0nuPrKEy17aUnFr3nbNFWAoN2rD-V_-8ZZAKhHAHyzywKV7BVcPb6NO95_2f70uPYPMpZK33nMEaZM3XulST37uzKttV9y-IHN_1Ox9hdY5ISc8toU-wgMU6rDzhKfwMs8G1AYl_H_6cNaH5KXHJe7VcSakJ7ZN9LO6N5Rzjnc1oNC5zheSgNM7ttYs4EmPJy-kYsZoSA5XJ_qSUeSaLnBy6u3jUeGJrpEkfa_P1BS4HhxcHQ29-X4OnWCSYJylTIkGh8zAKkGYGjHBl-Q6R5bHPE9RCyYRFvtZKhrnPhJ9kQexLIQx4Rsq-QqcoC9wAotA4pphEiQF4lr4m5joOc55zjUIYD7MLXiOtVM3JzO2dGjepo2GmqZ3OtJ3OLuy07W8djcd_W241wk_n6jxNqTDAk9sz0C7QWoqvjJL2-oNR-7T5lk4_4MPwYnSSnhyd_voGy_a9SyLcgk41meG2AUNV9r1e7v8AILQA4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86QfQgfuJ0ag6Cp7IuaZP2OLcVvzZ2cLBbSZsXNpBu7APEk3-Cf6N_iUmzddtBBI8tSQ8vfS-_9_V7CN0CCT1FWeAERIDj-YnrBIomDqcam_osEDRnYmp32EPPe-r7_bUufssPUQTcjGbk9too-Fiq6oo0VEhlOsmJ8d4Z3UY7JuNnVJN43SKPwLnNK7OaqfCq9Ze0jS6pbu7fvJZWWHMdseZXTnSIDhZYEdft4R6hLciO0f4ag-AJmkdDDd--P7-6y6D5FNuyulzieKQwaeJ7yD60TRvAu6k11M7sDHBjpN3OoY0FYm1jR9MBwGyKNYjF2jcXMhGZxC07JScdTEz3Mm5CblhOUS9qvTYenMUkBSelPqeOIDTlIXAlPb8GJNEwgaWGiRCoDFwWguKpCKnvKpUKT7qUu2FSC1zBuYa1QOgZKmWjDM4RTkG7jBD6oYZehlgmYCrwJJNMAefa9ysjZynIOF3QjJtpF2-xJUgmsRF8XAi-jO6K9WNLsPHrysryXOKFok1jwjUkZCY7WUYkP6s_vhLXm1G7eLr4z6YbtNttRvHLY-f5Eu2Z17a6r4JKs8kcrjRKmSXX-Y_4A17S3iI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First%E2%80%90Principles+Exploration+of+2D+Benzenehexathiolate+Coordination+Nanosheets+for+Broadband+Electrochromic+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Meng&rft.au=Wu%2C+Zhenzhen&rft.au=Zheng%2C+Mengting&rft.au=Chen%2C+Hao&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202202763&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon