First‐Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices
Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) t...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 41 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202202763 |
Cover
Abstract | Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials.
A series of transition metal benzenehexathiol (TM‐BHT) coordination nanosheets are theoretically investigated for their structure‐property relationship during lithium intercalation. Among them, Cu‐BHT and Ag‐BHT are predicted to have the broadest color changes and the largest modulation ranges in the solar spectrum and mid‐infrared, which facilitates electrochromic applications for optical and thermal management. |
---|---|
AbstractList | Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials. Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air conditioning in a cost‐effective way, which is vital in realizing carbon neutrality. 2D frameworks such as coordination nanosheets (CONASHs) that are widely explored for a wide range of applications in energy storage and conversion can be a cluster of novel electrochromic materials. In this work, a series of transition metal benzenehexathiol (TM‐BHT) CONASHs are theoretically investigated via first‐principles simulations. During ion intercalation and deintercalation in TM‐BHTs, changes in lattice structures, lithium diffusion barriers, atomic charges, bond strength, and electronic properties are explored in‐depth. The incurred changes are then correlated with critical electrochromic properties, including the transmittance adjustment ranges in the visible light, near‐infrared, solar spectrum, and mid‐infrared. Among the various TM‐BHT systems, Cu‐BHT and Ag‐BHT are the most promising broadband electrochromic materials for optical and thermal management in the wavelength range from visible to mid‐infrared. The theoretical guidance from this work paves a new path toward electrochromic applications of CONASHs that exploit the versatility of these 2D materials. A series of transition metal benzenehexathiol (TM‐BHT) coordination nanosheets are theoretically investigated for their structure‐property relationship during lithium intercalation. Among them, Cu‐BHT and Ag‐BHT are predicted to have the broadest color changes and the largest modulation ranges in the solar spectrum and mid‐infrared, which facilitates electrochromic applications for optical and thermal management. |
Author | Zheng, Mengting Zhang, Shanqing Gould, Tim Wu, Zhenzhen Chen, Hao Li, Meng |
Author_xml | – sequence: 1 givenname: Meng surname: Li fullname: Li, Meng organization: Griffith University – sequence: 2 givenname: Zhenzhen surname: Wu fullname: Wu, Zhenzhen organization: Griffith University – sequence: 3 givenname: Mengting surname: Zheng fullname: Zheng, Mengting organization: Griffith University – sequence: 4 givenname: Hao surname: Chen fullname: Chen, Hao organization: Griffith University – sequence: 5 givenname: Tim surname: Gould fullname: Gould, Tim email: t.gould@griffith.edu.au organization: Griffith University – sequence: 6 givenname: Shanqing orcidid: 0000-0001-5192-1844 surname: Zhang fullname: Zhang, Shanqing email: s.zhang@griffith.edu.au organization: Griffith University |
BookMark | eNqFkE1LAzEQhoNUsK1ePQc8t-Zju-ke-6lC_TgoeFvS7ISmbJOapNp68if4G_0lbq1UEEQYmGF4nxl4GqhmnQWETilpU0LYuSz0os0Iq0qk_ADVaUrTFiesW9vP9PEINUKYE0KF4EkdrcbGh_jx9n7njVVmWULAo_WydF5G4yx2GrMh7oN9BQszWMs4M66UEfDAOV8Yu4vdSOvCDCAGrJ3Hfe9kMZW2wKMSVPROzbxbGIWH8GwUhGN0qGUZ4OS7N9HDeHQ_uGxNbi-uBr1JS_GO4C3JuBIZCF0kHQpsKjokVQmvVrzokjQDLZTMeIdorWRSEC5INqVdIoXo0ikw3kRnu7tL755WEGI-dytvq5c5E4yzNOWZqFLtXUp5F4IHnS-9WUi_ySnJt2rzrdp8r7YCkl-AMvFLRPTSlH9j2Q57MSVs_nmS94bj6x_2E3B4kxU |
CitedBy_id | crossref_primary_10_1021_acsanm_3c05958 crossref_primary_10_1002_cnl2_38 crossref_primary_10_1007_s12274_023_5600_7 crossref_primary_10_1039_D2MH01472F crossref_primary_10_1002_adfm_202419378 crossref_primary_10_1002_adfm_202413659 crossref_primary_10_1002_cey2_413 crossref_primary_10_1016_j_nanoen_2023_108427 crossref_primary_10_1007_s12274_023_6321_7 |
Cites_doi | 10.1002/pssa.202000437 10.1107/S0021889811038970 10.1002/jcc.26353 10.1038/ncomms8408 10.1103/PhysRevB.50.17953 10.1021/ja5116937 10.1021/jacs.0c10849 10.1002/adma.202004754 10.1038/ncomms9011 10.1063/1.1329672 10.1103/PhysRevLett.77.3865 10.1021/acsami.0c18422 10.1002/9783527679850.ch19 10.1002/anie.201707568 10.1039/D0TA06949C 10.1002/advs.202100564 10.1021/acs.langmuir.8b03938 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.71.035105 10.1103/PhysRev.136.B864 10.1002/adfm.201802180 10.1021/acsami.8b00942 10.1039/D0CS00317D 10.1103/PhysRevB.83.195131 10.1016/j.ccr.2021.214353 10.1016/j.electacta.2021.137771 10.1021/acs.jpcc.6b09416 10.1002/slct.202000665 10.1021/jacs.9b09956 10.1016/0927-0256(96)00008-0 10.1039/D0NR01152E 10.1021/acsnano.0c05200 10.1002/adfm.201800113 10.1039/C5SC03727A 10.1021/acsami.7b14523 10.1103/PhysRevB.54.11169 10.1021/acs.langmuir.6b00156 10.1021/am900767p 10.1038/s41467-021-22051-0 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202202763 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202202763 ADFM202202763 |
Genre | article |
GrantInformation_xml | – fundername: Australia Research Council funderid: DP210103266; FT210100663 – fundername: Government of Western Australia – fundername: Australian Government |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3573-a23c79e7fd451e2b7506c4379e3d8069ef7ca9350ffca4d03709b180a7781be23 |
IEDL.DBID | 24P |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:42:24 EDT 2025 Tue Jul 01 00:30:32 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Wed Jan 22 16:23:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3573-a23c79e7fd451e2b7506c4379e3d8069ef7ca9350ffca4d03709b180a7781be23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5192-1844 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202763 |
PQID | 2723266397 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2723266397 crossref_primary_10_1002_adfm_202202763 crossref_citationtrail_10_1002_adfm_202202763 wiley_primary_10_1002_adfm_202202763_ADFM202202763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 28 2015; 6 2000; 113 2020; 41 1965; 140 2011; 83 2016; 32 2020; 14 2020; 12 2021; 143 2019; 141 2016; 120 2017; 9 1996; 54 2022; 454 1964; 136 1996; 77 2020; 8 2016; 7 2020; 5 2021; 12 2021; 33 2015; 137 2022 2020; 49 2020; 217 2011; 44 2021; 370 2005; 71 2013 2018; 34 2010; 2 2018; 10 1994; 50 1996; 6 2018; 57 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Mardaljevic J. (e_1_2_8_10_1) 2013 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 6 start-page: 7408 year: 2015 publication-title: Nat. Commun. – volume: 136 start-page: B864 year: 1964 publication-title: Phys. Rev. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – start-page: 571 year: 2013 – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 83 year: 2011 publication-title: Phys. Rev. B – volume: 44 start-page: 1272 year: 2011 publication-title: J. Appl. Crystallogr. – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 57 start-page: 146 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 118 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 454 year: 2022 publication-title: Coord. Chem. Rev. – volume: 370 year: 2021 publication-title: Electrochim. Acta – volume: 12 start-page: 8934 year: 2020 publication-title: Nanoscale – volume: 5 start-page: 7783 year: 2020 publication-title: ChemistrySelect – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 7 start-page: 1373 year: 2016 publication-title: Chem. Sci. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2020 publication-title: ACS Nano – volume: 140 year: 1965 publication-title: Phys. Rev. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 32 start-page: 2527 year: 2016 publication-title: Langmuir – volume: 41 start-page: 1931 year: 2020 publication-title: J. Comput. Chem. – volume: 217 year: 2020 publication-title: Phys. Status Solidi A – volume: 34 year: 2018 publication-title: Langmuir – volume: 54 year: 1996 publication-title: Phys. Rev. B – year: 2022 – volume: 49 start-page: 8687 year: 2020 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 12 start-page: 1805 year: 2021 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 143 start-page: 2285 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8011 year: 2015 publication-title: Nat. Commun. – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 2 start-page: 296 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_27_1 doi: 10.1002/pssa.202000437 – ident: e_1_2_8_39_1 doi: 10.1107/S0021889811038970 – ident: e_1_2_8_38_1 doi: 10.1002/jcc.26353 – ident: e_1_2_8_21_1 doi: 10.1038/ncomms8408 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_19_1 doi: 10.1021/ja5116937 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.0c10849 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202004754 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms9011 – ident: e_1_2_8_37_1 doi: 10.1063/1.1329672 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_26_1 doi: 10.1021/acsami.0c18422 – ident: e_1_2_8_3_1 – start-page: 571 volume-title: Electrochromic Materials and Devices year: 2013 ident: e_1_2_8_10_1 doi: 10.1002/9783527679850.ch19 – ident: e_1_2_8_25_1 doi: 10.1002/anie.201707568 – ident: e_1_2_8_17_1 doi: 10.1039/D0TA06949C – ident: e_1_2_8_18_1 doi: 10.1002/advs.202100564 – ident: e_1_2_8_22_1 doi: 10.1021/acs.langmuir.8b03938 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.71.035105 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201802180 – ident: e_1_2_8_29_1 doi: 10.1021/acsami.8b00942 – ident: e_1_2_8_4_1 doi: 10.1039/D0CS00317D – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.83.195131 – ident: e_1_2_8_14_1 doi: 10.1016/j.ccr.2021.214353 – ident: e_1_2_8_7_1 doi: 10.1016/j.electacta.2021.137771 – ident: e_1_2_8_23_1 doi: 10.1021/acs.jpcc.6b09416 – ident: e_1_2_8_16_1 doi: 10.1002/slct.202000665 – ident: e_1_2_8_13_1 doi: 10.1021/jacs.9b09956 – ident: e_1_2_8_32_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_12_1 doi: 10.1039/D0NR01152E – ident: e_1_2_8_28_1 doi: 10.1021/acsnano.0c05200 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.201800113 – ident: e_1_2_8_11_1 doi: 10.1039/C5SC03727A – ident: e_1_2_8_24_1 doi: 10.1021/acsami.7b14523 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_15_1 doi: 10.1021/acs.langmuir.6b00156 – ident: e_1_2_8_5_1 doi: 10.1021/am900767p – ident: e_1_2_8_8_1 doi: 10.1038/s41467-021-22051-0 |
SSID | ssj0017734 |
Score | 2.4583683 |
Snippet | Electrochromic materials can tune the illumination and heat exchange of a building with the environment and thereby save energy in lighting, heating, and air... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Air conditioning Bonding strength Broadband Chemical bonds Coordination coordination nanosheets Copper Diffusion barriers Electrochromic cells Electrochromism Energy storage first‐principles Heat exchange Illumination Lithium Materials science Nanosheets Near infrared radiation Principles Silver Thermal management transition metal benzenehexathiol Transition metals Two dimensional materials |
Title | First‐Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202202763 https://www.proquest.com/docview/2723266397 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA86L3oQ_-J0Sg6Cp7IuaZP2ONeVIUyGONitpO0LG0gnawfiyY_gZ_STmDRt3Q4ieCktJD285L383st7v4fQLRDfkZR5lkcEWI4b25YnaWxxqrCpyzxBSyam8SMbTZ2HmTvbqOI3_BBNwE1rRmmvtYKLOO_-kIaKVOpKcqK9d0Z30Z6ur9XNG4gzae4RODf3yqynM7x6s5q20Sbd7fnbx9IP1txErOWREx6hwwor4r5Z3GO0A9kJOthgEDxF63Ch4NvXx-ekDprn2KTVlRLHS4lJgO8he1c2bQ5vOtdQObMF4MFSuZ0LEwvEysYu8zlAkWMFYrHyzUUaiyzFQ9MlJ5mvdPUyDqA0LGdoGg6fByOr6qRgJdTl1BKEJtwHLlPH7QGJFUxgiWYiBJp6NvNB8kT41LWlTIST2pTbftzzbMG5grVA6DlqZcsMLhBOQLmM4Lu-gl6aWMZj0nNSljIJnCvfr42sWpBRUtGM624XL5EhSCaRFnzUCL6N7prxr4Zg49eRnXpdokrR8ohwBQmZvp1sI1Ku1R9_ifpBOG6-Lv8z6Qrt63eT0tdBrWK1hmsFTYr4ptx96hk8kW_YQtxv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BcigcoKWtWAqtD5U4BRI7sZPjwrJaKIsQAolb5DhjLSpK0G5WQpx4hD5jn6R2vAk_UoUEx0S2lXg842_GM58BfiJNQs147MVUohdGme_FmmWeYAabRjyWrGZiGp3y4WV4fBU12YS2FsbxQ7QBN6sZtb22Cm4D0nuPrKEy17aUnFr3nbNFWAoN2rD-V_-8ZZAKhHAHyzywKV7BVcPb6NO95_2f70uPYPMpZK33nMEaZM3XulST37uzKttV9y-IHN_1Ox9hdY5ISc8toU-wgMU6rDzhKfwMs8G1AYl_H_6cNaH5KXHJe7VcSakJ7ZN9LO6N5Rzjnc1oNC5zheSgNM7ttYs4EmPJy-kYsZoSA5XJ_qSUeSaLnBy6u3jUeGJrpEkfa_P1BS4HhxcHQ29-X4OnWCSYJylTIkGh8zAKkGYGjHBl-Q6R5bHPE9RCyYRFvtZKhrnPhJ9kQexLIQx4Rsq-QqcoC9wAotA4pphEiQF4lr4m5joOc55zjUIYD7MLXiOtVM3JzO2dGjepo2GmqZ3OtJ3OLuy07W8djcd_W241wk_n6jxNqTDAk9sz0C7QWoqvjJL2-oNR-7T5lk4_4MPwYnSSnhyd_voGy_a9SyLcgk41meG2AUNV9r1e7v8AILQA4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86QfQgfuJ0ag6Cp7IuaZP2OLcVvzZ2cLBbSZsXNpBu7APEk3-Cf6N_iUmzddtBBI8tSQ8vfS-_9_V7CN0CCT1FWeAERIDj-YnrBIomDqcam_osEDRnYmp32EPPe-r7_bUufssPUQTcjGbk9too-Fiq6oo0VEhlOsmJ8d4Z3UY7JuNnVJN43SKPwLnNK7OaqfCq9Ze0jS6pbu7fvJZWWHMdseZXTnSIDhZYEdft4R6hLciO0f4ag-AJmkdDDd--P7-6y6D5FNuyulzieKQwaeJ7yD60TRvAu6k11M7sDHBjpN3OoY0FYm1jR9MBwGyKNYjF2jcXMhGZxC07JScdTEz3Mm5CblhOUS9qvTYenMUkBSelPqeOIDTlIXAlPb8GJNEwgaWGiRCoDFwWguKpCKnvKpUKT7qUu2FSC1zBuYa1QOgZKmWjDM4RTkG7jBD6oYZehlgmYCrwJJNMAefa9ysjZynIOF3QjJtpF2-xJUgmsRF8XAi-jO6K9WNLsPHrysryXOKFok1jwjUkZCY7WUYkP6s_vhLXm1G7eLr4z6YbtNttRvHLY-f5Eu2Z17a6r4JKs8kcrjRKmSXX-Y_4A17S3iI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First%E2%80%90Principles+Exploration+of+2D+Benzenehexathiolate+Coordination+Nanosheets+for+Broadband+Electrochromic+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Meng&rft.au=Wu%2C+Zhenzhen&rft.au=Zheng%2C+Mengting&rft.au=Chen%2C+Hao&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202202763&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |