15-Lipoxygenase Promotes Chronic Hypoxia-Induced Phenotype Changes of PASMCs Via Positive Feedback-Loop of BMP4

Our laboratory has previously demonstrated that 15‐lipoxygenase (15‐LO)/15‐hydroxyeicosatetr‐aenoic acid (15‐HETE) is involved in hypoxic pulmonary arterial hypertension (PAH). Phenotypical alterations of vascular smooth muscle cells are considered to be an important stage in the development of PAH,...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 230; no. 7; pp. 1489 - 1502
Main Authors Yu, Xiufeng, Wei, Liuping, Lu, Ping, Shen, Tingting, Liu, Xia, Li, Tingting, Zhang, Bo, Yu, Hao, Zhu, Daling
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our laboratory has previously demonstrated that 15‐lipoxygenase (15‐LO)/15‐hydroxyeicosatetr‐aenoic acid (15‐HETE) is involved in hypoxic pulmonary arterial hypertension (PAH). Phenotypical alterations of vascular smooth muscle cells are considered to be an important stage in the development of PAH, whereas the underlying mechanisms and signaling systems are still unclear. Here, we determined the contribution of 15‐LO/15‐HETE signaling in the hypoxia–induced phenotype changes of pulmonary arterial smooth muscle cells (PASMCs). To accomplish this, cellular and molecular changes in pulmonary vascular remodeling were detected in PAH patients and rats exposed to hypoxia. We found that the hypoxia‐induced alterations in PASMCs phenotypes were reversed by the inhibition of 15‐LO/15‐HETE or inhibition of BMP4/BMPRI. Hypoxia‐induced 15‐LO1/2 expression in rat PASMCs was significantly abolished by small interfering RNA targeted at BMP4. Meanwhile, BMP4/BMPRI‐15‐LO/15‐HETE had a positive feedback mechanism. Furthermore, ERK and p38MAPK act as the downstream of the 15‐LO/15‐HETE‐BMP4/BMPRI signaling. Our results suggest that chronic hypoxia promotes phenotypical alterations of PASMCs due to the interaction between 15‐LO/15‐HETE and BMP4/BMPRI. Our study reveals a novel mechanism of hypoxia‐induced pulmonary vascular remodeling and suggested new therapeutic strategies for the targeting of 15‐LO/15‐HETE and BMP4/BMPRI in PAH treatment. J. Cell. Physiol. 230: 1489–1502, 2015. © 2014 Wiley Periodicals, Inc., A Wiley Company
AbstractList Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetr-aenoic acid (15-HETE) is involved in hypoxic pulmonary arterial hypertension (PAH). Phenotypical alterations of vascular smooth muscle cells are considered to be an important stage in the development of PAH, whereas the underlying mechanisms and signaling systems are still unclear. Here, we determined the contribution of 15-LO/15-HETE signaling in the hypoxia-induced phenotype changes of pulmonary arterial smooth muscle cells (PASMCs). To accomplish this, cellular and molecular changes in pulmonary vascular remodeling were detected in PAH patients and rats exposed to hypoxia. We found that the hypoxia-induced alterations in PASMCs phenotypes were reversed by the inhibition of 15-LO/15-HETE or inhibition of BMP4/BMPRI. Hypoxia-induced 15-LO1/2 expression in rat PASMCs was significantly abolished by small interfering RNA targeted at BMP4. Meanwhile, BMP4/BMPRI-15-LO/15-HETE had a positive feedback mechanism. Furthermore, ERK and p38MAPK act as the downstream of the 15-LO/15-HETE-BMP4/BMPRI signaling. Our results suggest that chronic hypoxia promotes phenotypical alterations of PASMCs due to the interaction between 15-LO/15-HETE and BMP4/BMPRI. Our study reveals a novel mechanism of hypoxia-induced pulmonary vascular remodeling and suggested new therapeutic strategies for the targeting of 15-LO/15-HETE and BMP4/BMPRI in PAH treatment.
Our laboratory has previously demonstrated that 15‐lipoxygenase (15‐LO)/15‐hydroxyeicosatetr‐aenoic acid (15‐HETE) is involved in hypoxic pulmonary arterial hypertension (PAH). Phenotypical alterations of vascular smooth muscle cells are considered to be an important stage in the development of PAH, whereas the underlying mechanisms and signaling systems are still unclear. Here, we determined the contribution of 15‐LO/15‐HETE signaling in the hypoxia–induced phenotype changes of pulmonary arterial smooth muscle cells (PASMCs). To accomplish this, cellular and molecular changes in pulmonary vascular remodeling were detected in PAH patients and rats exposed to hypoxia. We found that the hypoxia‐induced alterations in PASMCs phenotypes were reversed by the inhibition of 15‐LO/15‐HETE or inhibition of BMP4/BMPRI. Hypoxia‐induced 15‐LO1/2 expression in rat PASMCs was significantly abolished by small interfering RNA targeted at BMP4. Meanwhile, BMP4/BMPRI‐15‐LO/15‐HETE had a positive feedback mechanism. Furthermore, ERK and p38MAPK act as the downstream of the 15‐LO/15‐HETE‐BMP4/BMPRI signaling. Our results suggest that chronic hypoxia promotes phenotypical alterations of PASMCs due to the interaction between 15‐LO/15‐HETE and BMP4/BMPRI. Our study reveals a novel mechanism of hypoxia‐induced pulmonary vascular remodeling and suggested new therapeutic strategies for the targeting of 15‐LO/15‐HETE and BMP4/BMPRI in PAH treatment. J. Cell. Physiol. 230: 1489–1502, 2015. © 2014 Wiley Periodicals, Inc., A Wiley Company
Author Yu, Xiufeng
Li, Tingting
Wei, Liuping
Zhang, Bo
Yu, Hao
Shen, Tingting
Liu, Xia
Lu, Ping
Zhu, Daling
Author_xml – sequence: 1
  givenname: Xiufeng
  surname: Yu
  fullname: Yu, Xiufeng
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 2
  givenname: Liuping
  surname: Wei
  fullname: Wei, Liuping
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 3
  givenname: Ping
  surname: Lu
  fullname: Lu, Ping
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 4
  givenname: Tingting
  surname: Shen
  fullname: Shen, Tingting
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 5
  givenname: Xia
  surname: Liu
  fullname: Liu, Xia
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 6
  givenname: Tingting
  surname: Li
  fullname: Li, Tingting
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 7
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 8
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
– sequence: 9
  givenname: Daling
  surname: Zhu
  fullname: Zhu, Daling
  email: Correspondence to: Daling Zhu, College of Pharmacy, Harbin Medical University (Daqing), Xinyang Road Daqing, Heilongjiang 163319, China. , dalingz@yahoo.com
  organization: Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25521840$$D View this record in MEDLINE/PubMed
BookMark eNpd0ctu1DAUBmALFdFpYcELoEhs2Lj1JXbsZYnotCiFiHKR2FhOcqb1dMYOcQLN2-PplC5Y2dL__ZZ1zhE68MEDQq8pOaGEsNN125-wXGn-DC0o0QXOpWAHaJEyirXI6SE6inFNCNGa8xfokAnBqMrJAgUqcOX6cD_fgLcRsnoI2zBCzMrbIXjXZhdzSp3Fl76bWuiy-hZ8GOcekrD-Jsmwyuqz66syZt-dzeoQ3eh-Q3YO0DW2vcNVCP0Ovb-q85fo-cpuIrx6PI_Rt_MPX8sLXH1eXpZnFW65KDjWiqmcN4IzxTtJtVRARUNtwxQwKZpOgiA5UyuS84KzRkqubKtXhW4L0TSEH6N3-3f7IfyaII5m62ILm431EKZoqJSFljmRPNG3_9F1mAaffrdTUmuh6U69eVRTs4XO9IPb2mE2_0aZwOke_HEbmJ9ySsxuRybtyDzsyHws64dLauB9w8UR7p8adrgzsuCFMD8-LU21ZNWXn1yZa_4XBMeRMw
CitedBy_id crossref_primary_10_1016_j_plefa_2018_03_002
crossref_primary_10_1016_j_ejphar_2019_02_008
crossref_primary_10_1152_ajplung_00049_2017
crossref_primary_10_1186_s13293_017_0129_7
crossref_primary_10_1016_j_cjca_2019_07_630
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.24893
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 1502
ExternalDocumentID 3637142691
25521840
JCP24893
ark_67375_WNG_LG2LRZ38_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Graduate Innovation Foundation of Heilongjiang Province to Xiufeng Yu
  funderid: YJSCX 2012‐248HLJ
– fundername: Science and Technique Foundation of Da‐qing of China
  funderid: DQGX2011KJ002
– fundername: National Natural Science Foundation of China
  funderid: 91339107; 81270113
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AETEA
G8K
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3573-982843b53283d61968e15b1ab28e265bd6e50428f043732b6638ac9f79c75bb03
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Fri Aug 16 01:38:58 EDT 2024
Thu Oct 10 20:49:14 EDT 2024
Sat Sep 28 07:56:25 EDT 2024
Sat Aug 24 01:15:02 EDT 2024
Wed Oct 30 09:49:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3573-982843b53283d61968e15b1ab28e265bd6e50428f043732b6638ac9f79c75bb03
Notes The Graduate Innovation Foundation of Heilongjiang Province to Xiufeng Yu - No. YJSCX 2012-248HLJ
Science and Technique Foundation of Da-qing of China - No. DQGX2011KJ002
istex:242E9AEC7DF1B9269C701057A4FEE73D348774C1
National Natural Science Foundation of China - No. 91339107; No. 81270113
ArticleID:JCP24893
ark:/67375/WNG-LG2LRZ38-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25521840
PQID 1666995913
PQPubID 1006363
PageCount 14
ParticipantIDs proquest_miscellaneous_1667964063
proquest_journals_1666995913
pubmed_primary_25521840
wiley_primary_10_1002_jcp_24893_JCP24893
istex_primary_ark_67375_WNG_LG2LRZ38_S
PublicationCentury 2000
PublicationDate 2015-07
July 2015
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Fotinos A, Nagarajan N, Martins AS, Fritz DT, Garsetti D, Lee AT, Hong CC, Rogers MB. 2014. Bone morphogenetic protein-focused strategies to induce cytotoxicity in lung cancer cells. Anticancer Res 34:2095-2104.
Ma J, Liang S, Wang Z, Zhang L, Jiang J, Zheng J, Yu L, Zheng X, Wang R, Zhu D. 2010. ROCK pathway participates in the processes that 15-hydroxyeicosatetraenoic acid (15-HETE) mediated the pulmonary vascular remodeling induced by hypoxia in rat. J Cell Physiol 222:82-94.
Sobue K, Hayashi K, Nishida W. 1999. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem 190:105-118.
Moser M, Patterson C. 2005. Bone morphogenetic proteins and vascular differentiation: BMPing up vasculogenesis. Thromb Haemost 94:713-718.
Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D. 2008. 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur J Pharmacol 588:9-17.
Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K. 2001. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89:251-258.
Zhou W, Dasgupta C, Negash S, Raj JU. 2007. Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: Role of cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 292:L1459-L1466.
Song Y, Jones JE, Beppu H, Keaney JF Jr., Loscalzo J, Zhang YY. 2005. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553-562.
King KE, Iyemere VP, Weissberg PL, Shanahan CM. 2003. Kruppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 278:11661-11669.
Sanvitale CE, Kerr G, Chaikuad A, Ramel MC, Mohedas AH, Reichert S, Wang Y, Triffitt JT, Cuny GD, Yu PB, Hill CS, Bullock AN. 2013. A new class of small molecule inhibitor of BMP signaling. PLoS ONE 8:e62721.
ATS committee on Proficiency Standards for clinical Pulmonary Function Laboratories. 2002. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111-117.
Ying X, Chen X, Cheng S, Guo X, Chen H, Xu HZ. 2014. Phosphoserine promotes osteogenic differentiation of human adipose stromal cells through bone morphogenetic protein signalling. Cell Biol Int 38:309-317.
Zhang L, Li Y, Chen M, Su X, Yi D, Lu P, Zhu D. 2014. 15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-beta. J Cell Physiol 229:245-257.
Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A. 2007. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem 282:37244-37255.
Yu PB, Deng DY, Beppu H, Hong CC, Lai C, Hoyng SA, Kawai N, Bloch KD. 2008. Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J Biol Chem 283:3877-3888.
Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE, de Caestecker MP. 2005. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97:496-504.
Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC. 2000. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81-84.
Liu Y, Tang X, Lu C, Han W, Guo S, Zhu D. 2009. Expression of 15-lipoxygenases in pulmonary arteries after hypoxia. Pathology 41 476-483.
Ross R. 1993. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362:801-809.
Myers CT, Krieg PA. 2013. BMP-mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors. Blood 122:3929-3939.
Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW. 2005. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053-1063.
Hayashi K, Takahashi M, Kimura K, Nishida W, Saga H, Sobue K. 1999. Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol 145:727-740.
Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, Zapol WM, Bloch KD, Yu PB. 2012. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32:613-622.
Owens GK. 1995. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487-517.
Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K. 1998. Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 273:28860-28867.
Kar R, Mishra N, Singha PK, Venkatachalam MA, Saikumar P. 2010. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1. Biochem Biophys Res Commun 399:548-554.
Ma C, Li Y, Ma J, Liu Y, Li Q, Niu S, Shen Z, Zhang L, Pan Z, Zhu D. 2011. Key role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension. Hypertension 58:679-688.
Paterlini P, Suberville AM, Zindy F, Melle J, Sonnier M, Marie JP, Dreyfus F, Brechot C. 1993. Cyclin A expression in human hematological malignancies: a new marker of cell proliferation. Cancer Res 53:235-238.
Li J, Rao J, Liu Y, Cao Y, Zhang Y, Zhang Q, Zhu D. 2013. 15-Lipoxygenase promotes chronic hypoxia-induced pulmonary artery inflammation via positive interaction with nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 33:971-979.
Owens GK, Kumar MS, Wamhoff BR. 2004. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767-801.
Yoshida T, Yamashita M, Hayashi M. 2012. Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem 287:25706-25714.
Hao H, Gabbiani G, Bochaton-Piallat ML. 2003. Arterial smooth muscle cell heterogeneity: Implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23:1510-1520.
Stenmark KR, Fagan KA, Frid MG. 2006. Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circ Res 99:675-691.
Zhang L, Ma J, Shen T, Wang S, Ma C, Liu Y, Ran Y, Wang L, Liu L, Zhu D. 2012. Platelet-derived growth factor (PDGF) induces pulmonary vascular remodeling through 15-LO/15-HETE pathway under hypoxic condition. Cell Signal 24:1931-1939.
Zhu D, Medhora M, Campbell WB, Spitzbarth N, Baker JE, Jacobs ER. 2003. Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circ Res 92:992-1000.
Guo L, Tang X, Tian H, Liu Y, Wang Z, Wu H, Wang J, Guo S, Zhu D. 2008. Subacute hypoxia suppresses Kv3.4 channel expression and whole-cell K+ currents through endogenous 15-hydroxyeicosatetraenoic acid in pulmonary arterial smooth muscle cells. Eur J Pharmacol 587:187-195.
Morty RE, Nejman B, Kwapiszewska G, Hecker M, Zakrzewicz A, Kouri FM, Peters DM, Dumitrascu R, Seeger W, Knaus P, Schermuly RT, Eickelberg O. 2007. Dysregulated bone morphogenetic protein signaling in monocrotaline-induced pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 27:1072-1078.
Liu Y, Ma C, Zhang Q, Yu L, Ma J, Zhang L, Hao X, Cao F, Wang L, Zhu D. 2012. The key role of transforming growth factor-beta receptor I and 15-lipoxygenase in hypoxia-induced proliferation of pulmonary artery smooth muscle cells. Int J Biochem Cell Biol 44:1184-1202.
Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, Zhu D. 2012. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension 59:1006-1013.
Lusis AJ. 2000. Atherosclerosis. Nature 407:233-241.
Guo L, Tang X, Chu X, Sun L, Zhang L, Qiu Z, Chen S, Li Y, Zheng X, Zhu D. 2009. Role of protein kinase C in 15-HETE-induced hypoxic pulmonary vasoconstriction. Prostaglandins Leukot Essent Fatty Acids 80:115-123.
Martin KA, Rzucidlo EM, Merenick BL, Fingar DC, Brown DJ, Wagner RJ, Powell RJ. 2004. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol 286:C507-C517.
Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, Deng DY, Sachidanandan C, Bloch KD, Peterson RT. 2008. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett 18:4388-4392.
1995; 75
2004; 286
2009; 41
2004; 84
2012; 287
2007; 282
2009; 80
2000; 26
1999; 190
2005; 112
2006; 99
2008; 18
2010; 222
2013; 122
2008; 588
2008; 587
2012; 59
1999; 145
2011; 58
2001; 89
2013; 8
2003; 278
2012; 32
1993; 362
2008; 283
1998; 273
2000; 407
2014; 229
2003; 92
2013; 33
2007; 292
2002; 166
1993; 53
2010; 399
2014; 38
2005; 96
2005; 97
2005; 94
2012; 24
2012; 44
2014; 34
2003; 23
2007; 27
References_xml – volume: 53
  start-page: 235
  year: 1993
  end-page: 238
  article-title: Cyclin A expression in human hematological malignancies: a new marker of cell proliferation
  publication-title: Cancer Res
– volume: 166
  start-page: 111
  year: 2002
  end-page: 117
  article-title: ATS statement: guidelines for the six‐minute walk test
  publication-title: Am J Respir Crit Care Med
– volume: 80
  start-page: 115
  year: 2009
  end-page: 123
  article-title: Role of protein kinase C in 15‐HETE‐induced hypoxic pulmonary vasoconstriction
  publication-title: Prostaglandins Leukot Essent Fatty Acids
– volume: 273
  start-page: 28860
  year: 1998
  end-page: 28867
  article-title: Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin‐like growth factors and phosphatidylinositol 3‐kinase
  publication-title: J Biol Chem
– volume: 190
  start-page: 105
  year: 1999
  end-page: 118
  article-title: Expressional regulation of smooth muscle cell‐specific genes in association with phenotypic modulation
  publication-title: Mol Cell Biochem
– volume: 8
  start-page: e62721
  year: 2013
  article-title: A new class of small molecule inhibitor of BMP signaling
  publication-title: PLoS ONE
– volume: 292
  start-page: L1459
  year: 2007
  end-page: L1466
  article-title: Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: Role of cGMP‐dependent protein kinase
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 59
  start-page: 1006
  year: 2012
  end-page: 1013
  article-title: The microRNA‐328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L‐type calcium channel‐alpha1C
  publication-title: Hypertension
– volume: 287
  start-page: 25706
  year: 2012
  end-page: 25714
  article-title: Kruppel‐like factor 4 contributes to high phosphate‐induced phenotypic switching of vascular smooth muscle cells into osteogenic cells
  publication-title: J Biol Chem
– volume: 283
  start-page: 3877
  year: 2008
  end-page: 3888
  article-title: Bone morphogenetic protein (BMP) type II receptor is required for BMP‐mediated growth arrest and differentiation in pulmonary artery smooth muscle cells
  publication-title: J Biol Chem
– volume: 84
  start-page: 767
  year: 2004
  end-page: 801
  article-title: Molecular regulation of vascular smooth muscle cell differentiation in development and disease
  publication-title: Physiol Rev
– volume: 222
  start-page: 82
  year: 2010
  end-page: 94
  article-title: ROCK pathway participates in the processes that 15‐hydroxyeicosatetraenoic acid (15‐HETE) mediated the pulmonary vascular remodeling induced by hypoxia in rat
  publication-title: J Cell Physiol
– volume: 588
  start-page: 9
  year: 2008
  end-page: 17
  article-title: 20‐Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells
  publication-title: Eur J Pharmacol
– volume: 33
  start-page: 971
  year: 2013
  end-page: 979
  article-title: 15‐Lipoxygenase promotes chronic hypoxia‐induced pulmonary artery inflammation via positive interaction with nuclear factor‐kappaB
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 112
  start-page: 553
  year: 2005
  end-page: 562
  article-title: Increased susceptibility to pulmonary hypertension in heterozygous BMPR2‐mutant mice
  publication-title: Circulation
– volume: 97
  start-page: 496
  year: 2005
  end-page: 504
  article-title: Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension
  publication-title: Circ Res
– volume: 58
  start-page: 679
  year: 2011
  end-page: 688
  article-title: Key role of 15‐lipoxygenase/15‐hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension
  publication-title: Hypertension
– volume: 286
  start-page: C507
  year: 2004
  end-page: C517
  article-title: The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation
  publication-title: Am J Physiol Cell Physiol
– volume: 145
  start-page: 727
  year: 1999
  end-page: 740
  article-title: Changes in the balance of phosphoinositide 3‐kinase/protein kinase B (Akt) and the mitogen‐activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells
  publication-title: J Cell Biol
– volume: 38
  start-page: 309
  year: 2014
  end-page: 317
  article-title: Phosphoserine promotes osteogenic differentiation of human adipose stromal cells through bone morphogenetic protein signalling
  publication-title: Cell Biol Int
– volume: 278
  start-page: 11661
  year: 2003
  end-page: 11669
  article-title: Kruppel‐like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype
  publication-title: J Biol Chem
– volume: 92
  start-page: 992
  year: 2003
  end-page: 1000
  article-title: Chronic hypoxia activates lung 15‐lipoxygenase, which catalyzes production of 15‐HETE and enhances constriction in neonatal rabbit pulmonary arteries
  publication-title: Circ Res
– volume: 122
  start-page: 3929
  year: 2013
  end-page: 3939
  article-title: BMP‐mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors
  publication-title: Blood
– volume: 229
  start-page: 245
  year: 2014
  end-page: 257
  article-title: 15‐LO/15‐HETE mediated vascular adventitia fibrosis via p38 MAPK‐dependent TGF‐beta
  publication-title: J Cell Physiol
– volume: 32
  start-page: 613
  year: 2012
  end-page: 622
  article-title: Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 26
  start-page: 81
  year: 2000
  end-page: 84
  article-title: Heterozygous germline mutations in BMPR2, encoding a TGF‐beta receptor, cause familial primary pulmonary hypertension
  publication-title: Nat Genet
– volume: 44
  start-page: 1184
  year: 2012
  end-page: 1202
  article-title: The key role of transforming growth factor‐beta receptor I and 15‐lipoxygenase in hypoxia‐induced proliferation of pulmonary artery smooth muscle cells
  publication-title: Int J Biochem Cell Biol
– volume: 99
  start-page: 675
  year: 2006
  end-page: 691
  article-title: Hypoxia‐induced pulmonary vascular remodeling: Cellular and molecular mechanisms
  publication-title: Circ Res
– volume: 75
  start-page: 487
  year: 1995
  end-page: 517
  article-title: Regulation of differentiation of vascular smooth muscle cells
  publication-title: Physiol Rev
– volume: 34
  start-page: 2095
  year: 2014
  end-page: 2104
  article-title: Bone morphogenetic protein‐focused strategies to induce cytotoxicity in lung cancer cells
  publication-title: Anticancer Res
– volume: 23
  start-page: 1510
  year: 2003
  end-page: 1520
  article-title: Arterial smooth muscle cell heterogeneity: Implications for atherosclerosis and restenosis development
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 362
  start-page: 801
  year: 1993
  end-page: 809
  article-title: The pathogenesis of atherosclerosis: A perspective for the 1990s
  publication-title: Nature
– volume: 89
  start-page: 251
  year: 2001
  end-page: 258
  article-title: Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids
  publication-title: Circ Res
– volume: 41
  start-page: 476
  year: 2009
  end-page: 483
  article-title: Expression of 15‐lipoxygenases in pulmonary arteries after hypoxia
  publication-title: Pathology
– volume: 96
  start-page: 1053
  year: 2005
  end-page: 1063
  article-title: Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension
  publication-title: Circ Res
– volume: 399
  start-page: 548
  year: 2010
  end-page: 554
  article-title: Mitochondrial remodeling following fission inhibition by 15d‐PGJ2 involves molecular changes in mitochondrial fusion protein OPA1
  publication-title: Biochem Biophys Res Commun
– volume: 282
  start-page: 37244
  year: 2007
  end-page: 37255
  article-title: Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin‐related transcription factors
  publication-title: J Biol Chem
– volume: 407
  start-page: 233
  year: 2000
  end-page: 241
  article-title: Atherosclerosis
  publication-title: Nature
– volume: 18
  start-page: 4388
  year: 2008
  end-page: 4392
  article-title: Structure‐activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors
  publication-title: Bioorg Med Chem Lett
– volume: 587
  start-page: 187
  year: 2008
  end-page: 195
  article-title: Subacute hypoxia suppresses Kv3.4 channel expression and whole‐cell K+ currents through endogenous 15‐hydroxyeicosatetraenoic acid in pulmonary arterial smooth muscle cells
  publication-title: Eur J Pharmacol
– volume: 94
  start-page: 713
  year: 2005
  end-page: 718
  article-title: Bone morphogenetic proteins and vascular differentiation: BMPing up vasculogenesis
  publication-title: Thromb Haemost
– volume: 24
  start-page: 1931
  year: 2012
  end-page: 1939
  article-title: Platelet‐derived growth factor (PDGF) induces pulmonary vascular remodeling through 15‐LO/15‐HETE pathway under hypoxic condition
  publication-title: Cell Signal
– volume: 27
  start-page: 1072
  year: 2007
  end-page: 1078
  article-title: Dysregulated bone morphogenetic protein signaling in monocrotaline‐induced pulmonary arterial hypertension
  publication-title: Arterioscler Thromb Vasc Biol
SSID ssj0009933
Score 2.2317963
Snippet Our laboratory has previously demonstrated that 15‐lipoxygenase (15‐LO)/15‐hydroxyeicosatetr‐aenoic acid (15‐HETE) is involved in hypoxic pulmonary arterial...
Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetr-aenoic acid (15-HETE) is involved in hypoxic pulmonary arterial...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1489
SubjectTerms Animals
Arachidonate 15-Lipoxygenase - genetics
Arachidonate 15-Lipoxygenase - metabolism
Bone Morphogenetic Protein 4 - genetics
Bone Morphogenetic Protein 4 - metabolism
Bone Morphogenetic Protein Receptors, Type I - genetics
Bone Morphogenetic Protein Receptors, Type I - metabolism
Gene Expression Regulation - physiology
Humans
Hydroxyeicosatetraenoic Acids
Hypertension
Hypoxia
Muscle, Smooth, Vascular - cytology
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - physiology
Oxygen - metabolism
Pulmonary Artery - cytology
Random Allocation
Rats
Title 15-Lipoxygenase Promotes Chronic Hypoxia-Induced Phenotype Changes of PASMCs Via Positive Feedback-Loop of BMP4
URI https://api.istex.fr/ark:/67375/WNG-LG2LRZ38-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.24893
https://www.ncbi.nlm.nih.gov/pubmed/25521840
https://www.proquest.com/docview/1666995913
https://search.proquest.com/docview/1667964063
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2aJiHxAmzjI2wgI6GJl3RNbDeJeCqFrpq6KdoYTAjJsh1HKhVJtbSI8sRP4DfyS7i200wgHhBvkezESa6v77n28THA8zQrODWYphalZiGTqh9mTOlQZYVJTMIYU44gezaYXLKTK361BS83e2G8PkQ34WY9w43X1sGlao5uREM_6UUvttIpOP5GNLF0rtfnN9JRWXuMvKMgcBZtVIX68VF3JwJS-y-__g1d_g5WXbQZ34WPm_f0JJN5b7VUPf3tDwnH__yQe3CnRaFk6LvNDmyZahf2hhVm4J_X5JA4XqibcN-FW_64yvUerCL-8_uP6WyBL4X9DuMfyR2bzzSkFdklkzWWziTWs4eCaFPgs0xV25le4ncyNKQuST68OB015N1MktzRxr4YMsZAqqSe2zbqemGrvTrN2X24HL95O5qE7bENoaY8oWGGSRyjilNELgXmZ4PURFxFUsWpiQdcFQPDbaZWOlmlWCHmSaXOyiTTCVeqTx_AdlVX5hGQSGdKRibTCGMx86QqLiViTK2jvsboXgZw6AwoFl6aQ8jruWWqJVy8PzsW0-N4ev6BpuIigIONhUXrpI2wK6ZWbi2iATzritG97JqJrEy9cnXsZl0EcgE89D2jawyzMZcgB_DC2bcr8FLQsUDLCmdZcTLK3cXjf6-6D7cRnHFPDT6A7eX1yjxBALRUT11P_wWMMwIC
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NIcRe-LPBCAwwEpp4SdfEdtNIvJRCV0ZaRfvHhIQs23GkUpFUa4soT3wEPiOfhLOTZgLxgHiL5Evs5Hy539nn3wE878YZpwbD1CzXzGdStf2YKe2rODORiRhjyiXIjjvDM3Z0wS824OX6LEzFD9EsuFnLcP9ra-B2QfrgijX0k561Qsudcg2uo7lTW7jh9fEVeVRcF5J3SQicBWteoXZ40NyKkNR-za9_w5e_w1Xnbwa34eN6pFWaybS1XKiW_vYHieP_vsoduFUDUdKrZs5d2DDFNuz0CgzCP6_IPnGpoW7NfRtuVBUrVzuwDPjP7z-SyQxHhVMPXSBJXUKfmZOaZ5cMV9g6kShn64Jok-GzTFHaxV5SHWaYkzInae9k1J-T84kkqcsc-2LIAH2pknpq-yjLmRV7NUrZPTgbvDntD_26coOvKY-oH2Mcx6jiFMFLhiFap2sCrgKpwq4JO1xlHcNtsJY7ZqVQIezpSh3nUawjrlSb3ofNoizMAyCBjpUMTKwRyWLwSVWYS4SZWgdtjQ4-92DfaVDMKnYOIS-nNlkt4uL9-FAkh2Fy_IF2xYkHe2sVi9pO58JumlrGtYB68KxpRguz2yayMOXSydjzuojlPNitpkbTGQZkLkb24IVTcNNQsUGHAjUrnGbFUT91Fw__XfQp3ByejhKRvB2_ewRbiNV4lSm8B5uLy6V5jHhooZ64af8LlaAGGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NIdBeGGyMBQYYCU28pGsSO3_EUyl0ZXRVtDGYJiTLdhypVCTR2qKVJz4Cn5FPwtlJM4F4QLxF8iV2cne539nnnwGex0nGAo1papYr6lIhu25CpXJlkulIR5RSaQtkx-HwjB6ds_M1eLnaC1PzQ7QTbsYz7P_aOHiV5QfXpKGfVdXxDXXKDbhJQ0S-BhGdXHNHJc058rYGgVFvRSvU9Q_aWxGRmo959Td4-TtateFmsAmfVgOtq0ymncVcdtS3Pzgc__NN7sKdBoaSXm0392BNF1uw3SswBf-yJPvEFobaGfctuFWfV7nchoXHfn7_MZpUOCg0PAyAJLXlfHpGGpZdMlxi60SgnDkVROkMn6WL0kz1knorw4yUOUl7p8f9GfkwESS1dWNfNRlgJJVCTU0fZVkZsVfHKb0PZ4M37_tDtzm3wVUBiwI3wSyOBpIFCF0yTNDCWHtMekL6sfZDJrNQM5Oq5ZZXyZcIemKhkjxKVMSk7AY7sF6Uhd4F4qlECk8nCnEspp6B9HOBIFMpr6swvOcO7FsF8qrm5uDicmpK1SLGP44P-ejQH51cBDE_dWBvpWHeeOmMmyVTw7fmBQ48a5vRv8yiiSh0ubAyZrcuIjkHHtSW0XaG6ZjNkB14YfXbNtRc0D5HzXKrWX7UT-3Fw38XfQq309cDPno7fvcINhCosbpMeA_W55cL_RjB0Fw-sUb_C4UjBMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=15-Lipoxygenase+promotes+chronic+hypoxia-induced+phenotype+changes+of+PASMCs+via+positive+feedback-loop+of+BMP4&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yu%2C+Xiufeng&rft.au=Wei%2C+Liuping&rft.au=Lu%2C+Ping&rft.au=Shen%2C+Tingting&rft.date=2015-07-01&rft.eissn=1097-4652&rft.volume=230&rft.issue=7&rft.spage=1489&rft_id=info:doi/10.1002%2Fjcp.24893&rft_id=info%3Apmid%2F25521840&rft.externalDocID=25521840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon