The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease
Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver di...
Saved in:
Published in | Frontiers in pharmacology Vol. 12; p. 783393 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
18.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the
de novo
lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process. |
---|---|
AbstractList | Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the
de novo
lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process. Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the de novo lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process. |
Author | Li, Chunlin Yu, Siyu Ji, Guang Zhang, Li |
AuthorAffiliation | Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai , China |
AuthorAffiliation_xml | – name: Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai , China |
Author_xml | – sequence: 1 givenname: Siyu surname: Yu fullname: Yu, Siyu – sequence: 2 givenname: Chunlin surname: Li fullname: Li, Chunlin – sequence: 3 givenname: Guang surname: Ji fullname: Ji, Guang – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li |
BookMark | eNpVkcFuFDEMhiNUREvpA3CbI5dZkjiTZC5IaGFhpRVcyjlKMp5uqtnJkmQq9e2b7VaI-mLL_vXZ8v-eXMxxRkI-MroC0P3n8bi3acUpZyulAXp4Q66YlND2mvGL_-pLcpPzPa0BfQ9SvCOXILRUgokrsr3dY7OOc0nBLSXEuYlj8y1gsemx2aTFl5ixKbH5FefWTj7u4xR8s7GlPDa78ICpqjPajB_I29FOGW9e8jX5s_l-u_7Z7n7_2K6_7loPnYK2o11vqXacO6WlkCB6TREA2Di6zju0omfYCTGCU4PkgNxqoasaO0Su4Jpsz9wh2ntzTOFQTzXRBvPciOnO2FSCn9D4zg6DOoGpFVZVzoidto6hG7QCUVlfzqzj4g44eKx_sNMr6OvJHPbmLj4YLUHVB1bApxdAin8XzMUcQvY4TXbGuGTDJVVApVKyStlZ6lPMOeH4bw2j5uSoeXbUnBw1Z0fhCcQGlY0 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e18896 crossref_primary_10_1111_joim_13729 crossref_primary_10_1016_j_nut_2023_112095 crossref_primary_10_3390_nu16020219 crossref_primary_10_3390_nu15153487 crossref_primary_10_3389_fphar_2023_1163160 crossref_primary_10_3390_ijms25052813 crossref_primary_10_1016_j_aohep_2022_100874 crossref_primary_10_1016_j_gastrohep_2023_09_014 crossref_primary_10_3390_ijms241411307 crossref_primary_10_1016_j_molmet_2024_101932 crossref_primary_10_1016_j_gastre_2024_04_025 crossref_primary_10_37349_edd_2022_00005 crossref_primary_10_3390_metabo13111130 crossref_primary_10_3389_fnut_2022_1070187 crossref_primary_10_3389_fped_2022_933081 crossref_primary_10_3389_fendo_2022_994930 crossref_primary_10_1038_s41574_023_00809_4 crossref_primary_10_1002_mnfr_202200533 crossref_primary_10_1007_s00203_023_03752_0 crossref_primary_10_5937_pramed2204045M |
Cites_doi | 10.1016/j.cmet.2020.07.018 10.1016/j.taap.2020.114997 10.3945/an.112.002998 10.1371/journal.pone.0157458 10.1016/0016-5085(93)90948-c 10.3390/nu9030230 10.3390/nu4081137 10.1016/j.jhep.2015.11.022 10.1111/jhn.12338 10.1152/ajprenal.00374.2019 10.1016/j.cmet.2019.09.003 10.1016/j.foodres.2021.110287 10.1016/j.molmet.2021.101196 10.1053/j.gastro.2006.03.020 10.1002/hep.26299 10.1002/mnfr.201700566 10.1016/j.cmet.2020.05.012 10.1074/jbc.M808128200 10.1152/ajpendo.90245.2008 10.2337/dc08-0080 10.1111/jdi.12356 10.1371/journal.pone.0048801 10.1172/jci94585 10.1371/journal.pone.0047948 10.1113/jp277767 10.1186/s12964-016-0158-6 10.1007/s00604-020-04243-5 10.1093/eurheartj/ehx518 10.1016/s0026-0495(99)90200-7 10.1016/0003-9861(91)90217-7 10.1017/s000711451100033x 10.1126/science.7678183 10.1016/j.jhepr.2020.100217 10.1152/ajprenal.00543.2019 10.1016/j.tiv.2014.05.006 10.1080/07315724.2009.10719794 10.1016/j.cmet.2017.04.013 10.1053/j.gastro.2019.11.312 10.1186/s12882-018-1105-0 10.1016/j.jnutbio.2013.10.010 10.1172/jci23621 10.1038/nature14909 10.1249/MSS.0b013e318218ca5a 10.1016/j.cmet.2020.12.005 10.1038/s41586-020-2101-7 10.1021/acs.jmedchem.0c00944 10.1186/s13073-016-0303-2 10.1111/j.1365-2265.2006.02466.x 10.1111/cei.13299 10.2174/1389557515666150909143737 10.1053/j.gastro.2010.09.038 10.1074/jbc.M112.399899 10.1007/s00125-014-3451-1 10.1016/j.cmet.2017.12.016 10.1126/science.1080029 10.1016/j.crvi.2009.01.007 10.1136/bmj.f5001 10.1002/oby.22472 10.1146/annurev-nutr-082117-051707 10.1093/ajcn/62.1.203S 10.1016/j.bbadis.2018.06.023 10.1097/MPA.0b013e3181a7c6e5 10.1152/ajpgi.00443.2014 10.1109/tpami.2016.2537807 10.1038/s41586-021-03827-2 10.1111/j.1432-1033.1990.tb19225.x 10.1097/mco.0000000000000203 10.1016/j.jand.2016.06.003 10.1155/2020/4281802 10.1017/s0029665112000092 10.1152/ajpgi.00372.2013 10.1080/09637480120092143 10.3945/ajcn.2008.26812 10.1016/j.jada.2005.07.002 10.1128/aem.01296-06 10.1002/hep.30652 10.1016/j.mam.2012.07.001 10.1016/j.physbeh.2017.02.027 10.1038/ncomms3434 10.1158/0008-5472.CAN-19-0456 10.1080/07315724.2012.10720445 10.1016/j.jcmgh.2020.09.008 10.1371/journal.pone.0231237 10.3389/fmolb.2020.598419 10.1016/s0005-2736(03)00129-9 10.3390/nu10060679 10.1186/s40170-020-00222-9 10.1023/a:1020835229591 10.1073/pnas.1713837115 10.1126/science.1109051 10.1152/ajpendo.00501.2020 10.1016/j.cmet.2018.02.013 10.1016/j.metabol.2011.01.008 10.1016/j.cmet.2006.05.011 10.1017/s0954422414000237 10.3390/nu10060761 10.1016/j.jhep.2018.01.019 10.1002/hep.23535 10.1189/jlb.68.4.437 10.1681/asn.2007121304 10.2147/ott.S205522 10.1016/j.pcad.2017.12.001 10.1016/j.etp.2013.12.001 10.3945/an.112.003137 10.1002/mnfr.201901141 10.1152/ajpendo.00582.2012 10.2337/diacare.25.2.353 10.1042/bj20030661 10.1038/s42255-020-0261-2 10.1016/j.clinbiochem.2014.01.029 10.1136/postgradmedj-2015-133285 10.3390/nu9050470 10.1016/j.bbrc.2018.04.103 10.1016/j.bcp.2021.114498 10.1681/asn.2013080905 10.1038/s41467-021-21461-4 10.1038/nrgastro.2013.171 10.1152/ajpgi.00550.2004 10.1016/j.jhep.2008.02.011 10.1007/s00394-013-0644-1 10.1111/fcp.12597 10.1172/jci.insight.131596 10.1093/ajcn/84.5.1171 10.1073/pnas.1119908109 10.1038/nrgastro.2010.41 10.1096/fj.15-272195 10.1017/s000711451000190x 10.1152/physiolgenomics.00056.2004 10.1161/circresaha.116.305360 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Yu, Li, Ji and Zhang. 2021 Yu, Li, Ji and Zhang |
Copyright_xml | – notice: Copyright © 2021 Yu, Li, Ji and Zhang. 2021 Yu, Li, Ji and Zhang |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fphar.2021.783393 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Yu et al |
EISSN | 1663-9812 |
EndPage | 783393 |
ExternalDocumentID | oai_doaj_org_article_c5add71ffb0a4a7a84fe58ab1ebd8734 10_3389_fphar_2021_783393 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c3573-5059a08b22b7864634980e3331ffb5cbea491e544f3b7d623e2a8482b7e5ee273 |
IEDL.DBID | RPM |
ISSN | 1663-9812 |
IngestDate | Tue Oct 22 15:14:30 EDT 2024 Tue Sep 17 21:13:57 EDT 2024 Fri Oct 25 02:38:51 EDT 2024 Thu Sep 26 19:08:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3573-5059a08b22b7864634980e3331ffb5cbea491e544f3b7d623e2a8482b7e5ee273 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 This article was submitted to Gastrointestinal and Hepatic Pharmacology, a section of the journal Frontiers in Pharmacology Reviewed by: Almir Gonçalves Wanderley, Federal University of São Paulo, Brazil These authors have contributed equally to this work Edited by: Irwin Rose Alencar de Menezes, Regional University of Cariri, Brazil Radosław Kowalski, University of Life Sciences of Lublin, Poland |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637741/ |
PMID | 34867414 |
PQID | 2607306776 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5add71ffb0a4a7a84fe58ab1ebd8734 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637741 proquest_miscellaneous_2607306776 crossref_primary_10_3389_fphar_2021_783393 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-18 |
PublicationDateYYYYMMDD | 2021-11-18 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in pharmacology |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bezborodkina (B9) 2014; 66 Lanaspa (B62); 7 Su (B104) 2018; 500 Ferraris (B33) 2018; 38 Décombaz (B23) 2011; 43 Kuhre (B61) 2014; 306 Qi (B90) 2020; 187 Powell (B88) 2016; 116 Gaby (B36) 2005; 10 Douard (B29) 2013; 304 Sen (B96) 2017; 173 Montrose (B76) 2021; 11 Eslam (B30) 2020; 158 Mueckler (B77) 2013; 34 Mirtschink (B74) 2018; 39 Wang (B122) 2014; 28 Le (B68) 2016; 11 Villa-Rodriguez (B118) 2017; 61 Zubiría (B131) 2017; 9 Sundborn (B105) 2019; 27 de Heredia (B24) 2012; 71 Futatsugi (B35) 2020; 63 Southgate (B103) 1995; 62 Abdelmalek (B1) 2010; 51 Jahn (B49) 2019; 1865 Cui (B21) 2005; 288 Lim (B69) 2010; 7 Ramezani (B91) 2014; 25 Uzuegbu (B113) 2009; 332 Vasdev (B115) 2002; 241 Thorens (B110) 2015; 58 White (B124) 2013; 4 Davies (B22) 1990; 192 Premachandran (B89) 2017; 39 Tang (B106) 2015; 116 Sánchez-Lozada (B93) 2008; 88 Loomba (B71) 2013; 10 Wittekind (B126) 2014; 27 Chapman (B15) 2020; 318 Johnson (B57) 2018; 19 Lanaspa (B65) 2013; 4 Vos (B119) 2013; 57 Ouyang (B83) 2008; 48 Nakatsu (B80) 2015; 309 Hengist (B44) 2019; 597 Douard (B28) 2008; 295 Jin (B56) 2019; 12 Pongking (B87) 2020; 15 Patterson (B86) 2016; 92 Hui (B47) 2009; 38 Williams (B125) 2011; 140 Ishimoto (B48) 2012; 109 Castrogiovanni (B14) 2012; 4 Fantuzzi (B32) 2000; 68 Todoric (B111) 2020; 2 Patel (B85) 2015; 29 Schmidl (B94) 2020; 7 Lanaspa (B64); 7 Bergheim (B7) 2006; 130 García-Arroyo (B37) 2020; 2020 Nakagawa (B79) 2020; 8 Yang (B129) 2020; 318 Cui (B20) 2004; 18 Sertoglu (B97) 2014; 47 Newens (B81) 2016; 29 Van den Berghe (B114) 1986; 21 Bhattacharjee (B10) 2014; 25 Moeller (B75) 2009; 28 Falony (B31) 2006; 72 Do (B26) 2018; 10 Glushakova (B38) 2008; 19 Muraki (B78) 2013; 347 DiNicolantonio (B25) 2018; 61 Shepherd (B99) 2021; 3 Gouyon (B40) 2003; 375 Jensen (B53) 2018; 68 Huang (B46) 2017; 15 Shapiro (B98) 2011; 106 Nomura (B82) 2015; 526 Beyer (B8) 2005; 105 Milutinović (B73) 2020; 64 Jaiswal (B50) 2019; 197 Kawasaki (B59) 2002; 25 Bradford (B12) 1991; 288 Warner (B123) 2021; 320 Wan (B121) 2016; 64 Cho (B18) 2021; 73 Carreño (B13) 2021; 81 Softic (B101) 2019; 30 Villalobos-García (B117) 2021; 188 Jin (B55) 2015; 18 Pan (B84) 2018; 10 Bazzano (B6) 2008; 31 Targher (B107) 2006; 64 Xu (B127) 2003; 299 Barone (B5) 2009; 284 Jang (B51) 2018; 27 Zhao (B130) 2020; 579 Vats (B116) 2006; 4 Seino (B95) 2015; 6 Donnelly (B27) 2005; 115 Gutierrez (B43) 2021; 48 Cheeseman (B16) 1993; 105 Jones (B58) 2021; 12 Liu (B70) 2020; 32 Taylor (B108) 2021; 597 Grewal (B42) 2016; 16 Lanaspa (B63); 287 Walker (B120) 2012; 31 Chen (B17) 2020; 5 Yamamoto (B128) 1999; 48 Cui (B19) 2003; 1612 Akar (B3) 2021; 143 Softic (B100) 2017; 127 Larsson (B67) 2006; 84 Gonzalez (B39) 2018; 27 Abdelmoneim (B2) 2021; 35 Andres-Hernando (B4) 2020; 32 Jeong (B54) 2021; 33 Lanaspa (B66) 2018; 115 Hotamisligil (B45) 1993; 259 Kovačević (B60) 2014; 53 Jegatheesan (B52) 2017; 9 Tran (B112) 2010; 104 Forshee (B34) 2003; 54 Lustig (B72) 2013; 4 Roncal-Jimenez (B92) 2011; 60 Grasset (B41) 2017; 25 Sonnenburg (B102) 2005; 307 Boulangé (B11) 2016; 8 Thongnak (B109) 2020; 396 |
References_xml | – volume: 32 start-page: 605 year: 2020 ident: B70 article-title: Triose Kinase Controls the Lipogenic Potential of Fructose and Dietary Tolerance publication-title: Cel Metab doi: 10.1016/j.cmet.2020.07.018 contributor: fullname: Liu – volume: 396 start-page: 114997 year: 2020 ident: B109 article-title: Effects of Dapagliflozin and Statins Attenuate Renal Injury and Liver Steatosis in High-Fat/high-Fructose Diet-Induced Insulin Resistant Rats publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2020.114997 contributor: fullname: Thongnak – volume: 4 start-page: 226 year: 2013 ident: B72 article-title: Fructose: It's "Alcohol without the Buzz" publication-title: Adv. Nutr. doi: 10.3945/an.112.002998 contributor: fullname: Lustig – volume: 11 start-page: e0157458 year: 2016 ident: B68 article-title: Bioactivity-Guided Identification of Botanical Inhibitors of Ketohexokinase publication-title: PLoS One doi: 10.1371/journal.pone.0157458 contributor: fullname: Le – volume: 105 start-page: 1050 year: 1993 ident: B16 article-title: GLUT2 Is the Transporter for Fructose Across the Rat Intestinal Basolateral Membrane publication-title: Gastroenterology doi: 10.1016/0016-5085(93)90948-c contributor: fullname: Cheeseman – volume: 9 start-page: 230 year: 2017 ident: B52 article-title: Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism publication-title: Nutrients doi: 10.3390/nu9030230 contributor: fullname: Jegatheesan – volume: 4 start-page: 1137 year: 2012 ident: B14 article-title: Fructose Rich Diet-Induced High Plasminogen Activator Inhibitor-1 (PAI-1) Production in the Adult Female Rat: Protective Effect of Progesterone publication-title: Nutrients doi: 10.3390/nu4081137 contributor: fullname: Castrogiovanni – volume: 64 start-page: 925 year: 2016 ident: B121 article-title: Uric Acid Regulates Hepatic Steatosis and Insulin Resistance Through the NLRP3 Inflammasome-dependent Mechanism publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.11.022 contributor: fullname: Wan – volume: 29 start-page: 225 year: 2016 ident: B81 article-title: A Review of Sugar Consumption from Nationally Representative Dietary Surveys Across the World publication-title: J. Hum. Nutr. Diet. doi: 10.1111/jhn.12338 contributor: fullname: Newens – volume: 318 start-page: F1053 year: 2020 ident: B15 article-title: High-fructose Corn Syrup-Sweetened Soft Drink Consumption Increases Vascular Resistance in the Kidneys at Rest and During Sympathetic Activation publication-title: Am. J. Physiol. Ren. Physiol doi: 10.1152/ajprenal.00374.2019 contributor: fullname: Chapman – volume: 30 start-page: 735 year: 2019 ident: B101 article-title: Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins publication-title: Cel Metab. doi: 10.1016/j.cmet.2019.09.003 contributor: fullname: Softic – volume: 143 start-page: 110287 year: 2021 ident: B3 article-title: Potential Mechanistic Pathways Underlying Intestinal and Hepatic Effects of Kefir in High-Fructose-Fed Rats publication-title: Food Res. Int. doi: 10.1016/j.foodres.2021.110287 contributor: fullname: Akar – volume: 48 start-page: 101196 year: 2021 ident: B43 article-title: Pharmacologic Inhibition of Ketohexokinase Prevents Fructose-Induced Metabolic Dysfunction publication-title: Mol. Metab. doi: 10.1016/j.molmet.2021.101196 contributor: fullname: Gutierrez – volume: 130 start-page: 2099 year: 2006 ident: B7 article-title: Metformin Prevents Alcohol-Induced Liver Injury in the Mouse: Critical Role of Plasminogen Activator Inhibitor-1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.03.020 contributor: fullname: Bergheim – volume: 57 start-page: 2525 year: 2013 ident: B119 article-title: Dietary Fructose in Nonalcoholic Fatty Liver Disease publication-title: Hepatology doi: 10.1002/hep.26299 contributor: fullname: Vos – volume: 61 start-page: 1700566 year: 2017 ident: B118 article-title: Green and Chamomile Teas, but Not Acarbose, Attenuate Glucose and Fructose Transport via Inhibition of GLUT2 and GLUT5 publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201700566 contributor: fullname: Villa-Rodriguez – volume: 32 start-page: 117 year: 2020 ident: B4 article-title: Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction publication-title: Cell Metab doi: 10.1016/j.cmet.2020.05.012 contributor: fullname: Andres-Hernando – volume: 284 start-page: 5056 year: 2009 ident: B5 article-title: Slc2a5 (Glut5) Is Essential for the Absorption of Fructose in the Intestine and Generation of Fructose-Induced Hypertension publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808128200 contributor: fullname: Barone – volume: 295 start-page: E227 year: 2008 ident: B28 article-title: Regulation of the Fructose Transporter GLUT5 in Health and Disease publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90245.2008 contributor: fullname: Douard – volume: 31 start-page: 1311 year: 2008 ident: B6 article-title: Intake of Fruit, Vegetables, and Fruit Juices and Risk of Diabetes in Women publication-title: Diabetes Care doi: 10.2337/dc08-0080 contributor: fullname: Bazzano – volume: 6 start-page: 522 year: 2015 ident: B95 article-title: Fructose Induces Glucose-dependent Insulinotropic Polypeptide, Glucagon-like Peptide-1 and Insulin Secretion: Role of Adenosine Triphosphate-Sensitive K(+) Channels publication-title: J. Diabetes Investig. doi: 10.1111/jdi.12356 contributor: fullname: Seino – volume: 7 start-page: e48801 ident: B62 article-title: Counteracting Roles of AMP Deaminase and AMP Kinase in the Development of Fatty Liver publication-title: PLoS One doi: 10.1371/journal.pone.0048801 contributor: fullname: Lanaspa – volume: 127 start-page: 4059 year: 2017 ident: B100 article-title: Divergent Effects of Glucose and Fructose on Hepatic Lipogenesis and Insulin Signaling publication-title: J. Clin. Invest. doi: 10.1172/jci94585 contributor: fullname: Softic – volume: 7 start-page: e47948 ident: B64 article-title: Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver publication-title: PLoS One doi: 10.1371/journal.pone.0047948 contributor: fullname: Lanaspa – volume: 597 start-page: 3573 year: 2019 ident: B44 article-title: Fructose and Metabolic Health: Governed by Hepatic Glycogen Status publication-title: J. Physiol. doi: 10.1113/jp277767 contributor: fullname: Hengist – volume: 15 start-page: 3 year: 2017 ident: B46 article-title: Aldose Reductase Mediates Endothelial Cell Dysfunction Induced by High Uric Acid Concentrations publication-title: Cell Commun. Signal. doi: 10.1186/s12964-016-0158-6 contributor: fullname: Huang – volume: 187 start-page: 279 year: 2020 ident: B90 article-title: A "half" Core-Shell Magnetic Nanohybrid Composed of Zeolitic Imidazolate Framework and Graphitic Carbon Nitride for Magnetic Solid-phase Extraction of Sulfonylurea Herbicides from Water Samples Followed by LC-MS/MS Detection publication-title: Mikrochim Acta doi: 10.1007/s00604-020-04243-5 contributor: fullname: Qi – volume: 39 start-page: 2497 year: 2018 ident: B74 article-title: Fructose Metabolism, Cardiometabolic Risk, and the Epidemic of Coronary Artery Disease publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehx518 contributor: fullname: Mirtschink – volume: 48 start-page: 1023 year: 1999 ident: B128 article-title: Effect of Amino Acids on the Plasma Concentration and Urinary Excretion of Uric Acid and Uridine publication-title: Metabolism doi: 10.1016/s0026-0495(99)90200-7 contributor: fullname: Yamamoto – volume: 288 start-page: 435 year: 1991 ident: B12 article-title: Inhibition of Ethanol Metabolism by Fructose in Alcohol Dehydrogenase-Deficient Deer Mice In Vivo publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(91)90217-7 contributor: fullname: Bradford – volume: 106 start-page: 390 year: 2011 ident: B98 article-title: Prevention and Reversal of Diet-Induced Leptin Resistance with a Sugar-free Diet Despite High Fat Content publication-title: Br. J. Nutr. doi: 10.1017/s000711451100033x contributor: fullname: Shapiro – volume: 259 start-page: 87 year: 1993 ident: B45 article-title: Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-Linked Insulin Resistance publication-title: Science doi: 10.1126/science.7678183 contributor: fullname: Hotamisligil – volume: 3 start-page: 100217 year: 2021 ident: B99 article-title: Ketohexokinase Inhibition Improves NASH by Reducing Fructose-Induced Steatosis and Fibrogenesis publication-title: JHEP Rep. doi: 10.1016/j.jhepr.2020.100217 contributor: fullname: Shepherd – volume: 318 start-page: F1513 year: 2020 ident: B129 article-title: Dietary Fructose Enhances Angiotensin II-Stimulated Na+ Transport via Activation of PKC-α in Renal Proximal Tubules publication-title: Am. J. Physiol. Ren. Physiol doi: 10.1152/ajprenal.00543.2019 contributor: fullname: Yang – volume: 28 start-page: 1183 year: 2014 ident: B122 article-title: 2-Deoxy-d-glucose Attenuates Sevoflurane-Induced Neuroinflammation Through Nuclear Factor-Kappa B Pathway In Vitro publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2014.05.006 contributor: fullname: Wang – volume: 28 start-page: 619 year: 2009 ident: B75 article-title: The Effects of High Fructose Syrup publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2009.10719794 contributor: fullname: Moeller – volume: 25 start-page: 1075 year: 2017 ident: B41 article-title: A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance Through an Enteric NO-Dependent and Gut-Brain Axis Mechanism publication-title: Cel Metab doi: 10.1016/j.cmet.2017.04.013 contributor: fullname: Grasset – volume: 158 start-page: 1999 year: 2020 ident: B30 article-title: MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.312 contributor: fullname: Eslam – volume: 19 start-page: 315 year: 2018 ident: B57 article-title: Fructose Increases Risk for Kidney Stones: Potential Role in Metabolic Syndrome and Heat Stress publication-title: BMC Nephrol. doi: 10.1186/s12882-018-1105-0 contributor: fullname: Johnson – volume: 25 start-page: 219 year: 2014 ident: B10 article-title: Role of Immunodeficient Animal Models in the Development of Fructose Induced NAFLD publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2013.10.010 contributor: fullname: Bhattacharjee – volume: 115 start-page: 1343 year: 2005 ident: B27 article-title: Sources of Fatty Acids Stored in Liver and Secreted via Lipoproteins in Patients with Nonalcoholic Fatty Liver Disease publication-title: J. Clin. Invest. doi: 10.1172/jci23621 contributor: fullname: Donnelly – volume: 10 start-page: 294 year: 2005 ident: B36 article-title: Adverse Effects of Dietary Fructose publication-title: Altern. Med. Rev. contributor: fullname: Gaby – volume: 526 start-page: 397 year: 2015 ident: B82 article-title: Structure and Mechanism of the Mammalian Fructose Transporter GLUT5 publication-title: Nature doi: 10.1038/nature14909 contributor: fullname: Nomura – volume: 43 start-page: 1964 year: 2011 ident: B23 article-title: Fructose and Galactose Enhance Postexercise Human Liver Glycogen Synthesis publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e318218ca5a contributor: fullname: Décombaz – volume: 33 start-page: 145 year: 2021 ident: B54 article-title: High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells publication-title: Cel Metab doi: 10.1016/j.cmet.2020.12.005 contributor: fullname: Jeong – volume: 579 start-page: 586 year: 2020 ident: B130 article-title: Dietary Fructose Feeds Hepatic Lipogenesis via Microbiota-Derived Acetate publication-title: Nature doi: 10.1038/s41586-020-2101-7 contributor: fullname: Zhao – volume: 63 start-page: 13546 year: 2020 ident: B35 article-title: Discovery of PF-06835919: A Potent Inhibitor of Ketohexokinase (KHK) for the Treatment of Metabolic Disorders Driven by the Overconsumption of Fructose publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c00944 contributor: fullname: Futatsugi – volume: 8 start-page: 42 year: 2016 ident: B11 article-title: Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease publication-title: Genome Med. doi: 10.1186/s13073-016-0303-2 contributor: fullname: Boulangé – volume: 64 start-page: 337 year: 2006 ident: B107 article-title: Associations Between Liver Histology and Cortisol Secretion in Subjects with Nonalcoholic Fatty Liver Disease publication-title: Clin. Endocrinol. (Oxf) doi: 10.1111/j.1365-2265.2006.02466.x contributor: fullname: Targher – volume: 197 start-page: 237 year: 2019 ident: B50 article-title: High Fructose-Induced Metabolic Changes Enhance Inflammation in Human Dendritic Cells publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.13299 contributor: fullname: Jaiswal – volume: 16 start-page: 120 year: 2016 ident: B42 article-title: Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-Diabetic Diseases publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557515666150909143737 contributor: fullname: Grewal – volume: 140 start-page: 124 year: 2011 ident: B125 article-title: Prevalence of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among a Largely Middle-Aged Population Utilizing Ultrasound and Liver Biopsy: A Prospective Study publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.09.038 contributor: fullname: Williams – volume: 287 start-page: 40732 ident: B63 article-title: Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress: Potential Role in Fructose-dependent and -independent Fatty Liver publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.399899 contributor: fullname: Lanaspa – volume: 58 start-page: 221 year: 2015 ident: B110 article-title: GLUT2, Glucose Sensing and Glucose Homeostasis publication-title: Diabetologia doi: 10.1007/s00125-014-3451-1 contributor: fullname: Thorens – volume: 27 start-page: 351 year: 2018 ident: B51 article-title: The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids publication-title: Cel Metab doi: 10.1016/j.cmet.2017.12.016 contributor: fullname: Jang – volume: 299 start-page: 2074 year: 2003 ident: B127 article-title: A Genomic View of the Human-Bacteroides Thetaiotaomicron Symbiosis publication-title: Science doi: 10.1126/science.1080029 contributor: fullname: Xu – volume: 332 start-page: 534 year: 2009 ident: B113 article-title: Fructose-induced Increase in Ethanol Metabolism and the Risk of Syndrome X in Man publication-title: C R. Biol. doi: 10.1016/j.crvi.2009.01.007 contributor: fullname: Uzuegbu – volume: 347 start-page: f5001 year: 2013 ident: B78 article-title: Fruit Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Longitudinal Cohort Studies publication-title: Bmj doi: 10.1136/bmj.f5001 contributor: fullname: Muraki – volume: 27 start-page: 879 year: 2019 ident: B105 article-title: Are Liquid Sugars Different from Solid Sugar in Their Ability to Cause Metabolic Syndrome? publication-title: Obesity (Silver Spring) doi: 10.1002/oby.22472 contributor: fullname: Sundborn – volume: 38 start-page: 41 year: 2018 ident: B33 article-title: Intestinal Absorption of Fructose publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-082117-051707 contributor: fullname: Ferraris – volume: 62 start-page: 203S year: 1995 ident: B103 article-title: Digestion and Metabolism of Sugars publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/62.1.203S contributor: fullname: Southgate – volume: 1865 start-page: 943 year: 2019 ident: B49 article-title: Animal Models of NAFLD from a Hepatologist's Point of View publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.06.023 contributor: fullname: Jahn – volume: 38 start-page: 706 year: 2009 ident: B47 article-title: Direct Spectrophotometric Determination of Serum Fructose in Pancreatic Cancer Patients publication-title: Pancreas doi: 10.1097/MPA.0b013e3181a7c6e5 contributor: fullname: Hui – volume: 309 start-page: G42 year: 2015 ident: B80 article-title: The Xanthine Oxidase Inhibitor Febuxostat Suppresses Development of Nonalcoholic Steatohepatitis in a Rodent Model publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00443.2014 contributor: fullname: Nakatsu – volume: 39 start-page: 75 year: 2017 ident: B89 article-title: Empirical Minimum Bayes Risk Prediction publication-title: IEEE Trans. Pattern Anal. Mach Intell. doi: 10.1109/tpami.2016.2537807 contributor: fullname: Premachandran – volume: 597 start-page: 263 year: 2021 ident: B108 article-title: Dietary Fructose Improves Intestinal Cell Survival and Nutrient Absorption publication-title: Nature doi: 10.1038/s41586-021-03827-2 contributor: fullname: Taylor – volume: 192 start-page: 283 year: 1990 ident: B22 article-title: Fructose 1-Phosphate and the Regulation of Glucokinase Activity in Isolated Hepatocytes publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1990.tb19225.x contributor: fullname: Davies – volume: 18 start-page: 490 year: 2015 ident: B55 article-title: Fructose and Liver Function-Iis This Behind Nonalcoholic Liver Disease publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/mco.0000000000000203 contributor: fullname: Jin – volume: 116 start-page: 1543 year: 2016 ident: B88 article-title: Added Sugars Intake across the Distribution of US Children and Adult Consumers: 1977-2012 publication-title: J. Acad. Nutr. Diet. doi: 10.1016/j.jand.2016.06.003 contributor: fullname: Powell – volume: 2020 start-page: 4281802 year: 2020 ident: B37 article-title: Restricted Water Intake and Hydration with Fructose-Containing Beverages During Infancy Predispose to Aggravate an Acute Renal Ischemic Insult in Adolescent Rats publication-title: Biomed. Res. Int. doi: 10.1155/2020/4281802 contributor: fullname: García-Arroyo – volume: 71 start-page: 332 year: 2012 ident: B24 article-title: Obesity, Inflammation and the Immune System publication-title: Proc. Nutr. Soc. doi: 10.1017/s0029665112000092 contributor: fullname: de Heredia – volume: 306 start-page: G622 year: 2014 ident: B61 article-title: Fructose Stimulates GLP-1 but Not GIP Secretion in Mice, Rats, and Humans publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00372.2013 contributor: fullname: Kuhre – volume: 54 start-page: 297 year: 2003 ident: B34 article-title: Total Beverage Consumption and Beverage Choices Among Children and Adolescents publication-title: Int. J. Food Sci. Nutr. doi: 10.1080/09637480120092143 contributor: fullname: Forshee – volume: 88 start-page: 1189 year: 2008 ident: B93 article-title: How Safe Is Fructose for Persons With or Without Diabetes publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2008.26812 contributor: fullname: Sánchez-Lozada – volume: 105 start-page: 1559 year: 2005 ident: B8 article-title: Fructose Intake at Current Levels in the United States May Cause Gastrointestinal Distress in Normal Adults publication-title: J. Am. Diet. Assoc. doi: 10.1016/j.jada.2005.07.002 contributor: fullname: Beyer – volume: 72 start-page: 7835 year: 2006 ident: B31 article-title: Cross-feeding BBetween Bifidobacterium Longum BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria During Growth on Oligofructose publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.01296-06 contributor: fullname: Falony – volume: 73 start-page: 2180 year: 2021 ident: B18 article-title: Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2e1-Mediated Oxidative and Nitrative Stress publication-title: Hepatology doi: 10.1002/hep.30652 contributor: fullname: Cho – volume: 34 start-page: 121 year: 2013 ident: B77 article-title: The SLC2 (GLUT) Family of Membrane Transporters publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2012.07.001 contributor: fullname: Mueckler – volume: 173 start-page: 305 year: 2017 ident: B96 article-title: Diet-driven Microbiota Dysbiosis Is Associated with Vagal Remodeling and Obesity publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2017.02.027 contributor: fullname: Sen – volume: 4 start-page: 2434 year: 2013 ident: B65 article-title: Endogenous Fructose Production and Metabolism in the Liver Contributes to the Development of Metabolic Syndrome publication-title: Nat. Commun. doi: 10.1038/ncomms3434 contributor: fullname: Lanaspa – volume: 81 start-page: 2824 year: 2021 ident: B13 article-title: Dietary Fructose Promotes Prostate Cancer Growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-0456 contributor: fullname: Carreño – volume: 31 start-page: 369 year: 2012 ident: B120 article-title: High Rates of Fructose Malabsorption Are Associated with Reduced Liver Fat in Obese African Americans publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2012.10720445 contributor: fullname: Walker – volume: 11 start-page: 525 year: 2021 ident: B76 article-title: Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association with Worsening Colitis publication-title: Cell Mol Gastroenterol Hepatol doi: 10.1016/j.jcmgh.2020.09.008 contributor: fullname: Montrose – volume: 15 start-page: e0231237 year: 2020 ident: B87 article-title: A Combination of Monosodium Glutamate and High-Fat and High-Fructose Diets Increases the Risk of Kidney Injury, Gut Dysbiosis and Host-Microbial Co-metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0231237 contributor: fullname: Pongking – volume: 7 start-page: 598419 year: 2020 ident: B94 article-title: Functional Expression of the Human Glucose Transporters GLUT2 and GLUT3 in Yeast Offers Novel Screening Systems for GLUT-Targeting Drugs publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.598419 contributor: fullname: Schmidl – volume: 1612 start-page: 178 year: 2003 ident: B19 article-title: Regulation of Rat Intestinal GLUT2 mRNA Abundance by Luminal and Systemic Factors publication-title: Biochim. Biophys. Acta doi: 10.1016/s0005-2736(03)00129-9 contributor: fullname: Cui – volume: 10 start-page: 679 year: 2018 ident: B84 article-title: IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice publication-title: Nutrients doi: 10.3390/nu10060679 contributor: fullname: Pan – volume: 8 start-page: 16 year: 2020 ident: B79 article-title: Fructose Contributes to the Warburg Effect for Cancer Growth publication-title: Cancer Metab. doi: 10.1186/s40170-020-00222-9 contributor: fullname: Nakagawa – volume: 241 start-page: 107 year: 2002 ident: B115 article-title: Dietary Vitamin E and C Supplementation Prevents Fructose Induced Hypertension in Rats publication-title: Mol. Cel Biochem doi: 10.1023/a:1020835229591 contributor: fullname: Vasdev – volume: 115 start-page: 3138 year: 2018 ident: B66 article-title: High Salt Intake Causes Leptin Resistance and Obesity in Mice by Stimulating Endogenous Fructose Production and Metabolism publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.1713837115 contributor: fullname: Lanaspa – volume: 307 start-page: 1955 year: 2005 ident: B102 article-title: Glycan Foraging In Vivo by an Intestine-Adapted Bacterial Symbiont publication-title: Science doi: 10.1126/science.1109051 contributor: fullname: Sonnenburg – volume: 320 start-page: E914 year: 2021 ident: B123 article-title: Liver Glycogen-Induced Enhancements in Hypoglycemic Counterregulation Require Neuroglucopenia publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00501.2020 contributor: fullname: Warner – volume: 27 start-page: 483 year: 2018 ident: B39 article-title: Dietary Fructose Metabolism by Splanchnic Organs: Size Matters publication-title: Cel Metab doi: 10.1016/j.cmet.2018.02.013 contributor: fullname: Gonzalez – volume: 60 start-page: 1259 year: 2011 ident: B92 article-title: Sucrose Induces Fatty Liver and Pancreatic Inflammation in Male Breeder Rats Independent of Excess Energy Intake publication-title: Metabolism doi: 10.1016/j.metabol.2011.01.008 contributor: fullname: Roncal-Jimenez – volume: 4 start-page: 13 year: 2006 ident: B116 article-title: Oxidative Metabolism and PGC-1beta Attenuate Macrophage-Mediated Inflammation publication-title: Cel Metab doi: 10.1016/j.cmet.2006.05.011 contributor: fullname: Vats – volume: 27 start-page: 330 year: 2014 ident: B126 article-title: Worldwide Trends in Dietary Sugars Intake publication-title: Nutr. Res. Rev. doi: 10.1017/s0954422414000237 contributor: fullname: Wittekind – volume: 10 start-page: 761 year: 2018 ident: B26 article-title: High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice Without Body Weight Change publication-title: Nutrients doi: 10.3390/nu10060761 contributor: fullname: Do – volume: 68 start-page: 1063 year: 2018 ident: B53 article-title: Fructose and Sugar: A Major Mediator of Non-Alcoholic Fatty Liver Disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.01.019 contributor: fullname: Jensen – volume: 51 start-page: 1961 year: 2010 ident: B1 article-title: Increased Fructose Consumption Is Associated with Fibrosis Severity in Patients with Nonalcoholic Fatty Liver Disease publication-title: Hepatology doi: 10.1002/hep.23535 contributor: fullname: Abdelmalek – volume: 68 start-page: 437 year: 2000 ident: B32 article-title: Leptin in the Regulation of Immunity, Inflammation, and Hematopoiesis publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.68.4.437 contributor: fullname: Fantuzzi – volume: 19 start-page: 1712 year: 2008 ident: B38 article-title: Fructose Induces the Inflammatory Molecule ICAM-1 in Endothelial Cells publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2007121304 contributor: fullname: Glushakova – volume: 12 start-page: 5425 year: 2019 ident: B56 article-title: GLUT5 Increases Fructose Utilization in Ovarian Cancer publication-title: Onco Targets Ther. doi: 10.2147/ott.S205522 contributor: fullname: Jin – volume: 61 start-page: 3 year: 2018 ident: B25 article-title: Fructose-induced Inflammation and Increased Cortisol: A New Mechanism for How Sugar Induces Visceral Adiposity publication-title: Prog. Cardiovasc. Dis. doi: 10.1016/j.pcad.2017.12.001 contributor: fullname: DiNicolantonio – volume: 66 start-page: 147 year: 2014 ident: B9 article-title: Activity of Glycogen Synthase and Glycogen Phosphorylase in Normal and Cirrhotic Rat Liver During Glycogen Synthesis from Glucose or Fructose publication-title: Exp. Toxicol. Pathol. doi: 10.1016/j.etp.2013.12.001 contributor: fullname: Bezborodkina – volume: 4 start-page: 246 year: 2013 ident: B124 article-title: Challenging the Fructose Hypothesis: New Perspectives on Fructose Consumption and Metabolism publication-title: Adv. Nutr. doi: 10.3945/an.112.003137 contributor: fullname: White – volume: 64 start-page: 1901141 year: 2020 ident: B73 article-title: Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201901141 contributor: fullname: Milutinović – volume: 304 start-page: E1303 year: 2013 ident: B29 article-title: Excessive Fructose Intake Causes 1,25-(OH)(2)D(3)-Dependent Inhibition of Intestinal and Renal Calcium Transport in Growing Rats publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00582.2012 contributor: fullname: Douard – volume: 25 start-page: 353 year: 2002 ident: B59 article-title: Increased Fructose Concentrations in Blood and Urine in Patients with Diabetes publication-title: Diabetes Care doi: 10.2337/diacare.25.2.353 contributor: fullname: Kawasaki – volume: 375 start-page: 167 year: 2003 ident: B40 article-title: Fructose Modulates GLUT5 mRNA Stability in Differentiated Caco-2 Cells: Role of cAMP-Signalling Pathway and PABP (Polyadenylated-Binding Protein)-Interacting Protein (Paip) 2 publication-title: Biochem. J. doi: 10.1042/bj20030661 contributor: fullname: Gouyon – volume: 2 start-page: 1034 year: 2020 ident: B111 article-title: Fructose Stimulated De Novo Lipogenesis Is Promoted by Inflammation publication-title: Nat. Metab. doi: 10.1038/s42255-020-0261-2 contributor: fullname: Todoric – volume: 47 start-page: 383 year: 2014 ident: B97 article-title: The Relationship of Serum Uric Acid with Non-alcoholic Fatty Liver Disease publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2014.01.029 contributor: fullname: Sertoglu – volume: 92 start-page: 286 year: 2016 ident: B86 article-title: Gut Microbiota, Obesity and Diabetes publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2015-133285 contributor: fullname: Patterson – volume: 9 start-page: 470 year: 2017 ident: B131 article-title: Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus Kefiri Administration publication-title: Nutrients doi: 10.3390/nu9050470 contributor: fullname: Zubiría – volume: 500 start-page: 462 year: 2018 ident: B104 article-title: GLUT5 Increases Fructose Utilization and Promotes Tumor Progression in Glioma publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.04.103 contributor: fullname: Su – volume: 188 start-page: 114498 year: 2021 ident: B117 article-title: The Fructose-dependent Acceleration of Ethanol Metabolism publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2021.114498 contributor: fullname: Villalobos-García – volume: 25 start-page: 657 year: 2014 ident: B91 article-title: The Gut Microbiome, Kidney Disease, and Targeted Interventions publication-title: J. Am. Soc. Nephrol. doi: 10.1681/asn.2013080905 contributor: fullname: Ramezani – volume: 12 start-page: 1209 year: 2021 ident: B58 article-title: Fructose Reprogrammes Glutamine-dependent Oxidative Metabolism to Support LPS-Induced Inflammation publication-title: Nat. Commun. doi: 10.1038/s41467-021-21461-4 contributor: fullname: Jones – volume: 10 start-page: 686 year: 2013 ident: B71 article-title: The Global NAFLD Epidemic publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2013.171 contributor: fullname: Loomba – volume: 288 start-page: G1310 year: 2005 ident: B21 article-title: Fructose-induced Increases in Neonatal Rat Intestinal Fructose Transport Involve the PI3-kinase/Akt Signaling Pathway publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00550.2004 contributor: fullname: Cui – volume: 48 start-page: 993 year: 2008 ident: B83 article-title: Fructose Consumption as a Risk Factor for Non-alcoholic Fatty Liver Disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2008.02.011 contributor: fullname: Ouyang – volume: 53 start-page: 1409 year: 2014 ident: B60 article-title: Dietary Fructose-Related Adiposity and Glucocorticoid Receptor Function in Visceral Adipose Tissue of Female Rats publication-title: Eur. J. Nutr. doi: 10.1007/s00394-013-0644-1 contributor: fullname: Kovačević – volume: 35 start-page: 379 year: 2021 ident: B2 article-title: Protective Effect of Fenofibrate Against High-Fat-High-Fructose Diet Induced Non-obese NAFLD in Rats publication-title: Fundam. Clin. Pharmacol. doi: 10.1111/fcp.12597 contributor: fullname: Abdelmoneim – volume: 5 start-page: e131596 year: 2020 ident: B17 article-title: GLUT5-mediated Fructose Utilization Drives Lung Cancer Growth by Stimulating Fatty Acid Synthesis and AMPK/mTORC1 Signaling publication-title: JCI Insight doi: 10.1172/jci.insight.131596 contributor: fullname: Chen – volume: 21 start-page: 1 year: 1986 ident: B114 article-title: Fructose: Metabolism and Short-Term Effects on Carbohydrate and Purine Metabolic Pathways publication-title: Prog. Biochem. Pharmacol. contributor: fullname: Van den Berghe – volume: 84 start-page: 1171 year: 2006 ident: B67 article-title: Consumption of Sugar and Sugar-Sweetened Foods and the Risk of Pancreatic Cancer in a Prospective Study publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/84.5.1171 contributor: fullname: Larsson – volume: 109 start-page: 4320 year: 2012 ident: B48 article-title: Opposing Effects of Fructokinase C and A Isoforms on Fructose-Induced Metabolic Syndrome in Mice publication-title: Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.1119908109 contributor: fullname: Ishimoto – volume: 7 start-page: 251 year: 2010 ident: B69 article-title: The Role of Fructose in the Pathogenesis of NAFLD and the Metabolic Syndrome publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2010.41 contributor: fullname: Lim – volume: 29 start-page: 4046 year: 2015 ident: B85 article-title: Transport, Metabolism, and Endosomal Trafficking-dependent Regulation of Intestinal Fructose Absorption publication-title: Faseb j doi: 10.1096/fj.15-272195 contributor: fullname: Patel – volume: 104 start-page: 1139 year: 2010 ident: B112 article-title: Sex Differences in Lipid and Glucose Kinetics After Ingestion of an Acute Oral Fructose Load publication-title: Br. J. Nutr. doi: 10.1017/s000711451000190x contributor: fullname: Tran – volume: 18 start-page: 206 year: 2004 ident: B20 article-title: Fructose-Responsive Genes in the Small Intestine of Neonatal Rats publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00056.2004 contributor: fullname: Cui – volume: 116 start-page: 448 year: 2015 ident: B106 article-title: Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease publication-title: Circ. Res. doi: 10.1161/circresaha.116.305360 contributor: fullname: Tang |
SSID | ssj0000399364 |
Score | 2.3588262 |
SecondaryResourceType | review_article |
Snippet | Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 783393 |
SubjectTerms | de novo lipogenesis fructose inflammation intestinal environment non-alcoholic fatty liver disease (NAFLD) Pharmacology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTlwqClRdPipXQhwqUuLYie1jC10BahEHkLhZ_hR7SVZsOOy_ZybeLZsTl15jS3He2Jk3mvEbQk64C1ykJhTeal8IJ0JhNQtFsBzIrIt1TJjR_XvbXD2Im8f6caPVF9aEZXngDNy5r-EESpaSK62w0iqRYq2sY9EFJXlWAi31RjA1_IPR7zYipzEhCtPnaf5kUf-zYj-k4lzzkSMa9PpHJHNcIrnhc6Y75OOKLNKfeZGfyIfY7pLTu6w2vTyj92-XpxZn9JTevelQL_fINQxTVJ9a97SiXaKXs9jb5yWdomxst4i07-ht1xY2t8qdeTq1fb-kf7BeA2YP6Zt98jD9fX9xVaw6JxSe15IXQGu0LZWrKidVIxoutCoj5xxxrL2LVmgWayESdzIAA4oVAKtgNhgnAqP5TLbaro1fCK2Uq7XXwVsIrHyoNEtlGRJL0ldY0zkh39cwmnkWyDAQWCDmZsDcIOYmYz4hvxDofxNR23p4ABY3K4ub9yw-Id_WZjJwFjDBYdvYvSwMxGYSQyDZTIgc2W_0xvFIO3saVLVVw4EKs4P_scRDso1fjXcWmToiW_3zSzwG8tK7r8M-fQWThvJB priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKuXBBlIdYaJGRUA-oKXHsxPahqnitCoKqh67Um-VnuxJK2t1UIv-emSRLidQj19hRnG_izDea8TeEvOMucJGqkHmrfSacCJnVLGTBciCzLpYxYUb352l1shDfL8qLLbJpbzUCuL43tMN-UovVr8PfN90xbPgjjDjB335I11cWpT0LdigV55o_IA8LAYE6VvKNbL__MaMzrsSQ27z_zol36kX8J8xzWjf5jyOaPyGPRwZJPw4m3yFbsX5K9s8GCerugJ7fnahaH9B9enYnTt09I99gmKIk1abRFW0S_bKMrV11dI5ass060rahp02d2aF_7tLTuW3bjv7AIg6Y3ed0npPF_Ov555NsbKeQeV5KngHX0TZXriicVJWouNAqj5xzlpIrvYtWaBZLIRJ3MgAtioVVQsFssFgEmvOCbNdNHV8SWihXaq-DtxBt-VBolvI8JJakL7DQc0beb2A014NqhoFoAzE3PeYGMTcD5jPyCYH-OxEFr_sLzerSjPvH-BJ-xBJXmlthJSwsxVJZx6ILSnIxI283ZjKwQTDrYevY3K4NBGwS4yJZzYic2G_yxOlIvbzqpbZVxYEfs1f_Y4mvySN8azzIyNQu2W5Xt3EPGE3r3vTf6R84Zvmk priority: 102 providerName: Scholars Portal |
Title | The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease |
URI | https://search.proquest.com/docview/2607306776 https://pubmed.ncbi.nlm.nih.gov/PMC8637741 https://doaj.org/article/c5add71ffb0a4a7a84fe58ab1ebd8734 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaSTF2KPlG3TcACRYYiskWRFMmxTWukRR14SIBsBJ-NgUYybGXwv8-Rsppo7aJBPEHU3Yn8Dnf8DqHP1HrKYu0LZ5QrmGW-MIr4whsKYNYGHmLK6C4u64tr9uuG3xwgPpyFyUX7zq6mzd-7abO6zbWV6zs3G-rEZsvFuawpoBYyO0SH4KBPQvS8_KYtt2Z9BhMCMDWL61uTqD8rMhWSUpV659DENMcIG21HmbV_BDXHhZJPdp75C_R8Dxnx135qL9FBaF6h02XPOb07w1ePR6i2Z_gULx_ZqHev0U8YxomDauhshduIv69CZzY7PE_kse024K7Fl21TmL5h7srhuem6Hf6dqjZAOidx3qDr-Y-r84ti3z-hcJQLWgC4UaaUtqqskDWrKVOyDJRSEqPlzgbDFAmcsUit8ICDQmUkkyANJgqAa96io6ZtwjuEK2m5cso7A-GV85UisSx9JFG4KlV2TtCXQY163dNkaAgvkvp1Vr9O6te9-ifoW1L0P8HEcJ1vtJs_em9n7TisvCLNtDTMCJhYDFwaS4L1UlA2QZ8GM2n4I1KawzShvd9qiNBECoREPUFiZL_RG8cj4GqZW3vvWu__-8kP6Fn61HRckciP6Kjb3IdjwC2dPcnxPlwXTJ5kn30Anonyng |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLbGOMCFb0THl5HQDmhJ49iJ7SMMqg7aqocO7Wb5k1VsSdWmh_LrsZ2GLdzgGjuKkye2n1fv4-cF4D1WBhNXmkRLrhOiiEkkRyYxEnsyq2xhXcjoTmfl-Jx8vSguDkDRnYWJon2tlml1dZ1Wy8uorVxd62GnExvOp6esxJ61oOEdcNfP14zcCtLjAhw23ZK0OUwfgvGhW13KYP6Zo5QyjHmonoOD1xxBpLchRd_-HtnsSyVv7T2jh-B7N-pWcvIz3TYq1b_-MnT859d6BB7s2Sj82DY_Bge2egKO562d9e4ELm5OZ21O4DGc3xhd756CM98Mg71VVzQL1g5-XtpGrndwFHxp642FTQ1ndZXIthbvUsORbJodnARBiO8d80PPwPnoy-J0nOxLMyQaFxQnnjdxmTGV54qykpSYcJZZjDFyThVaWUk4sgUhDitqPMWyuWSE-d4efesp03NwWNWVfQFgzlTBNTda-shNm5wjl2XGIUd1HkSjA_Chw0esWgcO4SOXgKuIuIqAq2hxHYBPAcE_HYN5drxQr3-I_bcWuvCLOg0jzSSR1A_M2YJJhawyjGIyAO86_IWfbCGDIitbbzfCB380xFi0HADa-zF6T-y3eLijbfce3qP_vvMtuDdeTCdicjb79hLcD68dTkUi9gocNuutfe3pUaPexMnwG-poEtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagSIgLO2JYjYR6QM3i2IntI7RELbSjObRSxcXySkfQZDSTOQy_HtuZ0AnHXuMXxc7n5Xt6z98D4CNWBhNXmURLrhOiiEkkRyYxEnsyq2xpXYjonk2r4wvy7bK83Cn1FZP2tZqnze_rtJlfxdzKxbXOhjyxbHZ2yCrsWQvKFsZld8E9v2bzasdRj5twOHgr0scxvRvGM7e4kkEAtEApZRjzUEEHB705gsjoUIra_SPCOU6X3Dl_6kfgx9DzPu3kV7ruVKr__CfqeKuhPQYPt6wUfu5NnoA7tnkK9me9rPXmAJ7f3NJaHcB9OLsRvN48Aye-GQaZq6F4FmwdPJrbTi43sA76tO3Kwq6F07ZJZF-Td65hLbtuA09DYoi3jnGi5-Ci_np-eJxsSzQkGpcUJ54_cZkzVRSKsopUmHCWW4wxck6VWllJOLIlIQ4rajzVsoVkhHlrPwusp04vwF7TNvYlgAVTJdfcaOk9OG0KjlyeG4cc1UVIHp2ATwNGYtErcQjvwQRsRcRWBGxFj-0EfAko_jMMItrxQbv8Kbb_W-jSb-409DSXRFLfMWdLJhWyyjCKyQR8GOaA8IsuRFJkY9v1SngnkAZfi1YTQEeTY_TFcYuHPMp3byF-des334P7s6NanJ5Mv78GD8Kow-VIxN6AvW65tm89S-rUu7ge_gJ3IxVY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Contribution+of+Dietary+Fructose+to+Non-alcoholic+Fatty+Liver+Disease&rft.jtitle=Frontiers+in+pharmacology&rft.au=Siyu+Yu&rft.au=Chunlin+Li&rft.au=Guang+Ji&rft.au=Li+Zhang&rft.date=2021-11-18&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=12&rft_id=info:doi/10.3389%2Ffphar.2021.783393&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5add71ffb0a4a7a84fe58ab1ebd8734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |