A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data

The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientifi...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 28; no. 18; pp. 2338 - 2355
Main Authors Shults, Justine, Sun, Wenguang, Tu, Xin, Kim, Hanjoo, Amsterdam, Jay, Hilbe, Joseph M., Ten-Have, Thomas
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.08.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model‐based and the sandwich‐based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.
The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.
The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model‐based and the sandwich‐based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. Copyright © 2009 John Wiley & Sons, Ltd.
Author Amsterdam, Jay
Shults, Justine
Tu, Xin
Ten-Have, Thomas
Sun, Wenguang
Hilbe, Joseph M.
Kim, Hanjoo
Author_xml – sequence: 1
  givenname: Justine
  surname: Shults
  fullname: Shults, Justine
  email: jshults@mail.med.upenn.edu
  organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A
– sequence: 2
  givenname: Wenguang
  surname: Sun
  fullname: Sun, Wenguang
  organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A
– sequence: 3
  givenname: Xin
  surname: Tu
  fullname: Tu, Xin
  organization: Department of Biostatistics and Computational Biology and Department of Psychiatry, University of Rochester, Rochester, NY 14642, U.S.A
– sequence: 4
  givenname: Hanjoo
  surname: Kim
  fullname: Kim, Hanjoo
  organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A
– sequence: 5
  givenname: Jay
  surname: Amsterdam
  fullname: Amsterdam, Jay
  organization: Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A
– sequence: 6
  givenname: Joseph M.
  surname: Hilbe
  fullname: Hilbe, Joseph M.
  organization: School of Social and Family Dynamics, Arizona State University, Tempe, AZ 85287, U.S.A
– sequence: 7
  givenname: Thomas
  surname: Ten-Have
  fullname: Ten-Have, Thomas
  organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19472307$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1vFCEYhYmpsdtq4i8wXBlvZgXmg5nL2rS1yaqJH9F4Q4B5Z4tlYAuM6_pj_K0ybtVo9AYCec6B854jdOC8A4QeUrKkhLCn0YzLsmHsDlpQ0vGCsLo9QAvCOC8aTutDdBTjJ0IorRm_hw5pV3FWEr5A306w9uNGBhO9w37AET5DkBbLzSZ4qa8g4sEHrK-8j8atsYK0BXB468P1fNY-BLAymSyPKUw6TSFrjMNrcLOT-Qo9hpjMmKEsgJtpT0sn7S6aOL9qvVubNPUm32GV17DDvUzyPro7SBvhwe1-jN6dn709fV6sXl1cnp6sCl3WnBUDI1Rz6Jt2aOocHupKUdkR3dZKUa00Vd0gFQfKGSMt60kNpO9Zp6pKc1aVx-jx3jeHvpnyb8VoogZrpQM_RdHwqq0qyjL46Bac1Ai92IScK-zEz4lm4Mke0MHHGGD4jRAxlyVyWWIuK6PLv1Bt0o_ZpCCN_Zeg2Au2xsLuv8bizeWLP3kTE3z5xctwnQOVvBbvX16Ij6uGPHu9-iDOy-9SLLjE
CitedBy_id crossref_primary_10_1002_bimj_201400045
crossref_primary_10_3389_fpubh_2023_1271194
crossref_primary_10_1186_s13012_016_0541_0
crossref_primary_10_1080_00031305_2016_1200490
crossref_primary_10_1002_jia2_25874
crossref_primary_10_1002_sim_6871
crossref_primary_10_1016_j_jaac_2012_08_019
crossref_primary_10_1097_CCM_0000000000003016
crossref_primary_10_1186_s12889_023_15564_4
crossref_primary_10_1007_s12028_024_02022_1
crossref_primary_10_1080_00949655_2020_1759602
crossref_primary_10_1016_j_agrformet_2014_06_006
crossref_primary_10_1186_1617_9625_11_26
crossref_primary_10_1002_sim_6194
crossref_primary_10_1007_s10342_013_0773_3
crossref_primary_10_3389_fpsyt_2022_896018
crossref_primary_10_1111_1365_2435_12359
crossref_primary_10_30773_pi_2023_0198
crossref_primary_10_1016_j_envres_2022_113251
crossref_primary_10_1016_j_csda_2017_04_002
crossref_primary_10_1198_jcgs_2011_09128
crossref_primary_10_1002_sim_6967
crossref_primary_10_3233_NRE_182641
crossref_primary_10_1080_10543406_2023_2281575
crossref_primary_10_1080_00949655_2013_818148
crossref_primary_10_1080_00949655_2015_1089873
crossref_primary_10_1097_DSS_0000000000002648
crossref_primary_10_1002_sim_4265
crossref_primary_10_1080_20008066_2022_2127474
crossref_primary_10_1002_sim_4465
crossref_primary_10_1136_bmjopen_2020_037468
crossref_primary_10_1186_s12889_016_3711_8
crossref_primary_10_1016_j_xcrm_2024_101888
crossref_primary_10_1016_j_jaip_2016_09_019
crossref_primary_10_1002_sim_5729
crossref_primary_10_3102_10769986211017480
crossref_primary_10_3168_jds_2023_24292
crossref_primary_10_3390_ijerph16030504
crossref_primary_10_1016_j_jalz_2012_05_2188
crossref_primary_10_1017_S0954579418000676
crossref_primary_10_1007_s00180_018_0800_4
crossref_primary_10_1007_s40840_022_01290_4
crossref_primary_10_1016_j_spl_2024_110135
crossref_primary_10_1186_1471_2288_12_15
crossref_primary_10_1080_03610918_2018_1457689
crossref_primary_10_1007_s00362_017_0881_0
crossref_primary_10_1186_s13722_024_00447_9
crossref_primary_10_1038_s41598_021_97343_y
crossref_primary_10_1016_j_aquabot_2018_11_004
crossref_primary_10_1080_03610918_2021_1871924
crossref_primary_10_3389_frph_2021_665723
crossref_primary_10_1002_wics_1349
crossref_primary_10_1016_j_jenvman_2023_119829
crossref_primary_10_1080_02664763_2018_1508560
crossref_primary_10_1080_03610926_2010_501938
crossref_primary_10_1111_j_2041_210X_2009_00009_x
crossref_primary_10_1002_sim_6106
crossref_primary_10_1002_sim_6821
crossref_primary_10_1016_j_comppsych_2016_11_006
crossref_primary_10_1017_S095457941500036X
crossref_primary_10_1080_03610918_2018_1484476
crossref_primary_10_2196_19162
crossref_primary_10_1002_jbmr_3589
crossref_primary_10_1136_bmjopen_2023_076878
crossref_primary_10_1002_bimj_201300098
crossref_primary_10_1080_03610918_2016_1189565
crossref_primary_10_1007_s11606_023_08531_7
crossref_primary_10_1007_s12185_015_1735_y
Cites_doi 10.1055/s-0038-1634100
10.1002/sim.2136
10.1002/sim.2515
10.2307/2531248
10.1093/biomet/73.1.13
10.2307/2532950
10.1093/biomet/77.3.485
10.2307/2533554
10.1111/j.0006-341X.2001.00120.x
10.1097/JCP.0b013e318166c4e6
10.1198/016214504000001178
10.1093/biomet/90.1.29
10.1002/sim.2673
10.1093/biomet/90.2.455
10.1177/1536867X0700700201
10.1111/j.1467-9868.2004.05741.x
10.1093/biomet/82.2.407
10.1002/(SICI)1521-4036(199807)40:3<245::AID-BIMJ245>3.0.CO;2-N
10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3
10.2307/2533686
10.1111/j.0006-341X.2000.00622.x
10.2307/2531733
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: Copyright 2009 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/sim.3622
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2355
ExternalDocumentID 19472307
10_1002_sim_3622
SIM3622
ark_67375_WNG_ZL60BRLX_F
Genre article
Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIH‐R01CA
  funderid: 096885
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3572-f201c7ed68f65025e54b1a90c85bb1cbc1b9fab7e1722082d05e0dd29b44c7243
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 01:18:49 EDT 2025
Wed Feb 19 01:49:55 EST 2025
Tue Jul 01 04:33:21 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Wed Jan 22 17:00:21 EST 2025
Wed Oct 30 09:57:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2009 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3572-f201c7ed68f65025e54b1a90c85bb1cbc1b9fab7e1722082d05e0dd29b44c7243
Notes ArticleID:SIM3622
NIH-R01CA - No. 096885
istex:9B181C9858EB3C394ADDB747255867D5A241826C
ark:/67375/WNG-ZL60BRLX-F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 19472307
PQID 67484412
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_67484412
pubmed_primary_19472307
crossref_primary_10_1002_sim_3622
crossref_citationtrail_10_1002_sim_3622
wiley_primary_10_1002_sim_3622_SIM3622
istex_primary_ark_67375_WNG_ZL60BRLX_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-15
15 August 2009
2009-Aug-15
20090815
PublicationDateYYYYMMDD 2009-08-15
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001; 57:120-125.
Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statistics in Medicine 2006; 25:4279-4292.
Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 1990; 77:485-497.
Wang YG, Carey VJ. Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance. Biometrika 2003; 90:29-41.
Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
Sutradhar BC, Das K. On the accuracy of efficiency of estimating equation approach. Biometrics 2000; 56:622-625.
Pan W, Connet J. Selecting the working correlation structure in generalized estimating equations with application to the lung health study. Statistica Sinica 2002; 12:475-490.
Shults J, Ratcliffe SJ, Leonard M. Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. The Stata Journal 2007; 7(2):147-166.
Ziegler A, Gromping U. The generalised estimating equations: a comparison of procedures available in commercial statistical software packages. Biometrical Journal 1998; 40:245-260.
Shults J, Mazurick CA, Landis JR. Analysis of repeated bouts of measurements in the framework of generalized estimating equations. Statistics in Medicine 2006; 25(23):4114-4128.
Hardin JW, Hilbe JM. Generalized Estimating Equations. Chapman & Hall/CRC: London, Boca Raton, 2003.
Amsterdam J, Shults J. Comparison of short-term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study. The Journal of Clinical Psychopharmacology 2008; 28(2):171-181.
Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics 1998; 54:1622-1630.
Qaqish F. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika 2003; 90:455-463.
Jung SH, Ahn WW. Sample size for a two-group comparison of repeated binary measurements using GEE. Statistics in Medicine 2005; 24:2583-2596.
Rochon J. Application of GEE procedures for sample size calculations in repeated measures experiments. Statistics in Medicine 1998; 17:1643-1658.
Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
Albert PS, McShane LM. A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data. Biometrics 1995; 51:627-638.
Wang YG, Carey VJ. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. Journal of the American Statistical Association 2004; 99:845-852.
Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42:121-130.
Dahmen G, Ziegler A. Independence estimating equations for controlled clinical trials with small sample sizes. Methods of Information in Medicine 2006; 45:430-434.
Chaganty NR, Joe H. Efficiency of generalized estimating equations for binary responses. Journal of the Royal Statistical Society, B 2004; 66:851-860.
Newton HJ. TIMESLAB: A Time Series Analysis Laboratory. Brooks/Cole: Belmont, CA, 1988.
Liu G, Liang KY. Sample size calculation for studies with correlated observations. Biometrics 1997; 53:937-947.
2004; 66
1995; 51
1990; 77
1986; 73
2002; 12
2008
2007
1996
1995
2006
2003
1998; 40
2005; 24
2004; 99
1998; 17
1995; 82
2003; 90
2006; 45
1986; 42
2000; 56
1997; 53
2006; 25
2008; 28
1988; 44
2007; 7
1998; 54
2001; 57
1988
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Shults J (e_1_2_1_20_2) 2007; 7
e_1_2_1_28_2
e_1_2_1_29_2
Pan W (e_1_2_1_30_2) 2002; 12
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
Hardin JW (e_1_2_1_17_2) 2003
e_1_2_1_10_2
Dahmen G (e_1_2_1_21_2) 2006; 45
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_13_2
e_1_2_1_14_2
Newton HJ (e_1_2_1_16_2) 1988
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
– reference: Ziegler A, Gromping U. The generalised estimating equations: a comparison of procedures available in commercial statistical software packages. Biometrical Journal 1998; 40:245-260.
– reference: Chaganty NR, Joe H. Efficiency of generalized estimating equations for binary responses. Journal of the Royal Statistical Society, B 2004; 66:851-860.
– reference: Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
– reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
– reference: Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics 1998; 54:1622-1630.
– reference: Dahmen G, Ziegler A. Independence estimating equations for controlled clinical trials with small sample sizes. Methods of Information in Medicine 2006; 45:430-434.
– reference: Qaqish F. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika 2003; 90:455-463.
– reference: Shults J, Ratcliffe SJ, Leonard M. Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. The Stata Journal 2007; 7(2):147-166.
– reference: Shults J, Mazurick CA, Landis JR. Analysis of repeated bouts of measurements in the framework of generalized estimating equations. Statistics in Medicine 2006; 25(23):4114-4128.
– reference: Pan W, Connet J. Selecting the working correlation structure in generalized estimating equations with application to the lung health study. Statistica Sinica 2002; 12:475-490.
– reference: Amsterdam J, Shults J. Comparison of short-term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study. The Journal of Clinical Psychopharmacology 2008; 28(2):171-181.
– reference: Newton HJ. TIMESLAB: A Time Series Analysis Laboratory. Brooks/Cole: Belmont, CA, 1988.
– reference: Liu G, Liang KY. Sample size calculation for studies with correlated observations. Biometrics 1997; 53:937-947.
– reference: Hardin JW, Hilbe JM. Generalized Estimating Equations. Chapman & Hall/CRC: London, Boca Raton, 2003.
– reference: Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001; 57:120-125.
– reference: Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statistics in Medicine 2006; 25:4279-4292.
– reference: Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42:121-130.
– reference: Albert PS, McShane LM. A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data. Biometrics 1995; 51:627-638.
– reference: Sutradhar BC, Das K. On the accuracy of efficiency of estimating equation approach. Biometrics 2000; 56:622-625.
– reference: Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 1990; 77:485-497.
– reference: Rochon J. Application of GEE procedures for sample size calculations in repeated measures experiments. Statistics in Medicine 1998; 17:1643-1658.
– reference: Jung SH, Ahn WW. Sample size for a two-group comparison of repeated binary measurements using GEE. Statistics in Medicine 2005; 24:2583-2596.
– reference: Wang YG, Carey VJ. Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance. Biometrika 2003; 90:29-41.
– reference: Wang YG, Carey VJ. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. Journal of the American Statistical Association 2004; 99:845-852.
– volume: 40
  start-page: 245
  year: 1998
  end-page: 260
  article-title: The generalised estimating equations: a comparison of procedures available in commercial statistical software packages
  publication-title: Biometrical Journal
– volume: 53
  start-page: 937
  year: 1997
  end-page: 947
  article-title: Sample size calculation for studies with correlated observations
  publication-title: Biometrics
– volume: 24
  start-page: 2583
  year: 2005
  end-page: 2596
  article-title: Sample size for a two‐group comparison of repeated binary measurements using GEE
  publication-title: Statistics in Medicine
– volume: 77
  start-page: 485
  year: 1990
  end-page: 497
  article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
  publication-title: Biometrika
– year: 2007
– year: 2003
– volume: 44
  start-page: 1033
  year: 1988
  end-page: 1048
  article-title: Correlated binary regression with covariates specific to each binary observation
  publication-title: Biometrics
– volume: 54
  start-page: 1622
  year: 1998
  end-page: 1630
  article-title: Analysis of serially correlated data using quasi‐least squares
  publication-title: Biometrics
– year: 1996
– volume: 82
  start-page: 407
  year: 1995
  end-page: 410
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
– volume: 90
  start-page: 29
  year: 2003
  end-page: 41
  article-title: Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance
  publication-title: Biometrika
– volume: 56
  start-page: 622
  year: 2000
  end-page: 625
  article-title: On the accuracy of efficiency of estimating equation approach
  publication-title: Biometrics
– start-page: 72
  year: 1995
  end-page: 80
– volume: 51
  start-page: 627
  year: 1995
  end-page: 638
  article-title: A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data
  publication-title: Biometrics
– volume: 25
  start-page: 4279
  year: 2006
  end-page: 4292
  article-title: The design of simulation studies in medical statistics
  publication-title: Statistics in Medicine
– volume: 25
  start-page: 4114
  issue: 23
  year: 2006
  end-page: 4128
  article-title: Analysis of repeated bouts of measurements in the framework of generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 28
  start-page: 171
  issue: 2
  year: 2008
  end-page: 181
  article-title: Comparison of short‐term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study
  publication-title: The Journal of Clinical Psychopharmacology
– volume: 66
  start-page: 851
  year: 2004
  end-page: 860
  article-title: Efficiency of generalized estimating equations for binary responses
  publication-title: Journal of the Royal Statistical Society, B
– volume: 90
  start-page: 455
  year: 2003
  end-page: 463
  article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations
  publication-title: Biometrika
– year: 1988
– volume: 57
  start-page: 120
  year: 2001
  end-page: 125
  article-title: Akaike's information criterion in generalized estimating equations
  publication-title: Biometrics
– year: 2008
– volume: 7
  start-page: 147
  issue: 2
  year: 2007
  end-page: 166
  article-title: Improved generalized estimating equation analysis via xtqls for quasi‐least squares in Stata
  publication-title: The Stata Journal
– year: 2006
– volume: 45
  start-page: 430
  year: 2006
  end-page: 434
  article-title: Independence estimating equations for controlled clinical trials with small sample sizes
  publication-title: Methods of Information in Medicine
– volume: 42
  start-page: 121
  year: 1986
  end-page: 130
  article-title: Longitudinal data analysis for discrete and continuous outcomes
  publication-title: Biometrics
– volume: 99
  start-page: 845
  year: 2004
  end-page: 852
  article-title: Unbiased estimating equations from working correlation models for irregularly timed repeated measures
  publication-title: Journal of the American Statistical Association
– volume: 12
  start-page: 475
  year: 2002
  end-page: 490
  article-title: Selecting the working correlation structure in generalized estimating equations with application to the lung health study
  publication-title: Statistica Sinica
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 17
  start-page: 1643
  year: 1998
  end-page: 1658
  article-title: Application of GEE procedures for sample size calculations in repeated measures experiments
  publication-title: Statistics in Medicine
– ident: e_1_2_1_14_2
– volume: 45
  start-page: 430
  year: 2006
  ident: e_1_2_1_21_2
  article-title: Independence estimating equations for controlled clinical trials with small sample sizes
  publication-title: Methods of Information in Medicine
  doi: 10.1055/s-0038-1634100
– ident: e_1_2_1_22_2
– ident: e_1_2_1_25_2
  doi: 10.1002/sim.2136
– ident: e_1_2_1_10_2
  doi: 10.1002/sim.2515
– ident: e_1_2_1_3_2
  doi: 10.2307/2531248
– volume: 12
  start-page: 475
  year: 2002
  ident: e_1_2_1_30_2
  article-title: Selecting the working correlation structure in generalized estimating equations with application to the lung health study
  publication-title: Statistica Sinica
– ident: e_1_2_1_2_2
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_1_4_2
  doi: 10.2307/2532950
– ident: e_1_2_1_8_2
  doi: 10.1093/biomet/77.3.485
– ident: e_1_2_1_24_2
  doi: 10.2307/2533554
– ident: e_1_2_1_29_2
  doi: 10.1111/j.0006-341X.2001.00120.x
– ident: e_1_2_1_13_2
  doi: 10.1097/JCP.0b013e318166c4e6
– ident: e_1_2_1_9_2
  doi: 10.1198/016214504000001178
– volume-title: TIMESLAB: A Time Series Analysis Laboratory
  year: 1988
  ident: e_1_2_1_16_2
– ident: e_1_2_1_7_2
  doi: 10.1093/biomet/90.1.29
– ident: e_1_2_1_27_2
  doi: 10.1002/sim.2673
– ident: e_1_2_1_26_2
  doi: 10.1093/biomet/90.2.455
– volume: 7
  start-page: 147
  issue: 2
  year: 2007
  ident: e_1_2_1_20_2
  article-title: Improved generalized estimating equation analysis via xtqls for quasi‐least squares in Stata
  publication-title: The Stata Journal
  doi: 10.1177/1536867X0700700201
– ident: e_1_2_1_23_2
  doi: 10.1111/j.1467-9868.2004.05741.x
– ident: e_1_2_1_19_2
– ident: e_1_2_1_6_2
  doi: 10.1093/biomet/82.2.407
– ident: e_1_2_1_15_2
  doi: 10.1002/(SICI)1521-4036(199807)40:3<245::AID-BIMJ245>3.0.CO;2-N
– ident: e_1_2_1_28_2
  doi: 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3
– ident: e_1_2_1_11_2
  doi: 10.2307/2533686
– ident: e_1_2_1_5_2
  doi: 10.1111/j.0006-341X.2000.00622.x
– ident: e_1_2_1_18_2
– ident: e_1_2_1_12_2
  doi: 10.2307/2531733
– ident: e_1_2_1_31_2
– volume-title: Generalized Estimating Equations
  year: 2003
  ident: e_1_2_1_17_2
SSID ssj0011527
Score 2.2411876
Snippet The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2338
SubjectTerms Antidepressive Agents, Second-Generation - therapeutic use
Biometry
Computer Simulation
correlated binary data
Cyclohexanols - therapeutic use
Depressive Disorder, Major - drug therapy
first-order autoregressive correlation structure
generalized estimating equations
Humans
Linear Models
Lithium Compounds - therapeutic use
longitudinal data
Longitudinal Studies
longitudinal study
Prospective Studies
Randomized Controlled Trials as Topic - statistics & numerical data
Regression Analysis
Venlafaxine Hydrochloride
Title A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
URI https://api.istex.fr/ark:/67375/WNG-ZL60BRLX-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3622
https://www.ncbi.nlm.nih.gov/pubmed/19472307
https://www.proquest.com/docview/67484412
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkKVEIXltQXKICE4ZZtk7Tg5FtRtQd0eChUrOFh-Ba3aZtvdrkD9MfxWZuIkVVGREKdcxrETz3g-j8ffMPZal1I6beKoyGwecePiyPhSRj73kgoySl1fjx4fZvvH_ONETJqsSroLE_ghuoAbWUa9XpOBa7PYviYNXUzPBrj60vJLqVqEh4465qikrdZKJ5SZTETLOxun223DG55ojX7qz9tg5k3UWrud0Qb71g44ZJucDJaXZmCv_uBy_L8vus_uNWgUdoL6PGArvuqxO-PmvL3H7oaoHoTLSj22Ttg0UDs_ZL92wHZVDGFWAjpZinBBy1PuF4CQGIjnkyIS0OSEwY8QoMfW83mTiweBx3aJm3-YVvA9kGFPr7wDogEhWI0N_EUgJgfdUKlQr6czKrm0dFTeC0x9vRgo7_UROx7tfn6_HzXlHiI7FDKNSsQiVnqX5SXCxlR4wU2ii9jmwpjEGpuYotRGesRcKSIXFwsfO5cWhnMrUz58zFarWeWfMhgSziudHZa55bj5L4yIuUVPnNlUWu367G079co2XOhUkuNUBRbnVOFcKJqLPnvVSZ4H_o9bZN7U2tMJ6PkJ5ctJob4c7qmvB1n87uhgokZ99rJVL4VWTEczuvKz5UJRyRcEpviqJ0HrrjsruKRkfeyk1p2_jkJ9-jCm5-a_Cj5j6-FoLI8S8Zyt4jz7F4iwLs1WbUu_ASaZJl4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NmwSTEIPCRhkwIyF4SpekcZyIp4EoHbR9GJuoEJLlX0HVRgrtKtD-GP5W7uIk09CQEE95OcdOfLY_n8_fB_BMFUJYpcMgT00WJNqGgXaFCFzmBAkyClVdjx5P0uFJ8m7Kp2vwsrkL4_kh2oAbjYxqvqYBTgHp_UvW0OXsaw-nX5x_N0jQu9pPHbXcUVGj10pnlKmIeMM8G8b7Tckra9EG_daf1wHNq7i1WngGW_C5abLPNzntrc51z1z8web4n990B27XgJQdeA-6C2uu7MCNcX3k3oFbPrDH_H2lDmwSPPXszvfg1wEzrZAhmxcM11kKcrGGqtwtGaJiRlSfFJRgdVoY--Fj9Fh6sajT8Zinsl3h_p_NSvbF82HPLpxlxARCyBoLuO-em5ypmk2Faj2bk-rSypLCF9PVDWNGqa_34WTw5vj1MKgVHwLT5yIOCoQjRjibZgUix5g7nuhI5aHJuNaR0SbSeaG0cAi7YgQvNuQutDbOdZIYESf9bVgv56V7AKxPUK-wpl9kJsH9f655mBhcjFMTC6NsF140fS9NTYdOqhxn0hM5xxL7QlJfdOFpa_nNU4BcY_O8cp_WQC1OKWVOcPlx8lZ-GqXhq6PRVA66sNf4l8SBTKczqnTz1VKS6gtiU3zVjne7y8ryRFC-PlZSOc9fWyE_HI7p-fBfDffg5vB4PJKjw8n7Xdj0J2VZEPFHsI597h4j4DrXT6qB9RtfMip5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJk2TEIzyVTaYkRA8pXNSO04eB6Ns0FZoMFGNByv-QtVGurWrQPtj-Fu5i5NMQ0NCPOXlHDvxne_n8_l3hLwovJS20CzKU5NFXFsWaedl5DInsSCjLKrr0aNxun_E30_EpM6qxLswgR-iDbihZVTrNRr4mfU7V6Shi-n3Hqy-sPyu8pRlqNF7hy11VNyUa8UjylTGoiGeZclO0_KaK1rFv_rzJpx5HbZWfmdwl3xtRhzSTU56ywvdM5d_kDn-3ydtkDs1HKW7QX_ukVuu7JC1UX3g3iG3Q1iPhttKHbKO4DRwO98nv3apacsY0pmn4GUxxEUbonK3oICJKRJ9YkiC1klh9EeI0EPr-bxOxqOByHYJu386Lem3wIY9vXSWIg8I4mpo4M4DMzktai4V7PV0hjWXlhbre1Fd3S-mmPj6gBwN3n5-sx_V9R4i0xcyiTyAESOdTTMPuDERTnAdFzkzmdA6NtrEOveFlg5AVwLQxTLhmLVJrjk3MuH9h2SlnJXuMaF9BHremr7PDIfdf64F4wZccWoSaQrbJa-aqVemJkPHmhynKtA4JwrmQuFcdMnzVvIsEIDcIPOy0p5WoJifYMKcFOrL-J06Hqbs9eFwogZdst2olwIzxrOZonSz5UJhzRdApvCqR0HrrjrLucRsfeik0p2_jkJ9Ohjh88m_Cm6TtY97AzU8GH_YJOvhmCyLYrFFVmDK3VNAWxf6WWVWvwHtBikx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+several+approaches+for+choosing+between+working+correlation+structures+in+generalized+estimating+equation+analysis+of+longitudinal+binary+data&rft.jtitle=Statistics+in+medicine&rft.au=Shults%2C+Justine&rft.au=Sun%2C+Wenguang&rft.au=Tu%2C+Xin&rft.au=Kim%2C+Hanjoo&rft.date=2009-08-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=28&rft.issue=18&rft.spage=2338&rft.epage=2355&rft_id=info:doi/10.1002%2Fsim.3622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_3622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon