A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientifi...
Saved in:
Published in | Statistics in medicine Vol. 28; no. 18; pp. 2338 - 2355 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
15.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model‐based and the sandwich‐based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model-based and the sandwich-based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix. Correct specification of the underlying structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific understanding. We consider two sets of criteria that have previously been suggested, respectively, for selecting an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure for which the model‐based and the sandwich‐based estimator of the covariance matrix of the regression parameter estimator are closest, while the second selection criterion chooses the structure that minimizes the weighted error sum of squares. The rule out criterion deselects structures for which the estimated correlation parameter violates standard constraints for binary data that depend on the marginal means. In addition, we remove structures from consideration if their estimated parameter values yield an estimated correlation structure that is not positive definite. We investigate the performance of the two sets of criteria using both simulated and real data, in the context of a longitudinal trial that compares two treatments for major depressive episode. Practical recommendations are also given on using these criteria to aid in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data. Copyright © 2009 John Wiley & Sons, Ltd. |
Author | Amsterdam, Jay Shults, Justine Tu, Xin Ten-Have, Thomas Sun, Wenguang Hilbe, Joseph M. Kim, Hanjoo |
Author_xml | – sequence: 1 givenname: Justine surname: Shults fullname: Shults, Justine email: jshults@mail.med.upenn.edu organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A – sequence: 2 givenname: Wenguang surname: Sun fullname: Sun, Wenguang organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A – sequence: 3 givenname: Xin surname: Tu fullname: Tu, Xin organization: Department of Biostatistics and Computational Biology and Department of Psychiatry, University of Rochester, Rochester, NY 14642, U.S.A – sequence: 4 givenname: Hanjoo surname: Kim fullname: Kim, Hanjoo organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A – sequence: 5 givenname: Jay surname: Amsterdam fullname: Amsterdam, Jay organization: Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A – sequence: 6 givenname: Joseph M. surname: Hilbe fullname: Hilbe, Joseph M. organization: School of Social and Family Dynamics, Arizona State University, Tempe, AZ 85287, U.S.A – sequence: 7 givenname: Thomas surname: Ten-Have fullname: Ten-Have, Thomas organization: Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19034, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19472307$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1vFCEYhYmpsdtq4i8wXBlvZgXmg5nL2rS1yaqJH9F4Q4B5Z4tlYAuM6_pj_K0ybtVo9AYCec6B854jdOC8A4QeUrKkhLCn0YzLsmHsDlpQ0vGCsLo9QAvCOC8aTutDdBTjJ0IorRm_hw5pV3FWEr5A306w9uNGBhO9w37AET5DkBbLzSZ4qa8g4sEHrK-8j8atsYK0BXB468P1fNY-BLAymSyPKUw6TSFrjMNrcLOT-Qo9hpjMmKEsgJtpT0sn7S6aOL9qvVubNPUm32GV17DDvUzyPro7SBvhwe1-jN6dn709fV6sXl1cnp6sCl3WnBUDI1Rz6Jt2aOocHupKUdkR3dZKUa00Vd0gFQfKGSMt60kNpO9Zp6pKc1aVx-jx3jeHvpnyb8VoogZrpQM_RdHwqq0qyjL46Bac1Ai92IScK-zEz4lm4Mke0MHHGGD4jRAxlyVyWWIuK6PLv1Bt0o_ZpCCN_Zeg2Au2xsLuv8bizeWLP3kTE3z5xctwnQOVvBbvX16Ij6uGPHu9-iDOy-9SLLjE |
CitedBy_id | crossref_primary_10_1002_bimj_201400045 crossref_primary_10_3389_fpubh_2023_1271194 crossref_primary_10_1186_s13012_016_0541_0 crossref_primary_10_1080_00031305_2016_1200490 crossref_primary_10_1002_jia2_25874 crossref_primary_10_1002_sim_6871 crossref_primary_10_1016_j_jaac_2012_08_019 crossref_primary_10_1097_CCM_0000000000003016 crossref_primary_10_1186_s12889_023_15564_4 crossref_primary_10_1007_s12028_024_02022_1 crossref_primary_10_1080_00949655_2020_1759602 crossref_primary_10_1016_j_agrformet_2014_06_006 crossref_primary_10_1186_1617_9625_11_26 crossref_primary_10_1002_sim_6194 crossref_primary_10_1007_s10342_013_0773_3 crossref_primary_10_3389_fpsyt_2022_896018 crossref_primary_10_1111_1365_2435_12359 crossref_primary_10_30773_pi_2023_0198 crossref_primary_10_1016_j_envres_2022_113251 crossref_primary_10_1016_j_csda_2017_04_002 crossref_primary_10_1198_jcgs_2011_09128 crossref_primary_10_1002_sim_6967 crossref_primary_10_3233_NRE_182641 crossref_primary_10_1080_10543406_2023_2281575 crossref_primary_10_1080_00949655_2013_818148 crossref_primary_10_1080_00949655_2015_1089873 crossref_primary_10_1097_DSS_0000000000002648 crossref_primary_10_1002_sim_4265 crossref_primary_10_1080_20008066_2022_2127474 crossref_primary_10_1002_sim_4465 crossref_primary_10_1136_bmjopen_2020_037468 crossref_primary_10_1186_s12889_016_3711_8 crossref_primary_10_1016_j_xcrm_2024_101888 crossref_primary_10_1016_j_jaip_2016_09_019 crossref_primary_10_1002_sim_5729 crossref_primary_10_3102_10769986211017480 crossref_primary_10_3168_jds_2023_24292 crossref_primary_10_3390_ijerph16030504 crossref_primary_10_1016_j_jalz_2012_05_2188 crossref_primary_10_1017_S0954579418000676 crossref_primary_10_1007_s00180_018_0800_4 crossref_primary_10_1007_s40840_022_01290_4 crossref_primary_10_1016_j_spl_2024_110135 crossref_primary_10_1186_1471_2288_12_15 crossref_primary_10_1080_03610918_2018_1457689 crossref_primary_10_1007_s00362_017_0881_0 crossref_primary_10_1186_s13722_024_00447_9 crossref_primary_10_1038_s41598_021_97343_y crossref_primary_10_1016_j_aquabot_2018_11_004 crossref_primary_10_1080_03610918_2021_1871924 crossref_primary_10_3389_frph_2021_665723 crossref_primary_10_1002_wics_1349 crossref_primary_10_1016_j_jenvman_2023_119829 crossref_primary_10_1080_02664763_2018_1508560 crossref_primary_10_1080_03610926_2010_501938 crossref_primary_10_1111_j_2041_210X_2009_00009_x crossref_primary_10_1002_sim_6106 crossref_primary_10_1002_sim_6821 crossref_primary_10_1016_j_comppsych_2016_11_006 crossref_primary_10_1017_S095457941500036X crossref_primary_10_1080_03610918_2018_1484476 crossref_primary_10_2196_19162 crossref_primary_10_1002_jbmr_3589 crossref_primary_10_1136_bmjopen_2023_076878 crossref_primary_10_1002_bimj_201300098 crossref_primary_10_1080_03610918_2016_1189565 crossref_primary_10_1007_s11606_023_08531_7 crossref_primary_10_1007_s12185_015_1735_y |
Cites_doi | 10.1055/s-0038-1634100 10.1002/sim.2136 10.1002/sim.2515 10.2307/2531248 10.1093/biomet/73.1.13 10.2307/2532950 10.1093/biomet/77.3.485 10.2307/2533554 10.1111/j.0006-341X.2001.00120.x 10.1097/JCP.0b013e318166c4e6 10.1198/016214504000001178 10.1093/biomet/90.1.29 10.1002/sim.2673 10.1093/biomet/90.2.455 10.1177/1536867X0700700201 10.1111/j.1467-9868.2004.05741.x 10.1093/biomet/82.2.407 10.1002/(SICI)1521-4036(199807)40:3<245::AID-BIMJ245>3.0.CO;2-N 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3 10.2307/2533686 10.1111/j.0006-341X.2000.00622.x 10.2307/2531733 |
ContentType | Journal Article |
Copyright | Copyright © 2009 John Wiley & Sons, Ltd. Copyright 2009 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. – notice: Copyright 2009 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/sim.3622 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2355 |
ExternalDocumentID | 19472307 10_1002_sim_3622 SIM3622 ark_67375_WNG_ZL60BRLX_F |
Genre | article Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIH‐R01CA funderid: 096885 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3572-f201c7ed68f65025e54b1a90c85bb1cbc1b9fab7e1722082d05e0dd29b44c7243 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 01:18:49 EDT 2025 Wed Feb 19 01:49:55 EST 2025 Tue Jul 01 04:33:21 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Wed Jan 22 17:00:21 EST 2025 Wed Oct 30 09:57:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2009 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3572-f201c7ed68f65025e54b1a90c85bb1cbc1b9fab7e1722082d05e0dd29b44c7243 |
Notes | ArticleID:SIM3622 NIH-R01CA - No. 096885 istex:9B181C9858EB3C394ADDB747255867D5A241826C ark:/67375/WNG-ZL60BRLX-F ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 19472307 |
PQID | 67484412 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_67484412 pubmed_primary_19472307 crossref_primary_10_1002_sim_3622 crossref_citationtrail_10_1002_sim_3622 wiley_primary_10_1002_sim_3622_SIM3622 istex_primary_ark_67375_WNG_ZL60BRLX_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-15 15 August 2009 2009-Aug-15 20090815 |
PublicationDateYYYYMMDD | 2009-08-15 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2009 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001; 57:120-125. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statistics in Medicine 2006; 25:4279-4292. Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 1990; 77:485-497. Wang YG, Carey VJ. Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance. Biometrika 2003; 90:29-41. Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048. Sutradhar BC, Das K. On the accuracy of efficiency of estimating equation approach. Biometrics 2000; 56:622-625. Pan W, Connet J. Selecting the working correlation structure in generalized estimating equations with application to the lung health study. Statistica Sinica 2002; 12:475-490. Shults J, Ratcliffe SJ, Leonard M. Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. The Stata Journal 2007; 7(2):147-166. Ziegler A, Gromping U. The generalised estimating equations: a comparison of procedures available in commercial statistical software packages. Biometrical Journal 1998; 40:245-260. Shults J, Mazurick CA, Landis JR. Analysis of repeated bouts of measurements in the framework of generalized estimating equations. Statistics in Medicine 2006; 25(23):4114-4128. Hardin JW, Hilbe JM. Generalized Estimating Equations. Chapman & Hall/CRC: London, Boca Raton, 2003. Amsterdam J, Shults J. Comparison of short-term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study. The Journal of Clinical Psychopharmacology 2008; 28(2):171-181. Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410. Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics 1998; 54:1622-1630. Qaqish F. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika 2003; 90:455-463. Jung SH, Ahn WW. Sample size for a two-group comparison of repeated binary measurements using GEE. Statistics in Medicine 2005; 24:2583-2596. Rochon J. Application of GEE procedures for sample size calculations in repeated measures experiments. Statistics in Medicine 1998; 17:1643-1658. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. Albert PS, McShane LM. A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data. Biometrics 1995; 51:627-638. Wang YG, Carey VJ. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. Journal of the American Statistical Association 2004; 99:845-852. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42:121-130. Dahmen G, Ziegler A. Independence estimating equations for controlled clinical trials with small sample sizes. Methods of Information in Medicine 2006; 45:430-434. Chaganty NR, Joe H. Efficiency of generalized estimating equations for binary responses. Journal of the Royal Statistical Society, B 2004; 66:851-860. Newton HJ. TIMESLAB: A Time Series Analysis Laboratory. Brooks/Cole: Belmont, CA, 1988. Liu G, Liang KY. Sample size calculation for studies with correlated observations. Biometrics 1997; 53:937-947. 2004; 66 1995; 51 1990; 77 1986; 73 2002; 12 2008 2007 1996 1995 2006 2003 1998; 40 2005; 24 2004; 99 1998; 17 1995; 82 2003; 90 2006; 45 1986; 42 2000; 56 1997; 53 2006; 25 2008; 28 1988; 44 2007; 7 1998; 54 2001; 57 1988 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 Shults J (e_1_2_1_20_2) 2007; 7 e_1_2_1_28_2 e_1_2_1_29_2 Pan W (e_1_2_1_30_2) 2002; 12 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 Hardin JW (e_1_2_1_17_2) 2003 e_1_2_1_10_2 Dahmen G (e_1_2_1_21_2) 2006; 45 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_13_2 e_1_2_1_14_2 Newton HJ (e_1_2_1_16_2) 1988 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22. – reference: Ziegler A, Gromping U. The generalised estimating equations: a comparison of procedures available in commercial statistical software packages. Biometrical Journal 1998; 40:245-260. – reference: Chaganty NR, Joe H. Efficiency of generalized estimating equations for binary responses. Journal of the Royal Statistical Society, B 2004; 66:851-860. – reference: Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048. – reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410. – reference: Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics 1998; 54:1622-1630. – reference: Dahmen G, Ziegler A. Independence estimating equations for controlled clinical trials with small sample sizes. Methods of Information in Medicine 2006; 45:430-434. – reference: Qaqish F. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika 2003; 90:455-463. – reference: Shults J, Ratcliffe SJ, Leonard M. Improved generalized estimating equation analysis via xtqls for quasi-least squares in Stata. The Stata Journal 2007; 7(2):147-166. – reference: Shults J, Mazurick CA, Landis JR. Analysis of repeated bouts of measurements in the framework of generalized estimating equations. Statistics in Medicine 2006; 25(23):4114-4128. – reference: Pan W, Connet J. Selecting the working correlation structure in generalized estimating equations with application to the lung health study. Statistica Sinica 2002; 12:475-490. – reference: Amsterdam J, Shults J. Comparison of short-term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study. The Journal of Clinical Psychopharmacology 2008; 28(2):171-181. – reference: Newton HJ. TIMESLAB: A Time Series Analysis Laboratory. Brooks/Cole: Belmont, CA, 1988. – reference: Liu G, Liang KY. Sample size calculation for studies with correlated observations. Biometrics 1997; 53:937-947. – reference: Hardin JW, Hilbe JM. Generalized Estimating Equations. Chapman & Hall/CRC: London, Boca Raton, 2003. – reference: Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001; 57:120-125. – reference: Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statistics in Medicine 2006; 25:4279-4292. – reference: Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42:121-130. – reference: Albert PS, McShane LM. A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data. Biometrics 1995; 51:627-638. – reference: Sutradhar BC, Das K. On the accuracy of efficiency of estimating equation approach. Biometrics 2000; 56:622-625. – reference: Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 1990; 77:485-497. – reference: Rochon J. Application of GEE procedures for sample size calculations in repeated measures experiments. Statistics in Medicine 1998; 17:1643-1658. – reference: Jung SH, Ahn WW. Sample size for a two-group comparison of repeated binary measurements using GEE. Statistics in Medicine 2005; 24:2583-2596. – reference: Wang YG, Carey VJ. Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance. Biometrika 2003; 90:29-41. – reference: Wang YG, Carey VJ. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. Journal of the American Statistical Association 2004; 99:845-852. – volume: 40 start-page: 245 year: 1998 end-page: 260 article-title: The generalised estimating equations: a comparison of procedures available in commercial statistical software packages publication-title: Biometrical Journal – volume: 53 start-page: 937 year: 1997 end-page: 947 article-title: Sample size calculation for studies with correlated observations publication-title: Biometrics – volume: 24 start-page: 2583 year: 2005 end-page: 2596 article-title: Sample size for a two‐group comparison of repeated binary measurements using GEE publication-title: Statistics in Medicine – volume: 77 start-page: 485 year: 1990 end-page: 497 article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data publication-title: Biometrika – year: 2007 – year: 2003 – volume: 44 start-page: 1033 year: 1988 end-page: 1048 article-title: Correlated binary regression with covariates specific to each binary observation publication-title: Biometrics – volume: 54 start-page: 1622 year: 1998 end-page: 1630 article-title: Analysis of serially correlated data using quasi‐least squares publication-title: Biometrics – year: 1996 – volume: 82 start-page: 407 year: 1995 end-page: 410 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika – volume: 90 start-page: 29 year: 2003 end-page: 41 article-title: Working correlation misspecification, estimation and covariate design: implications for generalized estimating equation performance publication-title: Biometrika – volume: 56 start-page: 622 year: 2000 end-page: 625 article-title: On the accuracy of efficiency of estimating equation approach publication-title: Biometrics – start-page: 72 year: 1995 end-page: 80 – volume: 51 start-page: 627 year: 1995 end-page: 638 article-title: A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of nueroimaging data publication-title: Biometrics – volume: 25 start-page: 4279 year: 2006 end-page: 4292 article-title: The design of simulation studies in medical statistics publication-title: Statistics in Medicine – volume: 25 start-page: 4114 issue: 23 year: 2006 end-page: 4128 article-title: Analysis of repeated bouts of measurements in the framework of generalized estimating equations publication-title: Statistics in Medicine – volume: 28 start-page: 171 issue: 2 year: 2008 end-page: 181 article-title: Comparison of short‐term venlafaxine versus lithium monotherapy of bipolar II major depressive episode: a randomized open label study publication-title: The Journal of Clinical Psychopharmacology – volume: 66 start-page: 851 year: 2004 end-page: 860 article-title: Efficiency of generalized estimating equations for binary responses publication-title: Journal of the Royal Statistical Society, B – volume: 90 start-page: 455 year: 2003 end-page: 463 article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations publication-title: Biometrika – year: 1988 – volume: 57 start-page: 120 year: 2001 end-page: 125 article-title: Akaike's information criterion in generalized estimating equations publication-title: Biometrics – year: 2008 – volume: 7 start-page: 147 issue: 2 year: 2007 end-page: 166 article-title: Improved generalized estimating equation analysis via xtqls for quasi‐least squares in Stata publication-title: The Stata Journal – year: 2006 – volume: 45 start-page: 430 year: 2006 end-page: 434 article-title: Independence estimating equations for controlled clinical trials with small sample sizes publication-title: Methods of Information in Medicine – volume: 42 start-page: 121 year: 1986 end-page: 130 article-title: Longitudinal data analysis for discrete and continuous outcomes publication-title: Biometrics – volume: 99 start-page: 845 year: 2004 end-page: 852 article-title: Unbiased estimating equations from working correlation models for irregularly timed repeated measures publication-title: Journal of the American Statistical Association – volume: 12 start-page: 475 year: 2002 end-page: 490 article-title: Selecting the working correlation structure in generalized estimating equations with application to the lung health study publication-title: Statistica Sinica – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 17 start-page: 1643 year: 1998 end-page: 1658 article-title: Application of GEE procedures for sample size calculations in repeated measures experiments publication-title: Statistics in Medicine – ident: e_1_2_1_14_2 – volume: 45 start-page: 430 year: 2006 ident: e_1_2_1_21_2 article-title: Independence estimating equations for controlled clinical trials with small sample sizes publication-title: Methods of Information in Medicine doi: 10.1055/s-0038-1634100 – ident: e_1_2_1_22_2 – ident: e_1_2_1_25_2 doi: 10.1002/sim.2136 – ident: e_1_2_1_10_2 doi: 10.1002/sim.2515 – ident: e_1_2_1_3_2 doi: 10.2307/2531248 – volume: 12 start-page: 475 year: 2002 ident: e_1_2_1_30_2 article-title: Selecting the working correlation structure in generalized estimating equations with application to the lung health study publication-title: Statistica Sinica – ident: e_1_2_1_2_2 doi: 10.1093/biomet/73.1.13 – ident: e_1_2_1_4_2 doi: 10.2307/2532950 – ident: e_1_2_1_8_2 doi: 10.1093/biomet/77.3.485 – ident: e_1_2_1_24_2 doi: 10.2307/2533554 – ident: e_1_2_1_29_2 doi: 10.1111/j.0006-341X.2001.00120.x – ident: e_1_2_1_13_2 doi: 10.1097/JCP.0b013e318166c4e6 – ident: e_1_2_1_9_2 doi: 10.1198/016214504000001178 – volume-title: TIMESLAB: A Time Series Analysis Laboratory year: 1988 ident: e_1_2_1_16_2 – ident: e_1_2_1_7_2 doi: 10.1093/biomet/90.1.29 – ident: e_1_2_1_27_2 doi: 10.1002/sim.2673 – ident: e_1_2_1_26_2 doi: 10.1093/biomet/90.2.455 – volume: 7 start-page: 147 issue: 2 year: 2007 ident: e_1_2_1_20_2 article-title: Improved generalized estimating equation analysis via xtqls for quasi‐least squares in Stata publication-title: The Stata Journal doi: 10.1177/1536867X0700700201 – ident: e_1_2_1_23_2 doi: 10.1111/j.1467-9868.2004.05741.x – ident: e_1_2_1_19_2 – ident: e_1_2_1_6_2 doi: 10.1093/biomet/82.2.407 – ident: e_1_2_1_15_2 doi: 10.1002/(SICI)1521-4036(199807)40:3<245::AID-BIMJ245>3.0.CO;2-N – ident: e_1_2_1_28_2 doi: 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3 – ident: e_1_2_1_11_2 doi: 10.2307/2533686 – ident: e_1_2_1_5_2 doi: 10.1111/j.0006-341X.2000.00622.x – ident: e_1_2_1_18_2 – ident: e_1_2_1_12_2 doi: 10.2307/2531733 – ident: e_1_2_1_31_2 – volume-title: Generalized Estimating Equations year: 2003 ident: e_1_2_1_17_2 |
SSID | ssj0011527 |
Score | 2.2411876 |
Snippet | The method of generalized estimating equations (GEE) models the association between the repeated observations on a subject with a patterned correlation matrix.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2338 |
SubjectTerms | Antidepressive Agents, Second-Generation - therapeutic use Biometry Computer Simulation correlated binary data Cyclohexanols - therapeutic use Depressive Disorder, Major - drug therapy first-order autoregressive correlation structure generalized estimating equations Humans Linear Models Lithium Compounds - therapeutic use longitudinal data Longitudinal Studies longitudinal study Prospective Studies Randomized Controlled Trials as Topic - statistics & numerical data Regression Analysis Venlafaxine Hydrochloride |
Title | A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data |
URI | https://api.istex.fr/ark:/67375/WNG-ZL60BRLX-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.3622 https://www.ncbi.nlm.nih.gov/pubmed/19472307 https://www.proquest.com/docview/67484412 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkKVEIXltQXKICE4ZZtk7Tg5FtRtQd0eChUrOFh-Ba3aZtvdrkD9MfxWZuIkVVGREKdcxrETz3g-j8ffMPZal1I6beKoyGwecePiyPhSRj73kgoySl1fjx4fZvvH_ONETJqsSroLE_ghuoAbWUa9XpOBa7PYviYNXUzPBrj60vJLqVqEh4465qikrdZKJ5SZTETLOxun223DG55ojX7qz9tg5k3UWrud0Qb71g44ZJucDJaXZmCv_uBy_L8vus_uNWgUdoL6PGArvuqxO-PmvL3H7oaoHoTLSj22Ttg0UDs_ZL92wHZVDGFWAjpZinBBy1PuF4CQGIjnkyIS0OSEwY8QoMfW83mTiweBx3aJm3-YVvA9kGFPr7wDogEhWI0N_EUgJgfdUKlQr6czKrm0dFTeC0x9vRgo7_UROx7tfn6_HzXlHiI7FDKNSsQiVnqX5SXCxlR4wU2ii9jmwpjEGpuYotRGesRcKSIXFwsfO5cWhnMrUz58zFarWeWfMhgSziudHZa55bj5L4yIuUVPnNlUWu367G079co2XOhUkuNUBRbnVOFcKJqLPnvVSZ4H_o9bZN7U2tMJ6PkJ5ctJob4c7qmvB1n87uhgokZ99rJVL4VWTEczuvKz5UJRyRcEpviqJ0HrrjsruKRkfeyk1p2_jkJ9-jCm5-a_Cj5j6-FoLI8S8Zyt4jz7F4iwLs1WbUu_ASaZJl4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NmwSTEIPCRhkwIyF4SpekcZyIp4EoHbR9GJuoEJLlX0HVRgrtKtD-GP5W7uIk09CQEE95OcdOfLY_n8_fB_BMFUJYpcMgT00WJNqGgXaFCFzmBAkyClVdjx5P0uFJ8m7Kp2vwsrkL4_kh2oAbjYxqvqYBTgHp_UvW0OXsaw-nX5x_N0jQu9pPHbXcUVGj10pnlKmIeMM8G8b7Tckra9EG_daf1wHNq7i1WngGW_C5abLPNzntrc51z1z8web4n990B27XgJQdeA-6C2uu7MCNcX3k3oFbPrDH_H2lDmwSPPXszvfg1wEzrZAhmxcM11kKcrGGqtwtGaJiRlSfFJRgdVoY--Fj9Fh6sajT8Zinsl3h_p_NSvbF82HPLpxlxARCyBoLuO-em5ypmk2Faj2bk-rSypLCF9PVDWNGqa_34WTw5vj1MKgVHwLT5yIOCoQjRjibZgUix5g7nuhI5aHJuNaR0SbSeaG0cAi7YgQvNuQutDbOdZIYESf9bVgv56V7AKxPUK-wpl9kJsH9f655mBhcjFMTC6NsF140fS9NTYdOqhxn0hM5xxL7QlJfdOFpa_nNU4BcY_O8cp_WQC1OKWVOcPlx8lZ-GqXhq6PRVA66sNf4l8SBTKczqnTz1VKS6gtiU3zVjne7y8ryRFC-PlZSOc9fWyE_HI7p-fBfDffg5vB4PJKjw8n7Xdj0J2VZEPFHsI597h4j4DrXT6qB9RtfMip5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJk2TEIzyVTaYkRA8pXNSO04eB6Ns0FZoMFGNByv-QtVGurWrQPtj-Fu5i5NMQ0NCPOXlHDvxne_n8_l3hLwovJS20CzKU5NFXFsWaedl5DInsSCjLKrr0aNxun_E30_EpM6qxLswgR-iDbihZVTrNRr4mfU7V6Shi-n3Hqy-sPyu8pRlqNF7hy11VNyUa8UjylTGoiGeZclO0_KaK1rFv_rzJpx5HbZWfmdwl3xtRhzSTU56ywvdM5d_kDn-3ydtkDs1HKW7QX_ukVuu7JC1UX3g3iG3Q1iPhttKHbKO4DRwO98nv3apacsY0pmn4GUxxEUbonK3oICJKRJ9YkiC1klh9EeI0EPr-bxOxqOByHYJu386Lem3wIY9vXSWIg8I4mpo4M4DMzktai4V7PV0hjWXlhbre1Fd3S-mmPj6gBwN3n5-sx_V9R4i0xcyiTyAESOdTTMPuDERTnAdFzkzmdA6NtrEOveFlg5AVwLQxTLhmLVJrjk3MuH9h2SlnJXuMaF9BHremr7PDIfdf64F4wZccWoSaQrbJa-aqVemJkPHmhynKtA4JwrmQuFcdMnzVvIsEIDcIPOy0p5WoJifYMKcFOrL-J06Hqbs9eFwogZdst2olwIzxrOZonSz5UJhzRdApvCqR0HrrjrLucRsfeik0p2_jkJ9Ohjh88m_Cm6TtY97AzU8GH_YJOvhmCyLYrFFVmDK3VNAWxf6WWVWvwHtBikx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+several+approaches+for+choosing+between+working+correlation+structures+in+generalized+estimating+equation+analysis+of+longitudinal+binary+data&rft.jtitle=Statistics+in+medicine&rft.au=Shults%2C+Justine&rft.au=Sun%2C+Wenguang&rft.au=Tu%2C+Xin&rft.au=Kim%2C+Hanjoo&rft.date=2009-08-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=28&rft.issue=18&rft.spage=2338&rft.epage=2355&rft_id=info:doi/10.1002%2Fsim.3622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_3622 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |