Manipulation of Scattering Spectra with Topology of Light and Matter
Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a...
Saved in:
Published in | Laser & photonics reviews Vol. 17; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.
Mie resonance manipulation using structured light beams carrying orbital angular momentum (OAM) is described. By utilizing an SLM to change the structural features of the incoming light beam, the excited multipole moments within the polycrystalline silicon meta‐atom can be manipulated and “turned on and off” on demand. |
---|---|
AbstractList | Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. Mie resonance manipulation using structured light beams carrying orbital angular momentum (OAM) is described. By utilizing an SLM to change the structural features of the incoming light beam, the excited multipole moments within the polycrystalline silicon meta‐atom can be manipulated and “turned on and off” on demand. |
Author | Litchinitser, Natalia Pires, Danilo G. Terekhov, Pavel Kravchenko, Ivan Chandra, Nitish Tsvetkov, Dmitrii Gao, Jiannan Barati Sedeh, Hooman |
Author_xml | – sequence: 1 givenname: Hooman orcidid: 0000-0002-3908-6652 surname: Barati Sedeh fullname: Barati Sedeh, Hooman organization: Duke University – sequence: 2 givenname: Danilo G. surname: Pires fullname: Pires, Danilo G. organization: Duke University – sequence: 3 givenname: Nitish surname: Chandra fullname: Chandra, Nitish organization: Duke University – sequence: 4 givenname: Jiannan surname: Gao fullname: Gao, Jiannan organization: Duke University – sequence: 5 givenname: Dmitrii surname: Tsvetkov fullname: Tsvetkov, Dmitrii organization: Duke University – sequence: 6 givenname: Pavel orcidid: 0000-0001-8449-6418 surname: Terekhov fullname: Terekhov, Pavel organization: Duke University – sequence: 7 givenname: Ivan orcidid: 0000-0003-4999-5822 surname: Kravchenko fullname: Kravchenko, Ivan organization: Oak Ridge National Laboratory – sequence: 8 givenname: Natalia surname: Litchinitser fullname: Litchinitser, Natalia email: natalia.litchinitser@duke.edu organization: Duke University |
BookMark | eNqFkD1PwzAQhi0EEm1hZbbEnGI7aWKPqHxKqYpomS3HubSugh0cV1X_PS5FZeSWu5Oe9z7eITq3zgJCN5SMKSHsru2cHzPCGCFZwc7QgPI8TTgX4vxUc3KJhn2_IWQSIx-gh5myptu2KhhnsWvwQqsQwBu7wosOdPAK70xY46XrXOtW-wNTmtU6YGVrPPuBr9BFo9oern_zCH08PS6nL0k5f36d3peJTicFSyqV1Vkdj-O0ir3IqoJniipdQSE05yptBORQC9BNleY6nwDhESnSBupKZOkI3R7ndt59baEPcuO23saVkhXxQUoEzSM1PlLau7730MjOm0_l95ISeXBKHpySJ6eiQBwFO9PC_h9alm_z9z_tN3ebbxw |
CitedBy_id | crossref_primary_10_1002_adts_202300359 crossref_primary_10_1364_PRJ_503182 crossref_primary_10_1007_s11468_024_02362_w crossref_primary_10_1364_OE_486386 crossref_primary_10_1063_5_0145291 crossref_primary_10_1364_OL_502600 crossref_primary_10_1002_lpor_202300855 crossref_primary_10_1021_acsnano_3c12893 crossref_primary_10_1515_nanoph_2023_0030 |
Cites_doi | 10.1364/OE.26.019275 10.1021/acs.nanolett.5b02926 10.1038/s41566-021-00780-4 10.1515/nanoph-2021-0315 10.1103/PhysRevB.82.045404 10.1364/OE.19.004815 10.1038/srep00492 10.1117/1.JNP.7.078598 10.1063/1.5007007 10.1111/j.1365-2818.2008.01910.x 10.1038/s41467-021-26094-1 10.1002/adts.201900123 10.1088/2040-8978/19/1/013001 10.1039/D0NR05624C 10.1021/acs.nanolett.9b03961 10.3762/bjnano.9.139 10.1038/nmat3921 10.1103/PhysRevLett.99.107401 10.1364/OE.20.020599 10.1515/nanoph-2019-0505 10.1364/OE.18.010905 10.1002/lpor.202100449 10.1515/nanoph-2020-0202 10.1038/srep25528 10.1103/PhysRevB.92.241110 10.1021/acsphotonics.0c01315 10.1103/PhysRevB.100.125415 10.1021/acsphotonics.7b01217 10.1016/j.optmat.2020.110466 10.1364/OL.42.001776 10.1103/PhysRevB.104.165402 10.1364/OPTICA.4.000814 10.1021/acsnano.8b05778 10.1515/nanoph-2022-0078 10.1364/JOSAA.5.001427 10.1021/nl4005018 10.1103/PhysRevLett.122.193905 10.1364/OME.456070 10.1021/acsphotonics.6b00392 10.1021/acsphotonics.8b00246 10.1364/OPTICA.6.000961 10.1038/nphoton.2014.247 10.1021/acs.nanolett.0c01975 10.1038/ncomms3807 10.1103/PhysRevB.103.195419 10.1126/science.aag2472 10.1038/nphoton.2017.39 10.1002/adom.201801350 10.1103/PhysRevResearch.1.023014 10.1038/ncomms2538 10.1002/lpor.201400188 10.1021/acsphotonics.7b00631 10.1002/lpor.202100035 10.1038/nnano.2015.2 10.1038/ncomms9069 10.1364/OE.20.024536 10.1016/0370-1573(90)90042-Z 10.1093/nsr/nwy017 10.1088/1367-2630/14/9/093033 10.1002/adfm.201806692 10.1134/S0021364019020036 10.1088/1361-6528/ab02b0 10.1021/acs.nanolett.2c00548 10.1016/j.jqsrt.2009.02.002 10.1364/OPTICA.5.000303 10.1002/adom.202000075 10.1038/ncomms4402 10.1080/23746149.2020.1734083 10.1364/OE.27.010924 10.1088/1367-2630/ac6b4c 10.1364/JOSAB.30.002589 10.1063/1.4914117 10.1364/JOSAA.22.000849 10.1063/1.4999368 10.1364/JOSAB.36.000D70 10.3390/nano11102638 10.1038/s41467-019-11598-8 10.1515/nanoph-2017-0118 10.1103/PhysRevMaterials.3.085201 10.1088/1367-2630/ac21df 10.1016/j.mattod.2017.06.007 10.1021/acsphotonics.7b01277 10.1364/OPN.28.1.000024 10.1021/nl301594s 10.1364/OL.41.000033 10.1364/OPTICA.3.000799 10.1515/nanoph-2020-0290 10.1088/1361-6463/aa875c 10.1021/acsphotonics.7b01038 10.1038/s41565-019-0442-x 10.1038/nphoton.2011.153 10.1021/nn303243p 10.1117/3.2281295 10.1364/AO.43.002397 10.1002/adom.201801813 10.1364/OE.26.013085 10.1103/PhysRevB.94.205434 10.1021/acsnano.1c11326 10.1002/lpor.201400402 10.1021/acsphotonics.8b00268 10.1103/PhysRevB.84.235429 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202200472 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202200472 LPOR202200472 |
Genre | article |
GrantInformation_xml | – fundername: Army Research Office Award funderid: W911NF1810348 – fundername: National Science Foundation funderid: 1809518 – fundername: Office of Naval Research (ONR) funderid: N00014‐20‐1‐2558 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3572-ba4d4d04781b57294b784a1acbe79c88a3f9e6ed9ecfb36c65e0878473fedb943 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Thu Oct 10 19:32:29 EDT 2024 Fri Aug 23 01:49:22 EDT 2024 Sat Aug 24 00:57:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3572-ba4d4d04781b57294b784a1acbe79c88a3f9e6ed9ecfb36c65e0878473fedb943 |
ORCID | 0000-0002-3908-6652 0000-0001-8449-6418 0000-0003-4999-5822 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/lpor.202200472 |
PQID | 2786310916 |
PQPubID | 1016358 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2786310916 crossref_primary_10_1002_lpor_202200472 wiley_primary_10_1002_lpor_202200472_LPOR202200472 |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 42 2013; 4 2021; 23 2017; 4 2020; 20 2010; 18 2019; 10 2019; 14 2009; 110 2008; 229 2022; 24 2019; 19 2020; 12 2015; 106 2022; 22 2017; 111 2013; 7 2012; 14 2011; 19 2012; 12 1990; 187 2019; 122 2005; 22 2020; 8 2018; 7 2018; 9 2020; 5 2014; 5 2018; 5 2013; 13 2020; 9 2016; 354 2019; 27 2016; 41 2014; 13 2019; 29 2014; 8 2012; 20 2004; 43 2019; 7 2015; 15 2015; 6 2019; 3 2019; 6 2016; 19 2011 2015; 92 2019; 30 2017; 28 2019; 2 2021; 104 2021; 103 2019; 1 2011; 84 2015; 10 2019; 36 2016; 94 2019; 109 2015; 9 2018; 21 2007; 99 2011; 5 2019; 100 2018; 26 2020; 109 2010; 82 2017; 50 2016; 6 2021; 15 2012; 2 2021; 10 2021; 12 2021; 11 2016; 3 2021 2017; 11 1988; 5 2013; 30 2022; 12 2017 2022; 11 2018; 12 2012; 6 2022; 16 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 Andrews D. L. (e_1_2_9_66_1) 2011 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 26 year: 2018 publication-title: Opt. Express – volume: 6 start-page: 8069 year: 2015 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 109 start-page: 131 year: 2019 publication-title: JETP Lett. – volume: 6 start-page: 961 year: 2019 publication-title: Optica – volume: 20 year: 2012 publication-title: Opt. Express – volume: 5 start-page: 728 year: 2017 publication-title: ACS Photonics – volume: 12 start-page: 1817 year: 2022 publication-title: Opt. Mater. Express – volume: 11 start-page: 274 year: 2017 publication-title: Nat. Photonics – volume: 10 start-page: 3654 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 2807 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 1427 year: 1988 publication-title: J. Opt. Soc. Am. A – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 22 start-page: 3513 year: 2022 publication-title: Nano Lett. – volume: 41 start-page: 33 year: 2016 publication-title: Opt. Lett. – volume: 5 year: 2020 publication-title: Adv. Phys.: X – volume: 19 start-page: 8972 year: 2019 publication-title: Nano Lett. – volume: 5 start-page: 2888 year: 2018 publication-title: ACS Photonics – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 3 start-page: 1558 year: 2016 publication-title: ACS Photonics – volume: 9 start-page: 1478 year: 2018 publication-title: Beilstein J. Nanotechnol. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 2638 year: 2017 publication-title: ACS Photonics – volume: 3 start-page: 799 year: 2016 publication-title: Optica – volume: 12 start-page: 5833 year: 2021 publication-title: Nat. Commun. – volume: 7 year: 2013 publication-title: J. Nanophotonics – volume: 5 start-page: 3402 year: 2014 publication-title: Nat. Commun. – volume: 15 start-page: 6261 year: 2015 publication-title: Nano Lett. – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 9 start-page: 1115 year: 2020 publication-title: Nanophotonics – volume: 110 start-page: 1210 year: 2009 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 11 start-page: 4027 year: 2022 publication-title: Nanophotonics – volume: 9 start-page: 195 year: 2015 publication-title: Laser Photonics Rev. – volume: 30 start-page: 2589 year: 2013 publication-title: J. Opt. Soc. Am. B – volume: 42 start-page: 1776 year: 2017 publication-title: Opt. Lett. – volume: 187 start-page: 145 year: 1990 publication-title: Phys. Rep. – volume: 5 start-page: 144 year: 2018 publication-title: Natl. Sci. Rev. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 16 start-page: 5994 year: 2022 publication-title: ACS Nano – volume: 4 start-page: 1527 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 303 year: 2018 publication-title: Optica – volume: 1 year: 2019 publication-title: Phys. Rev. Res. – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 14 year: 2012 publication-title: New J. Phys. – volume: 11 start-page: 2638 year: 2021 publication-title: Nanomaterials – volume: 10 start-page: 308 year: 2015 publication-title: Nat. Nanotechnol. – volume: 23 year: 2021 publication-title: New J. Phys. – volume: 43 start-page: 2397 year: 2004 publication-title: Appl. Opt. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 104 year: 2021 publication-title: Phys. Rev. B – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 8 start-page: 889 year: 2014 publication-title: Nat. Photonics – volume: 5 start-page: 1733 year: 2017 publication-title: ACS Photonics – year: 2021 – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 531 year: 2011 publication-title: Nat. Photonics – volume: 9 start-page: 231 year: 2015 publication-title: Laser Photonics Rev. – volume: 229 start-page: 337 year: 2008 publication-title: J. Microsc. – volume: 8 start-page: 102 year: 2020 publication-title: ACS Photonics – volume: 24 year: 2022 publication-title: New J. Phys. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 14 start-page: 679 year: 2019 publication-title: Nat. Nanotechnol. – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 24 year: 2017 publication-title: Opt. Photonics News – volume: 20 start-page: 6005 year: 2020 publication-title: Nano Lett. – volume: 36 start-page: D70 year: 2019 publication-title: J. Opt. Soc. Am. B – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 9 start-page: 2957 year: 2020 publication-title: Nanophotonics – volume: 354 start-page: 2472 year: 2016 publication-title: Science – volume: 4 start-page: 2144 year: 2017 publication-title: ACS Photonics – volume: 19 start-page: 4815 year: 2011 publication-title: Opt. Express – volume: 13 start-page: 451 year: 2014 publication-title: Nat. Mater. – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 27 year: 2019 publication-title: Opt. Express – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 492 year: 2012 publication-title: Sci. Rep. – volume: 9 start-page: 4327 year: 2020 publication-title: Nanophotonics – volume: 7 start-page: 1169 year: 2018 publication-title: Nanophotonics – volume: 109 year: 2020 publication-title: Opt. Mater. – volume: 10 start-page: 4373 year: 2021 publication-title: Nanophotonics – volume: 2 year: 2019 publication-title: Adv. Theory Simul. – volume: 12 start-page: 3749 year: 2012 publication-title: Nano Lett. – volume: 22 start-page: 849 year: 2005 publication-title: J. Opt. Soc. Am. A – volume: 19 year: 2016 publication-title: J. Opt. – volume: 5 start-page: 2936 year: 2018 publication-title: ACS Photonics – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 12 year: 2018 publication-title: ACS Nano – volume: 18 year: 2010 publication-title: Opt. Express – volume: 4 start-page: 814 year: 2017 publication-title: Optica – volume: 21 start-page: 8 year: 2018 publication-title: Mater. Today – volume: 6 start-page: 8415 year: 2012 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 15 start-page: 253 year: 2021 publication-title: Nat. Photonics – volume: 13 start-page: 1806 year: 2013 publication-title: Nano Lett. – year: 2017 – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – ident: e_1_2_9_91_1 doi: 10.1364/OE.26.019275 – ident: e_1_2_9_33_1 doi: 10.1021/acs.nanolett.5b02926 – ident: e_1_2_9_64_1 doi: 10.1038/s41566-021-00780-4 – ident: e_1_2_9_30_1 doi: 10.1515/nanoph-2021-0315 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevB.82.045404 – ident: e_1_2_9_51_1 doi: 10.1364/OE.19.004815 – ident: e_1_2_9_11_1 doi: 10.1038/srep00492 – ident: e_1_2_9_60_1 doi: 10.1117/1.JNP.7.078598 – ident: e_1_2_9_22_1 doi: 10.1063/1.5007007 – ident: e_1_2_9_96_1 doi: 10.1111/j.1365-2818.2008.01910.x – ident: e_1_2_9_43_1 doi: 10.1038/s41467-021-26094-1 – ident: e_1_2_9_32_1 doi: 10.1002/adts.201900123 – ident: e_1_2_9_65_1 doi: 10.1088/2040-8978/19/1/013001 – ident: e_1_2_9_20_1 doi: 10.1039/D0NR05624C – ident: e_1_2_9_29_1 doi: 10.1021/acs.nanolett.9b03961 – ident: e_1_2_9_78_1 doi: 10.3762/bjnano.9.139 – ident: e_1_2_9_14_1 doi: 10.1038/nmat3921 – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevLett.99.107401 – volume-title: Structured Light and Its Applications: An Introduction to Phase‐Structured Beams and Nanoscale Optical Forces year: 2011 ident: e_1_2_9_66_1 contributor: fullname: Andrews D. L. – ident: e_1_2_9_92_1 doi: 10.1364/OE.20.020599 – ident: e_1_2_9_5_1 doi: 10.1515/nanoph-2019-0505 – ident: e_1_2_9_95_1 doi: 10.1364/OE.18.010905 – ident: e_1_2_9_104_1 doi: 10.1002/lpor.202100449 – ident: e_1_2_9_63_1 doi: 10.1515/nanoph-2020-0202 – ident: e_1_2_9_59_1 doi: 10.1038/srep25528 – ident: e_1_2_9_68_1 doi: 10.1103/PhysRevB.92.241110 – ident: e_1_2_9_24_1 doi: 10.1021/acsphotonics.0c01315 – ident: e_1_2_9_85_1 doi: 10.1103/PhysRevB.100.125415 – ident: e_1_2_9_35_1 doi: 10.1021/acsphotonics.7b01217 – ident: e_1_2_9_19_1 doi: 10.1016/j.optmat.2020.110466 – ident: e_1_2_9_71_1 doi: 10.1364/OL.42.001776 – ident: e_1_2_9_79_1 doi: 10.1103/PhysRevB.104.165402 – ident: e_1_2_9_25_1 doi: 10.1364/OPTICA.4.000814 – ident: e_1_2_9_69_1 doi: 10.1021/acsnano.8b05778 – ident: e_1_2_9_42_1 doi: 10.1515/nanoph-2022-0078 – ident: e_1_2_9_55_1 doi: 10.1364/JOSAA.5.001427 – ident: e_1_2_9_54_1 doi: 10.1021/nl4005018 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevLett.122.193905 – ident: e_1_2_9_75_1 doi: 10.1364/OME.456070 – ident: e_1_2_9_62_1 doi: 10.1021/acsphotonics.6b00392 – ident: e_1_2_9_31_1 doi: 10.1021/acsphotonics.8b00246 – ident: e_1_2_9_21_1 – ident: e_1_2_9_99_1 doi: 10.1364/OPTICA.6.000961 – ident: e_1_2_9_4_1 doi: 10.1038/nphoton.2014.247 – ident: e_1_2_9_27_1 doi: 10.1021/acs.nanolett.0c01975 – ident: e_1_2_9_41_1 doi: 10.1038/ncomms3807 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevB.103.195419 – ident: e_1_2_9_6_1 doi: 10.1126/science.aag2472 – ident: e_1_2_9_8_1 doi: 10.1038/nphoton.2017.39 – ident: e_1_2_9_73_1 doi: 10.1002/adom.201801350 – ident: e_1_2_9_100_1 doi: 10.1103/PhysRevResearch.1.023014 – ident: e_1_2_9_12_1 doi: 10.1038/ncomms2538 – ident: e_1_2_9_67_1 doi: 10.1002/lpor.201400188 – ident: e_1_2_9_18_1 doi: 10.1021/acsphotonics.7b00631 – ident: e_1_2_9_83_1 doi: 10.1002/lpor.202100035 – ident: e_1_2_9_39_1 doi: 10.1038/nnano.2015.2 – ident: e_1_2_9_102_1 doi: 10.1515/nanoph-2020-0202 – ident: e_1_2_9_72_1 doi: 10.1038/ncomms9069 – ident: e_1_2_9_82_1 doi: 10.1364/OE.20.024536 – ident: e_1_2_9_88_1 doi: 10.1016/0370-1573(90)90042-Z – ident: e_1_2_9_7_1 doi: 10.1093/nsr/nwy017 – ident: e_1_2_9_87_1 doi: 10.1088/1367-2630/14/9/093033 – ident: e_1_2_9_36_1 doi: 10.1002/adfm.201806692 – ident: e_1_2_9_80_1 doi: 10.1134/S0021364019020036 – ident: e_1_2_9_74_1 doi: 10.1088/1361-6528/ab02b0 – ident: e_1_2_9_3_1 doi: 10.1021/acs.nanolett.2c00548 – ident: e_1_2_9_2_1 doi: 10.1016/j.jqsrt.2009.02.002 – ident: e_1_2_9_38_1 doi: 10.1364/OPTICA.5.000303 – ident: e_1_2_9_103_1 doi: 10.1002/adom.202000075 – ident: e_1_2_9_13_1 doi: 10.1038/ncomms4402 – ident: e_1_2_9_16_1 doi: 10.1080/23746149.2020.1734083 – ident: e_1_2_9_26_1 doi: 10.1364/OE.27.010924 – ident: e_1_2_9_101_1 doi: 10.1088/1367-2630/ac6b4c – ident: e_1_2_9_86_1 doi: 10.1364/JOSAB.30.002589 – ident: e_1_2_9_97_1 doi: 10.1063/1.4914117 – ident: e_1_2_9_57_1 doi: 10.1364/JOSAA.22.000849 – ident: e_1_2_9_76_1 doi: 10.1063/1.4999368 – ident: e_1_2_9_58_1 doi: 10.1364/JOSAB.36.000D70 – ident: e_1_2_9_23_1 doi: 10.3390/nano11102638 – ident: e_1_2_9_34_1 doi: 10.1038/s41467-019-11598-8 – ident: e_1_2_9_40_1 doi: 10.1515/nanoph-2017-0118 – ident: e_1_2_9_47_1 doi: 10.1103/PhysRevMaterials.3.085201 – ident: e_1_2_9_105_1 doi: 10.1088/1367-2630/ac21df – ident: e_1_2_9_90_1 doi: 10.1364/OPTICA.6.000961 – ident: e_1_2_9_44_1 doi: 10.1016/j.mattod.2017.06.007 – ident: e_1_2_9_81_1 doi: 10.1021/acsphotonics.7b01277 – ident: e_1_2_9_1_1 doi: 10.1364/OPN.28.1.000024 – ident: e_1_2_9_53_1 doi: 10.1021/nl301594s – ident: e_1_2_9_70_1 doi: 10.1364/OL.41.000033 – ident: e_1_2_9_77_1 doi: 10.1364/OPTICA.3.000799 – ident: e_1_2_9_28_1 doi: 10.1515/nanoph-2020-0290 – ident: e_1_2_9_93_1 doi: 10.1088/1361-6463/aa875c – ident: e_1_2_9_9_1 doi: 10.1021/acsphotonics.7b01038 – ident: e_1_2_9_15_1 doi: 10.1038/s41565-019-0442-x – ident: e_1_2_9_89_1 doi: 10.1038/nphoton.2011.153 – ident: e_1_2_9_94_1 doi: 10.1021/nn303243p – ident: e_1_2_9_61_1 doi: 10.1117/3.2281295 – ident: e_1_2_9_56_1 doi: 10.1364/AO.43.002397 – ident: e_1_2_9_37_1 doi: 10.1002/adom.201801813 – ident: e_1_2_9_10_1 doi: 10.1364/OE.26.013085 – ident: e_1_2_9_84_1 doi: 10.1103/PhysRevB.94.205434 – ident: e_1_2_9_17_1 doi: 10.1021/acsnano.1c11326 – ident: e_1_2_9_45_1 doi: 10.1002/lpor.201400402 – ident: e_1_2_9_98_1 doi: 10.1021/acsphotonics.8b00268 – ident: e_1_2_9_52_1 doi: 10.1103/PhysRevB.84.235429 |
SSID | ssj0055556 |
Score | 2.474829 |
Snippet | Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal... Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Aspect ratio Excitation Fluid flow Gaussian beams (optics) high‐index nanoparticles Incident light Light Metamaterials Micromanipulation Mie resonances multipole decomposition Optical materials Optics Phase distribution Remote sensing Scattering Spectrum analysis structured light Topology Wave fronts |
Title | Manipulation of Scattering Spectra with Topology of Light and Matter |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200472 https://www.proquest.com/docview/2786310916 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8MgGMeJ2cmL8zVOp-Fg4qnbChTo0TiXxWxqli3ZrQFKE6PpzNYd9NPLS9ttXky0N1JoCg8P_CHwewC4SblEPZKFAZUYB0QhEXDtrz7h0FicCccpGD_R4Yw8zqP51i1-z4eoN9ysZ7jx2jq4kKvuBhr6bvSpWd8h5ICHZhAOMbNnuvqTmh8VmcddL-IUB2ap16uojT3U3S2-OyttpOa2YHUzzqAJRPWv_qDJW2ddyI76-oFx_E9lDsFBKUfhne8_R2BP58egWUpTWDr-6gT0xyJ_rUJ9wUVmXjkwp5n4oA1hXywFtFu6cOqDLnzaPCO78IciT-HYZT4Fs8HD9H4YlAEYAoUjhgIpSEpSy-8JpUnHRDJORCiU1CxWnAucxZrqNNYqk5gqGukeN1kYznQqY4LPQCNf5PocQBTJVHOhCZKKZBYKT7XAzMg5EUsd8xa4rQyQfHjORuKJyiixjZPUjdMC7co-SelvqwQxY2LLOKUtgFxD__KVZPTyPKlTF38pdAn2bex5fyCtDRrFcq2vjEIp5LXrhd-rVt1V |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOg96cf7E6dQcBE-dXZK26VGcY2o7ZWzgrSRtCqJ0snUH_etN0h9zXgTtLfSltHl5zTch-TyAi4QJbNO0a7mCEIvGmFtMFkefSFd53OOGUxAO3cGE3j871W5CfRam4EPUC246Msz_Wge4XpC-WlJD35RAVRM8jA3xcB02VMwTnb2hN6oJUo66zAEj5hJLTfbsitto46vV-qvj0lJsfpesZszpN0FUb1tsNXntLHLRiT9_gBz_9Tk7sF0qUnRddKFdWJPZHjRLdYrK2J_vQy_k2UuV7QtNU3XLsDnV2Id0Fvt8xpFe1UXjIu_Ch7YJ9Nwf8SxBoTE-gEn_dnwzsMocDFZMHA9bgtOEJhrh0xWq7FPhMcq7PBbS82PGOEl96crEl3EqiBu7jrSZMvFIKhPhU3IIjWyaySNA2BGJZFxSLGKaai68KznxlKLjvpA-a8Fl5YHovUBtRAVUGUe6caK6cVrQrhwUlSE3j7CnfKwxp24LsGnpX54SBU-Po7p0_JdK57A5GIdBFNwNH05gS6eiL_antaGRzxbyVAmWXJyZLvkFiX3hbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkF8cV5xOjUPgk_dJUnT9FGcw8s2x9hgbyVpUxClG7s86Kc3SS_bfBG0b6Enpc3Jaf4Jye8A3ERc4gaNmw6ThDg0xMLhKj36RJra456wnIJujz2O6PPYHa-d4k_5EMWCm4kM-782AT6N4voKGvqh9ame32FsgYfbsEOZlr9GFg0KgJSrL3u-iDPi6LleI8c2NnB9s_7msLTSmuuK1Q457TKI_GXTnSbvteVC1sKvHxzH_3zNAexnehTdpR3oELZUcgTlTJuiLPLnx9DqiuQtz_WFJrG-ZcmceuRDJof9YiaQWdNFwzTrwqex6ZiZPxJJhLrW-ARG7Yfh_aOTZWBwQuJ62JGCRjQyAJ-m1GWfSo9T0RShVJ4fci5I7CumIl-FsSQsZK5qcG3ikVhF0qfkFErJJFFngLArI8WFoliGNDZUeKYE8bSeE75UPq_Abe6AYJqCNoIUqYwD0zhB0TgVqOb-CbKAmwfY0y42kFNWAWwb-penBJ3-66Aonf-l0jXs9lvtoPPUe7mAPZOHPt2cVoXSYrZUl1qtLOSV7ZDf-3zgHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+Scattering+Spectra+with+Topology+of+Light+and+Matter&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Barati+Sedeh%2C+Hooman&rft.au=Pires%2C+Danilo+G.&rft.au=Chandra%2C+Nitish&rft.au=Gao%2C+Jiannan&rft.date=2023-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=17&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.202200472&rft.externalDBID=10.1002%252Flpor.202200472&rft.externalDocID=LPOR202200472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |