Manipulation of Scattering Spectra with Topology of Light and Matter

Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 17; no. 3
Main Authors Barati Sedeh, Hooman, Pires, Danilo G., Chandra, Nitish, Gao, Jiannan, Tsvetkov, Dmitrii, Terekhov, Pavel, Kravchenko, Ivan, Litchinitser, Natalia
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. Mie resonance manipulation using structured light beams carrying orbital angular momentum (OAM) is described. By utilizing an SLM to change the structural features of the incoming light beam, the excited multipole moments within the polycrystalline silicon meta‐atom can be manipulated and “turned on and off” on demand.
AbstractList Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.
Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. Mie resonance manipulation using structured light beams carrying orbital angular momentum (OAM) is described. By utilizing an SLM to change the structural features of the incoming light beam, the excited multipole moments within the polycrystalline silicon meta‐atom can be manipulated and “turned on and off” on demand.
Author Litchinitser, Natalia
Pires, Danilo G.
Terekhov, Pavel
Kravchenko, Ivan
Chandra, Nitish
Tsvetkov, Dmitrii
Gao, Jiannan
Barati Sedeh, Hooman
Author_xml – sequence: 1
  givenname: Hooman
  orcidid: 0000-0002-3908-6652
  surname: Barati Sedeh
  fullname: Barati Sedeh, Hooman
  organization: Duke University
– sequence: 2
  givenname: Danilo G.
  surname: Pires
  fullname: Pires, Danilo G.
  organization: Duke University
– sequence: 3
  givenname: Nitish
  surname: Chandra
  fullname: Chandra, Nitish
  organization: Duke University
– sequence: 4
  givenname: Jiannan
  surname: Gao
  fullname: Gao, Jiannan
  organization: Duke University
– sequence: 5
  givenname: Dmitrii
  surname: Tsvetkov
  fullname: Tsvetkov, Dmitrii
  organization: Duke University
– sequence: 6
  givenname: Pavel
  orcidid: 0000-0001-8449-6418
  surname: Terekhov
  fullname: Terekhov, Pavel
  organization: Duke University
– sequence: 7
  givenname: Ivan
  orcidid: 0000-0003-4999-5822
  surname: Kravchenko
  fullname: Kravchenko, Ivan
  organization: Oak Ridge National Laboratory
– sequence: 8
  givenname: Natalia
  surname: Litchinitser
  fullname: Litchinitser, Natalia
  email: natalia.litchinitser@duke.edu
  organization: Duke University
BookMark eNqFkD1PwzAQhi0EEm1hZbbEnGI7aWKPqHxKqYpomS3HubSugh0cV1X_PS5FZeSWu5Oe9z7eITq3zgJCN5SMKSHsru2cHzPCGCFZwc7QgPI8TTgX4vxUc3KJhn2_IWQSIx-gh5myptu2KhhnsWvwQqsQwBu7wosOdPAK70xY46XrXOtW-wNTmtU6YGVrPPuBr9BFo9oern_zCH08PS6nL0k5f36d3peJTicFSyqV1Vkdj-O0ir3IqoJniipdQSE05yptBORQC9BNleY6nwDhESnSBupKZOkI3R7ndt59baEPcuO23saVkhXxQUoEzSM1PlLau7730MjOm0_l95ISeXBKHpySJ6eiQBwFO9PC_h9alm_z9z_tN3ebbxw
CitedBy_id crossref_primary_10_1002_adts_202300359
crossref_primary_10_1364_PRJ_503182
crossref_primary_10_1007_s11468_024_02362_w
crossref_primary_10_1364_OE_486386
crossref_primary_10_1063_5_0145291
crossref_primary_10_1364_OL_502600
crossref_primary_10_1002_lpor_202300855
crossref_primary_10_1021_acsnano_3c12893
crossref_primary_10_1515_nanoph_2023_0030
Cites_doi 10.1364/OE.26.019275
10.1021/acs.nanolett.5b02926
10.1038/s41566-021-00780-4
10.1515/nanoph-2021-0315
10.1103/PhysRevB.82.045404
10.1364/OE.19.004815
10.1038/srep00492
10.1117/1.JNP.7.078598
10.1063/1.5007007
10.1111/j.1365-2818.2008.01910.x
10.1038/s41467-021-26094-1
10.1002/adts.201900123
10.1088/2040-8978/19/1/013001
10.1039/D0NR05624C
10.1021/acs.nanolett.9b03961
10.3762/bjnano.9.139
10.1038/nmat3921
10.1103/PhysRevLett.99.107401
10.1364/OE.20.020599
10.1515/nanoph-2019-0505
10.1364/OE.18.010905
10.1002/lpor.202100449
10.1515/nanoph-2020-0202
10.1038/srep25528
10.1103/PhysRevB.92.241110
10.1021/acsphotonics.0c01315
10.1103/PhysRevB.100.125415
10.1021/acsphotonics.7b01217
10.1016/j.optmat.2020.110466
10.1364/OL.42.001776
10.1103/PhysRevB.104.165402
10.1364/OPTICA.4.000814
10.1021/acsnano.8b05778
10.1515/nanoph-2022-0078
10.1364/JOSAA.5.001427
10.1021/nl4005018
10.1103/PhysRevLett.122.193905
10.1364/OME.456070
10.1021/acsphotonics.6b00392
10.1021/acsphotonics.8b00246
10.1364/OPTICA.6.000961
10.1038/nphoton.2014.247
10.1021/acs.nanolett.0c01975
10.1038/ncomms3807
10.1103/PhysRevB.103.195419
10.1126/science.aag2472
10.1038/nphoton.2017.39
10.1002/adom.201801350
10.1103/PhysRevResearch.1.023014
10.1038/ncomms2538
10.1002/lpor.201400188
10.1021/acsphotonics.7b00631
10.1002/lpor.202100035
10.1038/nnano.2015.2
10.1038/ncomms9069
10.1364/OE.20.024536
10.1016/0370-1573(90)90042-Z
10.1093/nsr/nwy017
10.1088/1367-2630/14/9/093033
10.1002/adfm.201806692
10.1134/S0021364019020036
10.1088/1361-6528/ab02b0
10.1021/acs.nanolett.2c00548
10.1016/j.jqsrt.2009.02.002
10.1364/OPTICA.5.000303
10.1002/adom.202000075
10.1038/ncomms4402
10.1080/23746149.2020.1734083
10.1364/OE.27.010924
10.1088/1367-2630/ac6b4c
10.1364/JOSAB.30.002589
10.1063/1.4914117
10.1364/JOSAA.22.000849
10.1063/1.4999368
10.1364/JOSAB.36.000D70
10.3390/nano11102638
10.1038/s41467-019-11598-8
10.1515/nanoph-2017-0118
10.1103/PhysRevMaterials.3.085201
10.1088/1367-2630/ac21df
10.1016/j.mattod.2017.06.007
10.1021/acsphotonics.7b01277
10.1364/OPN.28.1.000024
10.1021/nl301594s
10.1364/OL.41.000033
10.1364/OPTICA.3.000799
10.1515/nanoph-2020-0290
10.1088/1361-6463/aa875c
10.1021/acsphotonics.7b01038
10.1038/s41565-019-0442-x
10.1038/nphoton.2011.153
10.1021/nn303243p
10.1117/3.2281295
10.1364/AO.43.002397
10.1002/adom.201801813
10.1364/OE.26.013085
10.1103/PhysRevB.94.205434
10.1021/acsnano.1c11326
10.1002/lpor.201400402
10.1021/acsphotonics.8b00268
10.1103/PhysRevB.84.235429
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202200472
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202200472
LPOR202200472
Genre article
GrantInformation_xml – fundername: Army Research Office Award
  funderid: W911NF1810348
– fundername: National Science Foundation
  funderid: 1809518
– fundername: Office of Naval Research (ONR)
  funderid: N00014‐20‐1‐2558
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c3572-ba4d4d04781b57294b784a1acbe79c88a3f9e6ed9ecfb36c65e0878473fedb943
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Thu Oct 10 19:32:29 EDT 2024
Fri Aug 23 01:49:22 EDT 2024
Sat Aug 24 00:57:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3572-ba4d4d04781b57294b784a1acbe79c88a3f9e6ed9ecfb36c65e0878473fedb943
ORCID 0000-0002-3908-6652
0000-0001-8449-6418
0000-0003-4999-5822
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/lpor.202200472
PQID 2786310916
PQPubID 1016358
PageCount 12
ParticipantIDs proquest_journals_2786310916
crossref_primary_10_1002_lpor_202200472
wiley_primary_10_1002_lpor_202200472_LPOR202200472
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 42
2013; 4
2021; 23
2017; 4
2020; 20
2010; 18
2019; 10
2019; 14
2009; 110
2008; 229
2022; 24
2019; 19
2020; 12
2015; 106
2022; 22
2017; 111
2013; 7
2012; 14
2011; 19
2012; 12
1990; 187
2019; 122
2005; 22
2020; 8
2018; 7
2018; 9
2020; 5
2014; 5
2018; 5
2013; 13
2020; 9
2016; 354
2019; 27
2016; 41
2014; 13
2019; 29
2014; 8
2012; 20
2004; 43
2019; 7
2015; 15
2015; 6
2019; 3
2019; 6
2016; 19
2011
2015; 92
2019; 30
2017; 28
2019; 2
2021; 104
2021; 103
2019; 1
2011; 84
2015; 10
2019; 36
2016; 94
2019; 109
2015; 9
2018; 21
2007; 99
2011; 5
2019; 100
2018; 26
2020; 109
2010; 82
2017; 50
2016; 6
2021; 15
2012; 2
2021; 10
2021; 12
2021; 11
2016; 3
2021
2017; 11
1988; 5
2013; 30
2022; 12
2017
2022; 11
2018; 12
2012; 6
2022; 16
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
Andrews D. L. (e_1_2_9_66_1) 2011
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 6
  start-page: 8069
  year: 2015
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 109
  start-page: 131
  year: 2019
  publication-title: JETP Lett.
– volume: 6
  start-page: 961
  year: 2019
  publication-title: Optica
– volume: 20
  year: 2012
  publication-title: Opt. Express
– volume: 5
  start-page: 728
  year: 2017
  publication-title: ACS Photonics
– volume: 12
  start-page: 1817
  year: 2022
  publication-title: Opt. Mater. Express
– volume: 11
  start-page: 274
  year: 2017
  publication-title: Nat. Photonics
– volume: 10
  start-page: 3654
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2807
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1427
  year: 1988
  publication-title: J. Opt. Soc. Am. A
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 3513
  year: 2022
  publication-title: Nano Lett.
– volume: 41
  start-page: 33
  year: 2016
  publication-title: Opt. Lett.
– volume: 5
  year: 2020
  publication-title: Adv. Phys.: X
– volume: 19
  start-page: 8972
  year: 2019
  publication-title: Nano Lett.
– volume: 5
  start-page: 2888
  year: 2018
  publication-title: ACS Photonics
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 3
  start-page: 1558
  year: 2016
  publication-title: ACS Photonics
– volume: 9
  start-page: 1478
  year: 2018
  publication-title: Beilstein J. Nanotechnol.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 2638
  year: 2017
  publication-title: ACS Photonics
– volume: 3
  start-page: 799
  year: 2016
  publication-title: Optica
– volume: 12
  start-page: 5833
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  year: 2013
  publication-title: J. Nanophotonics
– volume: 5
  start-page: 3402
  year: 2014
  publication-title: Nat. Commun.
– volume: 15
  start-page: 6261
  year: 2015
  publication-title: Nano Lett.
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 9
  start-page: 1115
  year: 2020
  publication-title: Nanophotonics
– volume: 110
  start-page: 1210
  year: 2009
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 11
  start-page: 4027
  year: 2022
  publication-title: Nanophotonics
– volume: 9
  start-page: 195
  year: 2015
  publication-title: Laser Photonics Rev.
– volume: 30
  start-page: 2589
  year: 2013
  publication-title: J. Opt. Soc. Am. B
– volume: 42
  start-page: 1776
  year: 2017
  publication-title: Opt. Lett.
– volume: 187
  start-page: 145
  year: 1990
  publication-title: Phys. Rep.
– volume: 5
  start-page: 144
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 16
  start-page: 5994
  year: 2022
  publication-title: ACS Nano
– volume: 4
  start-page: 1527
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 303
  year: 2018
  publication-title: Optica
– volume: 1
  year: 2019
  publication-title: Phys. Rev. Res.
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 14
  year: 2012
  publication-title: New J. Phys.
– volume: 11
  start-page: 2638
  year: 2021
  publication-title: Nanomaterials
– volume: 10
  start-page: 308
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 23
  year: 2021
  publication-title: New J. Phys.
– volume: 43
  start-page: 2397
  year: 2004
  publication-title: Appl. Opt.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 104
  year: 2021
  publication-title: Phys. Rev. B
– volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 889
  year: 2014
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1733
  year: 2017
  publication-title: ACS Photonics
– year: 2021
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 531
  year: 2011
  publication-title: Nat. Photonics
– volume: 9
  start-page: 231
  year: 2015
  publication-title: Laser Photonics Rev.
– volume: 229
  start-page: 337
  year: 2008
  publication-title: J. Microsc.
– volume: 8
  start-page: 102
  year: 2020
  publication-title: ACS Photonics
– volume: 24
  year: 2022
  publication-title: New J. Phys.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 679
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 24
  year: 2017
  publication-title: Opt. Photonics News
– volume: 20
  start-page: 6005
  year: 2020
  publication-title: Nano Lett.
– volume: 36
  start-page: D70
  year: 2019
  publication-title: J. Opt. Soc. Am. B
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 9
  start-page: 2957
  year: 2020
  publication-title: Nanophotonics
– volume: 354
  start-page: 2472
  year: 2016
  publication-title: Science
– volume: 4
  start-page: 2144
  year: 2017
  publication-title: ACS Photonics
– volume: 19
  start-page: 4815
  year: 2011
  publication-title: Opt. Express
– volume: 13
  start-page: 451
  year: 2014
  publication-title: Nat. Mater.
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 492
  year: 2012
  publication-title: Sci. Rep.
– volume: 9
  start-page: 4327
  year: 2020
  publication-title: Nanophotonics
– volume: 7
  start-page: 1169
  year: 2018
  publication-title: Nanophotonics
– volume: 109
  year: 2020
  publication-title: Opt. Mater.
– volume: 10
  start-page: 4373
  year: 2021
  publication-title: Nanophotonics
– volume: 2
  year: 2019
  publication-title: Adv. Theory Simul.
– volume: 12
  start-page: 3749
  year: 2012
  publication-title: Nano Lett.
– volume: 22
  start-page: 849
  year: 2005
  publication-title: J. Opt. Soc. Am. A
– volume: 19
  year: 2016
  publication-title: J. Opt.
– volume: 5
  start-page: 2936
  year: 2018
  publication-title: ACS Photonics
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 18
  year: 2010
  publication-title: Opt. Express
– volume: 4
  start-page: 814
  year: 2017
  publication-title: Optica
– volume: 21
  start-page: 8
  year: 2018
  publication-title: Mater. Today
– volume: 6
  start-page: 8415
  year: 2012
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 15
  start-page: 253
  year: 2021
  publication-title: Nat. Photonics
– volume: 13
  start-page: 1806
  year: 2013
  publication-title: Nano Lett.
– year: 2017
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– ident: e_1_2_9_91_1
  doi: 10.1364/OE.26.019275
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.nanolett.5b02926
– ident: e_1_2_9_64_1
  doi: 10.1038/s41566-021-00780-4
– ident: e_1_2_9_30_1
  doi: 10.1515/nanoph-2021-0315
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevB.82.045404
– ident: e_1_2_9_51_1
  doi: 10.1364/OE.19.004815
– ident: e_1_2_9_11_1
  doi: 10.1038/srep00492
– ident: e_1_2_9_60_1
  doi: 10.1117/1.JNP.7.078598
– ident: e_1_2_9_22_1
  doi: 10.1063/1.5007007
– ident: e_1_2_9_96_1
  doi: 10.1111/j.1365-2818.2008.01910.x
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-021-26094-1
– ident: e_1_2_9_32_1
  doi: 10.1002/adts.201900123
– ident: e_1_2_9_65_1
  doi: 10.1088/2040-8978/19/1/013001
– ident: e_1_2_9_20_1
  doi: 10.1039/D0NR05624C
– ident: e_1_2_9_29_1
  doi: 10.1021/acs.nanolett.9b03961
– ident: e_1_2_9_78_1
  doi: 10.3762/bjnano.9.139
– ident: e_1_2_9_14_1
  doi: 10.1038/nmat3921
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevLett.99.107401
– volume-title: Structured Light and Its Applications: An Introduction to Phase‐Structured Beams and Nanoscale Optical Forces
  year: 2011
  ident: e_1_2_9_66_1
  contributor:
    fullname: Andrews D. L.
– ident: e_1_2_9_92_1
  doi: 10.1364/OE.20.020599
– ident: e_1_2_9_5_1
  doi: 10.1515/nanoph-2019-0505
– ident: e_1_2_9_95_1
  doi: 10.1364/OE.18.010905
– ident: e_1_2_9_104_1
  doi: 10.1002/lpor.202100449
– ident: e_1_2_9_63_1
  doi: 10.1515/nanoph-2020-0202
– ident: e_1_2_9_59_1
  doi: 10.1038/srep25528
– ident: e_1_2_9_68_1
  doi: 10.1103/PhysRevB.92.241110
– ident: e_1_2_9_24_1
  doi: 10.1021/acsphotonics.0c01315
– ident: e_1_2_9_85_1
  doi: 10.1103/PhysRevB.100.125415
– ident: e_1_2_9_35_1
  doi: 10.1021/acsphotonics.7b01217
– ident: e_1_2_9_19_1
  doi: 10.1016/j.optmat.2020.110466
– ident: e_1_2_9_71_1
  doi: 10.1364/OL.42.001776
– ident: e_1_2_9_79_1
  doi: 10.1103/PhysRevB.104.165402
– ident: e_1_2_9_25_1
  doi: 10.1364/OPTICA.4.000814
– ident: e_1_2_9_69_1
  doi: 10.1021/acsnano.8b05778
– ident: e_1_2_9_42_1
  doi: 10.1515/nanoph-2022-0078
– ident: e_1_2_9_55_1
  doi: 10.1364/JOSAA.5.001427
– ident: e_1_2_9_54_1
  doi: 10.1021/nl4005018
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevLett.122.193905
– ident: e_1_2_9_75_1
  doi: 10.1364/OME.456070
– ident: e_1_2_9_62_1
  doi: 10.1021/acsphotonics.6b00392
– ident: e_1_2_9_31_1
  doi: 10.1021/acsphotonics.8b00246
– ident: e_1_2_9_21_1
– ident: e_1_2_9_99_1
  doi: 10.1364/OPTICA.6.000961
– ident: e_1_2_9_4_1
  doi: 10.1038/nphoton.2014.247
– ident: e_1_2_9_27_1
  doi: 10.1021/acs.nanolett.0c01975
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms3807
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevB.103.195419
– ident: e_1_2_9_6_1
  doi: 10.1126/science.aag2472
– ident: e_1_2_9_8_1
  doi: 10.1038/nphoton.2017.39
– ident: e_1_2_9_73_1
  doi: 10.1002/adom.201801350
– ident: e_1_2_9_100_1
  doi: 10.1103/PhysRevResearch.1.023014
– ident: e_1_2_9_12_1
  doi: 10.1038/ncomms2538
– ident: e_1_2_9_67_1
  doi: 10.1002/lpor.201400188
– ident: e_1_2_9_18_1
  doi: 10.1021/acsphotonics.7b00631
– ident: e_1_2_9_83_1
  doi: 10.1002/lpor.202100035
– ident: e_1_2_9_39_1
  doi: 10.1038/nnano.2015.2
– ident: e_1_2_9_102_1
  doi: 10.1515/nanoph-2020-0202
– ident: e_1_2_9_72_1
  doi: 10.1038/ncomms9069
– ident: e_1_2_9_82_1
  doi: 10.1364/OE.20.024536
– ident: e_1_2_9_88_1
  doi: 10.1016/0370-1573(90)90042-Z
– ident: e_1_2_9_7_1
  doi: 10.1093/nsr/nwy017
– ident: e_1_2_9_87_1
  doi: 10.1088/1367-2630/14/9/093033
– ident: e_1_2_9_36_1
  doi: 10.1002/adfm.201806692
– ident: e_1_2_9_80_1
  doi: 10.1134/S0021364019020036
– ident: e_1_2_9_74_1
  doi: 10.1088/1361-6528/ab02b0
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.nanolett.2c00548
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jqsrt.2009.02.002
– ident: e_1_2_9_38_1
  doi: 10.1364/OPTICA.5.000303
– ident: e_1_2_9_103_1
  doi: 10.1002/adom.202000075
– ident: e_1_2_9_13_1
  doi: 10.1038/ncomms4402
– ident: e_1_2_9_16_1
  doi: 10.1080/23746149.2020.1734083
– ident: e_1_2_9_26_1
  doi: 10.1364/OE.27.010924
– ident: e_1_2_9_101_1
  doi: 10.1088/1367-2630/ac6b4c
– ident: e_1_2_9_86_1
  doi: 10.1364/JOSAB.30.002589
– ident: e_1_2_9_97_1
  doi: 10.1063/1.4914117
– ident: e_1_2_9_57_1
  doi: 10.1364/JOSAA.22.000849
– ident: e_1_2_9_76_1
  doi: 10.1063/1.4999368
– ident: e_1_2_9_58_1
  doi: 10.1364/JOSAB.36.000D70
– ident: e_1_2_9_23_1
  doi: 10.3390/nano11102638
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-019-11598-8
– ident: e_1_2_9_40_1
  doi: 10.1515/nanoph-2017-0118
– ident: e_1_2_9_47_1
  doi: 10.1103/PhysRevMaterials.3.085201
– ident: e_1_2_9_105_1
  doi: 10.1088/1367-2630/ac21df
– ident: e_1_2_9_90_1
  doi: 10.1364/OPTICA.6.000961
– ident: e_1_2_9_44_1
  doi: 10.1016/j.mattod.2017.06.007
– ident: e_1_2_9_81_1
  doi: 10.1021/acsphotonics.7b01277
– ident: e_1_2_9_1_1
  doi: 10.1364/OPN.28.1.000024
– ident: e_1_2_9_53_1
  doi: 10.1021/nl301594s
– ident: e_1_2_9_70_1
  doi: 10.1364/OL.41.000033
– ident: e_1_2_9_77_1
  doi: 10.1364/OPTICA.3.000799
– ident: e_1_2_9_28_1
  doi: 10.1515/nanoph-2020-0290
– ident: e_1_2_9_93_1
  doi: 10.1088/1361-6463/aa875c
– ident: e_1_2_9_9_1
  doi: 10.1021/acsphotonics.7b01038
– ident: e_1_2_9_15_1
  doi: 10.1038/s41565-019-0442-x
– ident: e_1_2_9_89_1
  doi: 10.1038/nphoton.2011.153
– ident: e_1_2_9_94_1
  doi: 10.1021/nn303243p
– ident: e_1_2_9_61_1
  doi: 10.1117/3.2281295
– ident: e_1_2_9_56_1
  doi: 10.1364/AO.43.002397
– ident: e_1_2_9_37_1
  doi: 10.1002/adom.201801813
– ident: e_1_2_9_10_1
  doi: 10.1364/OE.26.013085
– ident: e_1_2_9_84_1
  doi: 10.1103/PhysRevB.94.205434
– ident: e_1_2_9_17_1
  doi: 10.1021/acsnano.1c11326
– ident: e_1_2_9_45_1
  doi: 10.1002/lpor.201400402
– ident: e_1_2_9_98_1
  doi: 10.1021/acsphotonics.8b00268
– ident: e_1_2_9_52_1
  doi: 10.1103/PhysRevB.84.235429
SSID ssj0055556
Score 2.474829
Snippet Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal...
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Aspect ratio
Excitation
Fluid flow
Gaussian beams (optics)
high‐index nanoparticles
Incident light
Light
Metamaterials
Micromanipulation
Mie resonances
multipole decomposition
Optical materials
Optics
Phase distribution
Remote sensing
Scattering
Spectrum analysis
structured light
Topology
Wave fronts
Title Manipulation of Scattering Spectra with Topology of Light and Matter
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202200472
https://www.proquest.com/docview/2786310916
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT8MgGMeJ2cmL8zVOp-Fg4qnbChTo0TiXxWxqli3ZrQFKE6PpzNYd9NPLS9ttXky0N1JoCg8P_CHwewC4SblEPZKFAZUYB0QhEXDtrz7h0FicCccpGD_R4Yw8zqP51i1-z4eoN9ysZ7jx2jq4kKvuBhr6bvSpWd8h5ICHZhAOMbNnuvqTmh8VmcddL-IUB2ap16uojT3U3S2-OyttpOa2YHUzzqAJRPWv_qDJW2ddyI76-oFx_E9lDsFBKUfhne8_R2BP58egWUpTWDr-6gT0xyJ_rUJ9wUVmXjkwp5n4oA1hXywFtFu6cOqDLnzaPCO78IciT-HYZT4Fs8HD9H4YlAEYAoUjhgIpSEpSy-8JpUnHRDJORCiU1CxWnAucxZrqNNYqk5gqGukeN1kYznQqY4LPQCNf5PocQBTJVHOhCZKKZBYKT7XAzMg5EUsd8xa4rQyQfHjORuKJyiixjZPUjdMC7co-SelvqwQxY2LLOKUtgFxD__KVZPTyPKlTF38pdAn2bex5fyCtDRrFcq2vjEIp5LXrhd-rVt1V
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfOg96cf7E6dQcBE-dXZK26VGcY2o7ZWzgrSRtCqJ0snUH_etN0h9zXgTtLfSltHl5zTch-TyAi4QJbNO0a7mCEIvGmFtMFkefSFd53OOGUxAO3cGE3j871W5CfRam4EPUC246Msz_Wge4XpC-WlJD35RAVRM8jA3xcB02VMwTnb2hN6oJUo66zAEj5hJLTfbsitto46vV-qvj0lJsfpesZszpN0FUb1tsNXntLHLRiT9_gBz_9Tk7sF0qUnRddKFdWJPZHjRLdYrK2J_vQy_k2UuV7QtNU3XLsDnV2Id0Fvt8xpFe1UXjIu_Ch7YJ9Nwf8SxBoTE-gEn_dnwzsMocDFZMHA9bgtOEJhrh0xWq7FPhMcq7PBbS82PGOEl96crEl3EqiBu7jrSZMvFIKhPhU3IIjWyaySNA2BGJZFxSLGKaai68KznxlKLjvpA-a8Fl5YHovUBtRAVUGUe6caK6cVrQrhwUlSE3j7CnfKwxp24LsGnpX54SBU-Po7p0_JdK57A5GIdBFNwNH05gS6eiL_antaGRzxbyVAmWXJyZLvkFiX3hbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkF8cV5xOjUPgk_dJUnT9FGcw8s2x9hgbyVpUxClG7s86Kc3SS_bfBG0b6Enpc3Jaf4Jye8A3ERc4gaNmw6ThDg0xMLhKj36RJra456wnIJujz2O6PPYHa-d4k_5EMWCm4kM-782AT6N4voKGvqh9ame32FsgYfbsEOZlr9GFg0KgJSrL3u-iDPi6LleI8c2NnB9s_7msLTSmuuK1Q457TKI_GXTnSbvteVC1sKvHxzH_3zNAexnehTdpR3oELZUcgTlTJuiLPLnx9DqiuQtz_WFJrG-ZcmceuRDJof9YiaQWdNFwzTrwqex6ZiZPxJJhLrW-ARG7Yfh_aOTZWBwQuJ62JGCRjQyAJ-m1GWfSo9T0RShVJ4fci5I7CumIl-FsSQsZK5qcG3ikVhF0qfkFErJJFFngLArI8WFoliGNDZUeKYE8bSeE75UPq_Abe6AYJqCNoIUqYwD0zhB0TgVqOb-CbKAmwfY0y42kFNWAWwb-penBJ3-66Aonf-l0jXs9lvtoPPUe7mAPZOHPt2cVoXSYrZUl1qtLOSV7ZDf-3zgHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+Scattering+Spectra+with+Topology+of+Light+and+Matter&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Barati+Sedeh%2C+Hooman&rft.au=Pires%2C+Danilo+G.&rft.au=Chandra%2C+Nitish&rft.au=Gao%2C+Jiannan&rft.date=2023-03-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=17&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Flpor.202200472&rft.externalDBID=10.1002%252Flpor.202200472&rft.externalDocID=LPOR202200472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon