Selective Destruction of Interleukin 23–Induced Expansion of a Major Antigen–Specific γδ T-Cell Subset in Patients With Tuberculosis
A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic stu...
Saved in:
Published in | The Journal of infectious diseases Vol. 215; no. 3; pp. 420 - 430 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP–specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23–induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23–induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23–mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine. |
---|---|
AbstractList | A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine.A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine. Abstract A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP–specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23–induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23–induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23–mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti–tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine. A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine. |
Author | Gu, Jin Yang, Enzhuo Chen, Crystal Shen, Hongbo Shen, Ling Yang, Rui Wang, Feifei Xiao, Heping Huang, Dan Chen, Zheng W. Liang, Shanshan |
AuthorAffiliation | 4 Department of Microbiology and Immunology 6 Institut Pasteur of Shanghai, China 5 Center for Primate Biomedical Research , University of Illinois College of Medicine , Chicago 1 Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences 3 Department of Medical Microbiology and Parasitology , Shanghai Medical College, Fudan University , Shanghai , China 2 Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis , Shanghai Pulmonary Hospital , Tongji University School of Medicine |
AuthorAffiliation_xml | – name: 2 Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis , Shanghai Pulmonary Hospital , Tongji University School of Medicine – name: 5 Center for Primate Biomedical Research , University of Illinois College of Medicine , Chicago – name: 1 Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology , Institut Pasteur of Shanghai, Chinese Academy of Sciences – name: 3 Department of Medical Microbiology and Parasitology , Shanghai Medical College, Fudan University , Shanghai , China – name: 6 Institut Pasteur of Shanghai, China – name: 4 Department of Microbiology and Immunology |
Author_xml | – sequence: 1 givenname: Hongbo surname: Shen fullname: Shen, Hongbo – sequence: 2 givenname: Jin surname: Gu fullname: Gu, Jin – sequence: 3 givenname: Heping surname: Xiao fullname: Xiao, Heping – sequence: 4 givenname: Shanshan surname: Liang fullname: Liang, Shanshan – sequence: 5 givenname: Enzhuo surname: Yang fullname: Yang, Enzhuo – sequence: 6 givenname: Rui surname: Yang fullname: Yang, Rui – sequence: 7 givenname: Dan surname: Huang fullname: Huang, Dan – sequence: 8 givenname: Crystal surname: Chen fullname: Chen, Crystal – sequence: 9 givenname: Feifei surname: Wang fullname: Wang, Feifei – sequence: 10 givenname: Ling surname: Shen fullname: Shen, Ling – sequence: 11 givenname: Zheng W. surname: Chen fullname: Chen, Zheng W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27789724$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFJUuQl2xC_ZPEyQapGgqMVATSDGJpOc5N6yFjD_4psGPNlkeB5-hD8CS4ZCg_EmJlS_58zrn3HKA96ywgdJeSh5S0_MjYoTfhaG3eVZTeQDNacVHUNeV7aEYIYwVt2nYfHYSwJoSUvBa30D4TomkFK2fo0xJG0NFcAH4MIfqU785iN-CFjeBHSG-MxYx_-_h5Yfukoccn77fKhh2l8HO1dh4f22jOwGZsuQVtBqPx5ZfLr3hVzGEc8TJ1ASLOUi9VNGBjwK9NPMer1IHXaXTBhNvo5qDGAHd25yF69eRkNX9WnL54upgfnxaaV4IWoGjPB6VZyRpVdgyE0FXPgA601eVQtoMqG6E1ENZq3tEG-k5QTupaEKoV44fo0aS7Td0Gep3TeDXKrTcb5T9Ip4z888Wac3nmLmTVVJw3JAs82Al49zblrcmNCTqPqSy4FCRteFW3rCQio_d_97o2-VlABooJ0N6F4GG4RiiRVwXLqWA5FZx5_hevTVRXneWoZvznr11il7b_Nbg3oesQnf8VuKY_Fsi_A-iGypw |
CitedBy_id | crossref_primary_10_1128_IAI_00315_21 crossref_primary_10_3389_fcimb_2021_669394 crossref_primary_10_1021_acsomega_4c07053 crossref_primary_10_3389_fmicb_2023_1236012 crossref_primary_10_3389_fimmu_2021_739219 crossref_primary_10_3389_fimmu_2024_1469118 crossref_primary_10_3389_fimmu_2021_599641 crossref_primary_10_1007_s12088_024_01227_4 crossref_primary_10_1089_jir_2023_0007 crossref_primary_10_3389_fimmu_2022_987018 |
Cites_doi | 10.1002/eji.201444635 10.4049/jimmunol.178.7.4304 10.1084/jem.20132577 10.1084/jem.190.9.1297 10.1086/592448 10.1086/345766 10.1016/j.fct.2013.11.040 10.1182/blood-2008-06-162792 10.1016/j.immuni.2007.11.016 10.1038/cmi.2012.46 10.1016/j.immuni.2010.09.015 10.1002/stem.1609 10.1016/j.cellimm.2013.05.001 10.3324/haematol.2008.002352 10.1016/j.coi.2005.11.007 10.1073/pnas.0811250106 10.1073/pnas.1007394107 10.1093/infdis/173.5.1267 10.1111/j.1365-2567.2007.02766.x 10.1371/journal.ppat.1002984 10.4049/jimmunol.1102609 10.1371/journal.pone.0136476 10.1126/science.8140422 10.1089/jir.2010.0083 10.1126/science.1168676 10.1002/eji.201343680 10.1128/MMBR.00010-14 10.1016/j.immuni.2011.12.015 10.3109/07357907.2014.883526 10.1016/S0092-8674(01)00616-X 10.1126/science.1068819 10.1093/infdis/jit206 10.1128/JVI.06000-11 10.1111/j.1744-313X.2012.01084.x 10.1111/j.1365-2443.2010.01474.x 10.1016/j.cell.2015.08.052 10.1016/j.jhep.2014.07.005 10.1016/j.cellimm.2014.11.001 10.1152/physiolgenomics.00122.2013 10.4049/jimmunol.1101291 10.1016/S1471-4906(03)00032-2 10.1158/2326-6066.CIR-14-0201 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Oxford University Press on behalf of the Infectious Diseases Society of America The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2016 The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: Copyright © 2017 Oxford University Press on behalf of the Infectious Diseases Society of America – notice: The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2016 – notice: The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/infdis/jiw511 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 430 |
ExternalDocumentID | PMC5853380 27789724 10_1093_infdis_jiw511 10.1093/infdis/jiw511 26166701 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Chinese National Major Projects grantid: 2013ZX10003009-002 – fundername: National Institutes of Health grantid: R01 HL64560/OD015092/HL129887 funderid: 10.13039/100000002 – fundername: NHLBI NIH HHS grantid: R01 HL064560 – fundername: NCRR NIH HHS grantid: R01 RR013601 – fundername: NIH HHS grantid: R01 OD015092 – fundername: NHLBI NIH HHS grantid: R01 HL129887 – fundername: ; ; ; grantid: R01 HL64560/OD015092/HL129887 – fundername: ; ; grantid: 2013ZX10003009-002 |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 1KJ 1TH 29K 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAJQQ AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWTL ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACGOD ACHIC ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADQXQ ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DU5 D~K EBS ECGQY EE~ EJD EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ~91 AASNB ADACV ADJQC ADRIX AFXEN DOOOF ESX M49 ZKG AAYXX ADULT CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3571-ea1d3fac2428a4b2e77c5d2e1f19c4f49fa487cce029c3b18edb713066701ca23 |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Aug 21 18:42:16 EDT 2025 Fri Jul 11 04:29:08 EDT 2025 Thu Apr 03 06:49:15 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Tue Jul 01 01:31:04 EDT 2025 Wed Sep 11 04:48:10 EDT 2024 Thu Jun 19 22:20:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Vγ2Vδ2 T cells cytokine signaling JAK2/STAT3 miRNA T-cell exhaustion tuberculosis |
Language | English |
License | The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3571-ea1d3fac2428a4b2e77c5d2e1f19c4f49fa487cce029c3b18edb713066701ca23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 H. S., J. G. and H. X. contributed equally to this work and are co–first authors. Correspondence: H. Shen, Institute of Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China (hbshen@ips.ac.cn). |
OpenAccessLink | https://academic.oup.com/jid/article-pdf/215/3/420/24262071/jiw511.pdf |
PMID | 27789724 |
PQID | 1835692407 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5853380 proquest_miscellaneous_1835692407 pubmed_primary_27789724 crossref_primary_10_1093_infdis_jiw511 crossref_citationtrail_10_1093_infdis_jiw511 oup_primary_10_1093_infdis_jiw511 jstor_primary_26166701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Feb-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-Feb-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Bonneville (2017011017160979000_jiw511v2.16) 2015; 296 2017011017160979000_jiw511v2.2 2017011017160979000_jiw511v2.3 2017011017160979000_jiw511v2.1 Liu (2017011017160979000_jiw511v2.36) 2015; S0171-2985 2017011017160979000_jiw511v2.6 2017011017160979000_jiw511v2.13 2017011017160979000_jiw511v2.35 2017011017160979000_jiw511v2.7 2017011017160979000_jiw511v2.14 2017011017160979000_jiw511v2.4 2017011017160979000_jiw511v2.11 2017011017160979000_jiw511v2.33 2017011017160979000_jiw511v2.5 2017011017160979000_jiw511v2.12 2017011017160979000_jiw511v2.31 2017011017160979000_jiw511v2.10 2017011017160979000_jiw511v2.32 2017011017160979000_jiw511v2.8 2017011017160979000_jiw511v2.9 2017011017160979000_jiw511v2.30 2017011017160979000_jiw511v2.19 2017011017160979000_jiw511v2.17 2017011017160979000_jiw511v2.39 2017011017160979000_jiw511v2.15 2017011017160979000_jiw511v2.37 2017011017160979000_jiw511v2.38 Daker (2017011017160979000_jiw511v2.20) 2013; 282 Shen (2017011017160979000_jiw511v2.18) 2015; 45 Chen (2017011017160979000_jiw511v2.22) 2012; 199 2017011017160979000_jiw511v2.24 2017011017160979000_jiw511v2.25 Valle-Mendiola (2017011017160979000_jiw511v2.42) 2014; 32 2017011017160979000_jiw511v2.44 2017011017160979000_jiw511v2.23 2017011017160979000_jiw511v2.21 2017011017160979000_jiw511v2.43 2017011017160979000_jiw511v2.40 2017011017160979000_jiw511v2.41 2017011017160979000_jiw511v2.28 2017011017160979000_jiw511v2.29 2017011017160979000_jiw511v2.26 2017011017160979000_jiw511v2.27 Seo (2017011017160979000_jiw511v2.34) 2014; 64 21138378 - J Interferon Cytokine Res. 2011 Apr;31(4):363-71 19383786 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7553-8 8627084 - J Infect Dis. 1996 May;173(5):1267-72 24548303 - Cancer Invest. 2014 May;32(4):115-25 23770719 - Cell Immunol. 2013 Apr;282(2):106-12 23147720 - Cell Mol Immunol. 2013 Jan;10(1):58-64 22269120 - Int J Immunogenet. 2012 Jun;39(3):247-52 22422881 - J Immunol. 2012 Apr 15;188(8):3745-56 19325114 - Science. 2009 Mar 27;323(5922):1726-9 22258246 - J Virol. 2012 Apr;86(8):4213-21 25184558 - Microbiol Mol Biol Rev. 2014 Sep;78(3):343-71 16337364 - Curr Opin Immunol. 2006 Feb;18(1):31-8 21155952 - Genes Cells. 2011 Feb;16(2):179-89 24192393 - Physiol Genomics. 2013 Dec 15;45(24):1206-14 23144609 - PLoS Pathog. 2012;8(11):e1002984 25016223 - J Hepatol. 2014 Dec;61(6):1212-9 19229050 - Haematologica. 2009 Apr;94(4):576-80 22474020 - J Immunol. 2012 May 1;188(9):4278-88 25141829 - Eur J Immunol. 2015 Feb;45(2):442-51 26361042 - PLoS One. 2015 Sep 11;10(9):e0136476 11910108 - Science. 2002 Mar 22;295(5563):2255-8 25113973 - J Exp Med. 2014 Aug 25;211(9):1905-18 12697454 - Trends Immunol. 2003 Apr;24(4):213-9 24643836 - Eur J Immunol. 2014 Jul;44(7):2013-24 26359984 - Cell. 2015 Sep 10;162(6):1242-56 18811584 - J Infect Dis. 2008 Nov 15;198(10):1514-9 18981295 - Blood. 2009 Jan 22;113(4):837-45 8140422 - Science. 1994 Apr 1;264(5155):95-8 20624978 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13402-7 21029966 - Immunity. 2010 Oct 29;33(4):567-77 17371987 - J Immunol. 2007 Apr 1;178(7):4304-14 18164222 - Immunity. 2008 Jan;28(1):29-39 25701326 - Cancer Immunol Res. 2015 Jun;3(6):620-30 22342841 - Immunity. 2012 Feb 24;36(2):239-50 24302476 - Stem Cells. 2014 May;32(5):1149-60 11779458 - Cell. 2001 Dec 28;107(7):823-6 25468804 - Cell Immunol. 2015 Jul;296(1):3-9 10544201 - J Exp Med. 1999 Nov 1;190(9):1297-308 23661793 - J Infect Dis. 2013 Aug 15;208(4):603-15 24316209 - Food Chem Toxicol. 2014 Feb;64:217-24 25720636 - Immunobiology. 2015 Aug;220(8):947-53 18266718 - Immunology. 2008 Jun;124(2):277-93 12447771 - J Infect Dis. 2002 Dec 15;186(12):1835-9 |
References_xml | – volume: 45 start-page: 442 year: 2015 ident: 2017011017160979000_jiw511v2.18 article-title: Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vγ2Vδ2T cells after M. tuberculosis infection or vaccination publication-title: . Eur J Immunol doi: 10.1002/eji.201444635 – ident: 2017011017160979000_jiw511v2.17 doi: 10.4049/jimmunol.178.7.4304 – ident: 2017011017160979000_jiw511v2.1 doi: 10.1084/jem.20132577 – ident: 2017011017160979000_jiw511v2.27 doi: 10.1084/jem.190.9.1297 – ident: 2017011017160979000_jiw511v2.41 doi: 10.1086/592448 – ident: 2017011017160979000_jiw511v2.21 doi: 10.1086/345766 – volume: 64 start-page: 217 year: 2014 ident: 2017011017160979000_jiw511v2.34 article-title: Cucurbitacin B and cucurbitacin I suppress adipocyte differentiation through inhibition of STAT3 signaling publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2013.11.040 – ident: 2017011017160979000_jiw511v2.25 doi: 10.1182/blood-2008-06-162792 – ident: 2017011017160979000_jiw511v2.28 doi: 10.1016/j.immuni.2007.11.016 – ident: 2017011017160979000_jiw511v2.9 doi: 10.1038/cmi.2012.46 – ident: 2017011017160979000_jiw511v2.8 doi: 10.1016/j.immuni.2010.09.015 – ident: 2017011017160979000_jiw511v2.31 doi: 10.1002/stem.1609 – volume: 282 start-page: 106 year: 2013 ident: 2017011017160979000_jiw511v2.20 article-title: An abnormal phenotype of lung Vγ9Vδ2 T cells impairs their responsiveness in tuberculosis patients publication-title: Cell Immunol doi: 10.1016/j.cellimm.2013.05.001 – ident: 2017011017160979000_jiw511v2.37 doi: 10.3324/haematol.2008.002352 – ident: 2017011017160979000_jiw511v2.14 doi: 10.1016/j.coi.2005.11.007 – ident: 2017011017160979000_jiw511v2.26 doi: 10.1073/pnas.0811250106 – ident: 2017011017160979000_jiw511v2.10 doi: 10.1073/pnas.1007394107 – ident: 2017011017160979000_jiw511v2.19 doi: 10.1093/infdis/173.5.1267 – ident: 2017011017160979000_jiw511v2.23 doi: 10.1111/j.1365-2567.2007.02766.x – ident: 2017011017160979000_jiw511v2.3 doi: 10.1371/journal.ppat.1002984 – ident: 2017011017160979000_jiw511v2.11 doi: 10.4049/jimmunol.1102609 – ident: 2017011017160979000_jiw511v2.43 doi: 10.1371/journal.pone.0136476 – ident: 2017011017160979000_jiw511v2.32 doi: 10.1126/science.8140422 – ident: 2017011017160979000_jiw511v2.44 doi: 10.1089/jir.2010.0083 – ident: 2017011017160979000_jiw511v2.5 doi: 10.1126/science.1168676 – ident: 2017011017160979000_jiw511v2.29 doi: 10.1002/eji.201343680 – ident: 2017011017160979000_jiw511v2.7 doi: 10.1128/MMBR.00010-14 – ident: 2017011017160979000_jiw511v2.40 doi: 10.1016/j.immuni.2011.12.015 – volume: 32 start-page: 115 year: 2014 ident: 2017011017160979000_jiw511v2.42 article-title: IL-2 enhances cervical cancer cells proliferation and JAK3/STAT5 phosphorylation at low doses, while at high doses IL-2 has opposite effects publication-title: Cancer Invest doi: 10.3109/07357907.2014.883526 – ident: 2017011017160979000_jiw511v2.38 doi: 10.1016/S0092-8674(01)00616-X – ident: 2017011017160979000_jiw511v2.15 doi: 10.1126/science.1068819 – ident: 2017011017160979000_jiw511v2.12 doi: 10.1093/infdis/jit206 – volume: S0171-2985 start-page: 00025 year: 2015 ident: 2017011017160979000_jiw511v2.36 article-title: SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte publication-title: Immunobiology – ident: 2017011017160979000_jiw511v2.24 doi: 10.1128/JVI.06000-11 – ident: 2017011017160979000_jiw511v2.33 doi: 10.1111/j.1744-313X.2012.01084.x – ident: 2017011017160979000_jiw511v2.35 doi: 10.1111/j.1365-2443.2010.01474.x – ident: 2017011017160979000_jiw511v2.4 doi: 10.1016/j.cell.2015.08.052 – ident: 2017011017160979000_jiw511v2.30 doi: 10.1016/j.jhep.2014.07.005 – ident: 2017011017160979000_jiw511v2.6 – volume: 296 start-page: 3 year: 2015 ident: 2017011017160979000_jiw511v2.16 article-title: Chicago 2014—30 years of γδ T cells publication-title: Cell Immunol doi: 10.1016/j.cellimm.2014.11.001 – ident: 2017011017160979000_jiw511v2.39 doi: 10.1152/physiolgenomics.00122.2013 – volume: 199 start-page: 4278 year: 2012 ident: 2017011017160979000_jiw511v2.22 article-title: IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB publication-title: J Immunol doi: 10.4049/jimmunol.1101291 – ident: 2017011017160979000_jiw511v2.13 doi: 10.1016/S1471-4906(03)00032-2 – ident: 2017011017160979000_jiw511v2.2 doi: 10.1158/2326-6066.CIR-14-0201 – reference: 22422881 - J Immunol. 2012 Apr 15;188(8):3745-56 – reference: 25720636 - Immunobiology. 2015 Aug;220(8):947-53 – reference: 26361042 - PLoS One. 2015 Sep 11;10(9):e0136476 – reference: 22258246 - J Virol. 2012 Apr;86(8):4213-21 – reference: 24192393 - Physiol Genomics. 2013 Dec 15;45(24):1206-14 – reference: 22474020 - J Immunol. 2012 May 1;188(9):4278-88 – reference: 19325114 - Science. 2009 Mar 27;323(5922):1726-9 – reference: 11910108 - Science. 2002 Mar 22;295(5563):2255-8 – reference: 25184558 - Microbiol Mol Biol Rev. 2014 Sep;78(3):343-71 – reference: 21155952 - Genes Cells. 2011 Feb;16(2):179-89 – reference: 22342841 - Immunity. 2012 Feb 24;36(2):239-50 – reference: 24302476 - Stem Cells. 2014 May;32(5):1149-60 – reference: 17371987 - J Immunol. 2007 Apr 1;178(7):4304-14 – reference: 24316209 - Food Chem Toxicol. 2014 Feb;64:217-24 – reference: 8140422 - Science. 1994 Apr 1;264(5155):95-8 – reference: 26359984 - Cell. 2015 Sep 10;162(6):1242-56 – reference: 16337364 - Curr Opin Immunol. 2006 Feb;18(1):31-8 – reference: 18981295 - Blood. 2009 Jan 22;113(4):837-45 – reference: 24548303 - Cancer Invest. 2014 May;32(4):115-25 – reference: 25016223 - J Hepatol. 2014 Dec;61(6):1212-9 – reference: 23147720 - Cell Mol Immunol. 2013 Jan;10(1):58-64 – reference: 19229050 - Haematologica. 2009 Apr;94(4):576-80 – reference: 23661793 - J Infect Dis. 2013 Aug 15;208(4):603-15 – reference: 23144609 - PLoS Pathog. 2012;8(11):e1002984 – reference: 25141829 - Eur J Immunol. 2015 Feb;45(2):442-51 – reference: 18164222 - Immunity. 2008 Jan;28(1):29-39 – reference: 24643836 - Eur J Immunol. 2014 Jul;44(7):2013-24 – reference: 23770719 - Cell Immunol. 2013 Apr;282(2):106-12 – reference: 18811584 - J Infect Dis. 2008 Nov 15;198(10):1514-9 – reference: 11779458 - Cell. 2001 Dec 28;107(7):823-6 – reference: 25468804 - Cell Immunol. 2015 Jul;296(1):3-9 – reference: 21138378 - J Interferon Cytokine Res. 2011 Apr;31(4):363-71 – reference: 25701326 - Cancer Immunol Res. 2015 Jun;3(6):620-30 – reference: 10544201 - J Exp Med. 1999 Nov 1;190(9):1297-308 – reference: 19383786 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7553-8 – reference: 8627084 - J Infect Dis. 1996 May;173(5):1267-72 – reference: 20624978 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13402-7 – reference: 22269120 - Int J Immunogenet. 2012 Jun;39(3):247-52 – reference: 12697454 - Trends Immunol. 2003 Apr;24(4):213-9 – reference: 18266718 - Immunology. 2008 Jun;124(2):277-93 – reference: 25113973 - J Exp Med. 2014 Aug 25;211(9):1905-18 – reference: 21029966 - Immunity. 2010 Oct 29;33(4):567-77 – reference: 12447771 - J Infect Dis. 2002 Dec 15;186(12):1835-9 |
SSID | ssj0004367 |
Score | 2.3513808 |
Snippet | A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can... Abstract A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that... |
SourceID | pubmedcentral proquest pubmed crossref oup jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 420 |
SubjectTerms | Adult Cell Proliferation Female Humans Interleukin-2 - antagonists & inhibitors Interleukin-2 - metabolism Interleukin-23 - antagonists & inhibitors Interleukin-23 - immunology Latent Tuberculosis - immunology Major Male Mycobacterium tuberculosis - immunology Organophosphates - immunology PATHOGENESIS AND HOST RESPONSE Receptors, Antigen, T-Cell, gamma-delta Signal Transduction STAT3 Transcription Factor - metabolism T-Lymphocyte Subsets - immunology |
Title | Selective Destruction of Interleukin 23–Induced Expansion of a Major Antigen–Specific γδ T-Cell Subset in Patients With Tuberculosis |
URI | https://www.jstor.org/stable/26166701 https://www.ncbi.nlm.nih.gov/pubmed/27789724 https://www.proquest.com/docview/1835692407 https://pubmed.ncbi.nlm.nih.gov/PMC5853380 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3djpNAFJ7UNRpvjK6u4l9mE9ebym6ZAQYutXZTNTUm2016R2AYLGuFpi3x5wF8A59En2OfyTM_UFrd-HNDCAwztN_HmcNwzncQegxziif8lNkOcRLbBdDtgIMxJIHHRJxQz1VBNKM3_vDUfTXxJp3Ot1bUUrVKDvmX3-aV_A-qcAxwlVmy_4Bs0ykcgH3AF7aAMGz_CuMTVcRGx_40QrB1cshiJqr3edEl1Jb1OeR3_sEnePaXpk3cHcVn5ULKB0hFTltVos9y3j3oDw6eU7V1u2O7L1f3pH0RqprAWy3EKuNmV9PuuErEglezcpkv237uOuPMiFLokK9qWX8Ralz5E5MeMiyLd0nZhANVil55Q91JHpd6mpzXk60MI8rr5e4p_LCpYbpZxAAu9JqAEFEbXmaDr0DblpnoTE9DQdqys67KoPvV_mttLDiUSoWG47P8o6dteYsN8w-KDoSxIGQ6gXtLcrs-dQldhl0iC2O8ePl6nW5LfWbkWmG8Iz3akR5Likubqzc8HR3supVF2XqZ2Y7JbTk54xvoukEMP9NUu4k6othFV3S90s-76OrIRGLcQl8b7uEW93CZ4Rb38Jp7uOGebBNjxT28zT18_v38B9acw5pzGLqpOYcl53Cbc7fR6fFg3B_apqaHzanHHFvETkqzmINnGMRuQgRj3EuJcDIn5G7mhlkMr9Ccix4JOU2cQKQJAz_L91nP4TGhe2inKAtxF2E3IEJqmTEvDV2udIcoF9BzwvzEczMLPa3__4gbwXtZd2UW6cALGmnkIo2chZ40zeda6eWihnsKzKYV8R11exbaB3T_dPF-jX0Ehlx-nYsLAY9fBHOr54dygcVCdzQX1iMYSlmIbbCkaSBF4jfPFPlUicV74I_ToHfvwj7vo2vrJ_IB2gHGiIfgaK-SR4r2PwGtcdkr |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Destruction+of+Interleukin+23-Induced+Expansion+of+a+Major+Antigen-Specific+%CE%B3%CE%B4+T-Cell+Subset+in+Patients+With+Tuberculosis&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Shen%2C+Hongbo&rft.au=Gu%2C+Jin&rft.au=Xiao%2C+Heping&rft.au=Liang%2C+Shanshan&rft.date=2017-02-01&rft.eissn=1537-6613&rft.volume=215&rft.issue=3&rft.spage=420&rft_id=info:doi/10.1093%2Finfdis%2Fjiw511&rft_id=info%3Apmid%2F27789724&rft.externalDocID=27789724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |