Synergistic Toughening and Strain Releasing Strategy in Metal Halide Perovskite Photovoltaics

Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 52
Main Authors Wang, Chenyun, Shang, Chuanzhen, Feng, Haoyang, Lei, Yudong, Qu, Duo, Zhou, Bin, Zhang, Xinyue, Hu, Hanwei, Zhang, Yajie, Zhang, Zhanfei, Li, Bin, Bao, Zheng, Ye, Fengjun, Zheng, Zebang, Wang, Zhenhua, Sun, Lijie, Tu, Yongguang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability. Metal halide perovskites with high Young's modulus are prone to cracking under mechanical stress, which degrades device performance and durability. It is addressed by incorporating poly (lipoic acid‐co‐styrene) elastomer to lower the perovskite film's modulus. This strategy prevents cracks, reduces nonradiative recombination losses, and enhances power conversion efficiency.
AbstractList Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability.
Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability. Metal halide perovskites with high Young's modulus are prone to cracking under mechanical stress, which degrades device performance and durability. It is addressed by incorporating poly (lipoic acid‐co‐styrene) elastomer to lower the perovskite film's modulus. This strategy prevents cracks, reduces nonradiative recombination losses, and enhances power conversion efficiency.
Author Wang, Chenyun
Zhou, Bin
Tu, Yongguang
Zhang, Yajie
Sun, Lijie
Lei, Yudong
Feng, Haoyang
Li, Bin
Hu, Hanwei
Zhang, Xinyue
Wang, Zhenhua
Ye, Fengjun
Qu, Duo
Bao, Zheng
Zheng, Zebang
Shang, Chuanzhen
Zhang, Zhanfei
Author_xml – sequence: 1
  givenname: Chenyun
  surname: Wang
  fullname: Wang, Chenyun
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Chuanzhen
  surname: Shang
  fullname: Shang, Chuanzhen
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Haoyang
  surname: Feng
  fullname: Feng, Haoyang
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Yudong
  surname: Lei
  fullname: Lei, Yudong
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: Duo
  surname: Qu
  fullname: Qu, Duo
  organization: Northwestern Polytechnical University
– sequence: 6
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
  organization: Northwestern Polytechnical University
– sequence: 7
  givenname: Xinyue
  surname: Zhang
  fullname: Zhang, Xinyue
  organization: Northwestern Polytechnical University
– sequence: 8
  givenname: Hanwei
  surname: Hu
  fullname: Hu, Hanwei
  organization: Northwestern Polytechnical University
– sequence: 9
  givenname: Yajie
  surname: Zhang
  fullname: Zhang, Yajie
  organization: Northwestern Polytechnical University
– sequence: 10
  givenname: Zhanfei
  surname: Zhang
  fullname: Zhang, Zhanfei
  organization: Shanghai Institute of Space Power‐Sources
– sequence: 11
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Shanghai Institute of Space Power‐Sources
– sequence: 12
  givenname: Zheng
  surname: Bao
  fullname: Bao, Zheng
  organization: Beijing Solarverse Optoelectronic Technology Co., Ltd
– sequence: 13
  givenname: Fengjun
  surname: Ye
  fullname: Ye, Fengjun
  organization: Beijing Solarverse Optoelectronic Technology Co., Ltd
– sequence: 14
  givenname: Zebang
  surname: Zheng
  fullname: Zheng, Zebang
  email: zebang.zheng@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 15
  givenname: Zhenhua
  surname: Wang
  fullname: Wang, Zhenhua
  email: iamzhwang@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 16
  givenname: Lijie
  surname: Sun
  fullname: Sun, Lijie
  email: sklspt@sina.com
  organization: Shanghai Institute of Space Power‐Sources
– sequence: 17
  givenname: Yongguang
  orcidid: 0000-0002-1402-4148
  surname: Tu
  fullname: Tu, Yongguang
  email: iamygtu@nwpu.edu.cn
  organization: Northwestern Polytechnical University
BookMark eNqFkEFLAzEQhYNUUKtXzwueWzPJuskeRa0VKortwYss2d1Jm7ommqSV_nt3qVQQxNM8Hu-bYd4R6VlnkZBToEOglJ2rWr8NGWUp0IzBHjmEDLIBp0z2dhqeD8hRCEtKQQieHpKX6cain5sQTZXM3Gq-QGvsPFG2TqbRK2OTJ2xQhc7sjIjzTdK69xhVk4xVY2pMHtG7dXg1sZULF93aNVGZKhyTfa2agCffs09mo5vZ1Xgwebi9u7qcDCp-IWBQl1KwXNYlAE81lVmW64rKFIWgWsiUM5EDlDkvS6Ra1iAoAtN1pjmTSHmfnG3Xvnv3scIQi6VbedteLDikMpPsgvM2lW5TlXcheNRFZaKKxtnuz6YAWnQ9Fl2Pxa7HFhv-wt69eVN-8zeQb4FP0-Dmn3RxeT26_2G_AOEmiBA
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c05022
Cites_doi 10.1126/science.1243982
10.1002/adma.202200320
10.1016/j.cej.2023.148464
10.1039/C8EE02751J
10.1002/jcc.22885
10.1038/s41467-023-41931-1
10.1126/sciadv.aat8192
10.34133/research.0112
10.1002/anie.202003813
10.1016/j.joule.2022.12.013
10.1039/D3RA05413F
10.1038/s41467-019-08507-4
10.1021/jacs.1c12732
10.1007/s40820-021-00672-w
10.1002/adma.202001479
10.1126/science.adi4107
10.1016/j.nanoen.2022.108154
10.1002/adma.202300513
10.1002/anie.202116632
10.1039/D0EE01736A
10.1002/sus2.144
10.1021/acsenergylett.4c00656
10.1002/adma.202313154
10.1016/j.joule.2021.04.014
10.1039/D2NR07110J
10.1017/CBO9780511623127.009
10.1557/JMR.1992.1564
10.1021/ja809598r
10.1002/smll.202005495
10.1002/adfm.202313462
10.1016/j.scriptamat.2022.115064
10.1016/j.apsusc.2017.09.073
10.1002/sus2.163
10.1002/smll.202307645
10.1016/j.matt.2021.06.028
10.1002/adma.202309208
10.34133/research.0309
10.1002/anie.202212268
10.1038/s41467-021-21292-3
10.1039/D3EE03435F
10.1002/anie.202116602
10.1038/s41560-018-0192-2
10.1007/s10853-010-4289-7
10.1039/D2CS00278G
10.1063/1.4885256
10.1038/s41563-021-01097-x
10.1038/nenergy.2016.81
10.1002/adfm.202214984
10.1002/aenm.201802139
10.1016/j.matt.2023.03.014
10.1002/adma.202211257
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202410621
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202410621
ADFM202410621
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: Natural Science Basic Research Program of Shaanxi Province
  funderid: 2024JC‐YBMS‐294
– fundername: National Natural Science Foundation of China
  funderid: 52105399
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3571-db87298db1134f08669fc084e770f784327911b93bbe0f8d170e12fd6f328e03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 09:26:32 EDT 2025
Tue Jul 01 00:31:06 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Jan 22 17:13:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3571-db87298db1134f08669fc084e770f784327911b93bbe0f8d170e12fd6f328e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1402-4148
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202410621
PQID 3148682533
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3148682533
crossref_citationtrail_10_1002_adfm_202410621
crossref_primary_10_1002_adfm_202410621
wiley_primary_10_1002_adfm_202410621_ADFM202410621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 5
2023; 35
2023; 13
2021; 4
2023; 14
2021; 20
2023; 33
2023; 6
2023; 15
2023; 381
2019; 10
2023; 7
2022; 51
2023; 223
2019; 12
2024; 481
2013; 342
2020; 59
2020; 13
1993
2018; 428
2024; 34
2023; 3
2009; 131
2024
2020; 32
2023; 107
2024; 36
2024; 17
2012; 33
2023; 20
2010; 45
2022; 144
2021; 13
1992; 7
2018; 8
2018; 3
2016; 1
2021; 12
2014; 2
2018; 4
2022; 61
2024; 7
2024; 9
2021; 17
2022; 34
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 12
  start-page: 596
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 20
  start-page: 1337
  year: 2021
  publication-title: Nat. Mater.
– volume: 12
  start-page: 973
  year: 2021
  publication-title: Nat. Commun.
– volume: 45
  start-page: 2530
  year: 2010
  publication-title: J. Mater. Sci.
– volume: 20
  year: 2023
  publication-title: Small
– volume: 3
  start-page: 821
  year: 2023
  publication-title: SusMat
– volume: 51
  start-page: 7509
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 13
  year: 2023
  publication-title: RSC Adv.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 223
  year: 2023
  publication-title: Scr. Mater.
– year: 2024
– volume: 381
  start-page: 209
  year: 2023
  publication-title: Science
– volume: 7
  start-page: 1564
  year: 1992
  publication-title: J. Mater. Res.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 14
  start-page: 6451
  year: 2023
  publication-title: Nat. Commun.
– volume: 107
  year: 2023
  publication-title: Nano Energy
– volume: 2
  year: 2014
  publication-title: APL Mater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 7
  start-page: 0309
  year: 2024
  publication-title: Research
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2428
  year: 2024
  publication-title: ACS Energy Lett.
– volume: 481
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 648
  year: 2018
  publication-title: Nat. Energy
– start-page: 194
  year: 1993
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 15
  start-page: 6505
  year: 2023
  publication-title: Nanoscale
– volume: 6
  start-page: 1622
  year: 2023
  publication-title: Matter
– volume: 3
  start-page: 543
  year: 2023
  publication-title: SusMat
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 815
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 4
  start-page: 2765
  year: 2021
  publication-title: Matter
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 144
  start-page: 5400
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1153
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 428
  start-page: 140
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 4344
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1587
  year: 2021
  publication-title: Joule
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 0112
  year: 2023
  publication-title: Research
– volume: 13
  start-page: 152
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 7
  start-page: 398
  year: 2023
  publication-title: Joule
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.202200320
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2023.148464
– ident: e_1_2_7_38_1
  doi: 10.1039/C8EE02751J
– ident: e_1_2_7_46_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-023-41931-1
– ident: e_1_2_7_33_1
  doi: 10.1126/sciadv.aat8192
– ident: e_1_2_7_18_1
  doi: 10.34133/research.0112
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.202003813
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joule.2022.12.013
– ident: e_1_2_7_32_1
  doi: 10.1039/D3RA05413F
– ident: e_1_2_7_16_1
  doi: 10.1038/s41467-019-08507-4
– ident: e_1_2_7_51_1
  doi: 10.1021/jacs.1c12732
– ident: e_1_2_7_6_1
  doi: 10.1007/s40820-021-00672-w
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202001479
– ident: e_1_2_7_7_1
  doi: 10.1126/science.adi4107
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nanoen.2022.108154
– ident: e_1_2_7_5_1
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.202300513
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202116632
– ident: e_1_2_7_35_1
  doi: 10.1039/D0EE01736A
– ident: e_1_2_7_52_1
  doi: 10.1002/sus2.144
– ident: e_1_2_7_22_1
  doi: 10.1021/acsenergylett.4c00656
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202313154
– ident: e_1_2_7_11_1
  doi: 10.1016/j.joule.2021.04.014
– ident: e_1_2_7_31_1
  doi: 10.1039/D2NR07110J
– ident: e_1_2_7_41_1
  doi: 10.1017/CBO9780511623127.009
– ident: e_1_2_7_40_1
  doi: 10.1557/JMR.1992.1564
– ident: e_1_2_7_3_1
  doi: 10.1021/ja809598r
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.202005495
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.202313462
– ident: e_1_2_7_9_1
  doi: 10.1016/j.scriptamat.2022.115064
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apsusc.2017.09.073
– ident: e_1_2_7_2_1
  doi: 10.1002/sus2.163
– ident: e_1_2_7_29_1
  doi: 10.1002/smll.202307645
– ident: e_1_2_7_10_1
  doi: 10.1016/j.matt.2021.06.028
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.202309208
– ident: e_1_2_7_26_1
  doi: 10.34133/research.0309
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202212268
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-021-21292-3
– ident: e_1_2_7_4_1
  doi: 10.1039/D3EE03435F
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202116602
– ident: e_1_2_7_14_1
  doi: 10.1038/s41560-018-0192-2
– ident: e_1_2_7_39_1
  doi: 10.1007/s10853-010-4289-7
– ident: e_1_2_7_45_1
  doi: 10.1039/D2CS00278G
– ident: e_1_2_7_12_1
  doi: 10.1063/1.4885256
– ident: e_1_2_7_42_1
  doi: 10.1038/s41563-021-01097-x
– ident: e_1_2_7_50_1
  doi: 10.1038/nenergy.2016.81
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.202214984
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201802139
– ident: e_1_2_7_19_1
  doi: 10.1016/j.matt.2023.03.014
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202211257
SSID ssj0017734
Score 2.5204136
Snippet Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Defects
Devices
Durability
Elastomers
Energy conversion efficiency
Functional groups
Lipoic acid
Mechanical properties
mechanical stresses
Metal halides
Modulus of elasticity
Nanoindentation
perovskite solar cells
Perovskites
Photovoltaic cells
Radiative recombination
Solar cells
Strain
Young's modulus
Title Synergistic Toughening and Strain Releasing Strategy in Metal Halide Perovskite Photovoltaics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202410621
https://www.proquest.com/docview/3148682533
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4Spt9NJsei1qKUClthV4k7CsoSitNKtRf72ySpq0ggt6SsBOyO7s730xmvkXoSoC3psHz8XyumMeZJV5LqcAD42ektDGlxhU49x6C7iO_HzfHa1X8OT9EGXBzKyPbr90ClypprEhDpYldJTlYID_IKsldwpZDRYOSP4oIkf9WDohL8CLjJWujTxub4ptWaQU11wFrZnE6e0guvzVPNHmtz1NV15_faBz_05l9tFvAUdzO588B2rKTQ7SzRlJ4hJ6GC1cfmBE645E71Me6WAqWE4OH2QkTeAC2S7qgAy7IbhcYnvYsAHvcBaBvLO7b2fQjcaFi3H-eplPYFVP5opNjNOrcjW66XnEog6dZUxDPqBDweGgUIYzH4BAFrVj7IbdC-LEIOaMC9k_VYkpZPw4NEb4lNDZBzGhofXaCKpPpxJ4iLAxIMQ0ujeS8SYXUjFmhMg47LbisIm-pk0gXhOWuV29RTrVMIzdqUTlqVXRdtn_PqTp-bFlbqjgqlmwSMXAMA_CXGasimunql7dE7dtOr7w7-4vQOdp213l6TA1V0tncXgDISdVlNpG_AOxZ8ss
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EH9QHb7Ge-yD4FM0ezaaPopZ6VEQr-CJhr6AorbRR0F_vTC4PEEEfs-yE7DnfTGa-IWRbgbVmwfIJQmlEIIVnQcuYKADl57T2KecOE5y751HnWp7cNKtoQsyFKfghaocbnoz8vsYDjg7pvQ_WUO1STCUHFRRGmEo-gWW9c6vqsmaQYkoVP5YjhiFe7KbibQz53lf5r3rpA2x-hqy5zmnPElN9bRFq8rD7nJld-_aNyPFfw5kjMyUipfvFFponY76_QKY_8RQukturV0wRzDmdaQ_r-nh0p1Ddd_QqLzJBL0F9afQ70JLv9pVCa9cDtqcdwPrO0ws_HLyM0FtML-4G2QAuxkzf29ES6bWPegedoKzLEFjRVCxwJgZIHjvDmJAp2ERRK7VhLL1SYapiKbiCK9S0hDE-TGPHVOgZT12UCh77UCyT8f6g71cIVQ6khAWrRkvZ5EpbIbwyOY2dVVI3SFAtSmJLznIc1WNSsC3zBGctqWetQXbq_k8FW8ePPderNU7KUztKBNiGEZjMQjQIzxfrl7ck-4ftbv20-hehLTLZ6XXPkrPj89M1MoXtRbTMOhnPhs9-AzBPZjbzXf0OJo725g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbI-dP3YWLp21UOhT271Fct5DE1DtjYhJBnkZRh90rHhlMYtpH99T7bjJoMxWB8tdMaS7nS_O-t-QuhMQrRmIPKJiNA8EtzRqKV1HIHzs0o5z5gNBc79Qdz7Lr5Nm9OVKv6SH6JOuAXLKPbrYOD31l--koYq60MlOXggEodK8i0RkyTodWdUE0hRKcv_yjENJ7zodEnbSNjluvy6W3rFmquItXA53fdILT-2PGny6-Ix1xfm-Q8ex7eMZg_tVngUt0sF2kcbLjtAOysshYfox3gRCgQLRmc8Cbf6uJBMwSqzeFxcMYFH4LxUyDrgiu12gaG17wDZ4x4gfevw0D3MnuYhV4yHd7N8Bttirn6a-Qc06V5PrnpRdStDZHhT0sjqBAB5YjWlXHiIiOKWNyQRTkriZSI4k7CB6hbX2hGfWCqJo8zb2HOWOMI_os1slrlPCEsLUtxATKOEaDKpDOdO6oLEzkihGiharklqKsbyMKrfacm1zNIwa2k9aw10Xve_L7k6_trzeLnEaWWz85RDZBhDwMx5A7Firf7xlrTd6fbrp6P_ETpF28NON739Orj5jN6F5vKozDHazB8e3QkAnlx_KXT6BVrG9Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Toughening+and+Strain+Releasing+Strategy+in+Metal+Halide+Perovskite+Photovoltaics&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chenyun&rft.au=Shang%2C+Chuanzhen&rft.au=Feng%2C+Haoyang&rft.au=Lei%2C+Yudong&rft.date=2024-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=52&rft_id=info:doi/10.1002%2Fadfm.202410621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202410621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon