Synergistic Toughening and Strain Releasing Strategy in Metal Halide Perovskite Photovoltaics
Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 52 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability.
Metal halide perovskites with high Young's modulus are prone to cracking under mechanical stress, which degrades device performance and durability. It is addressed by incorporating poly (lipoic acid‐co‐styrene) elastomer to lower the perovskite film's modulus. This strategy prevents cracks, reduces nonradiative recombination losses, and enhances power conversion efficiency. |
---|---|
AbstractList | Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability. Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting, ultimately leading to a permanent decline in the performance of their photovoltaic devices. These mechanical properties pose challenges to the durability of long‐term service of photovoltaic devices and the production of flexible devices. To address this issue, the poly (lipoic acid‐co‐Styrene) elastomer is employed to modulate the modulus of perovskite films. The peak force quantitative nanomechanical atomic force microscopy measurements and nanoindentation tests demonstrated a reduction in modulus, with the lower modulus preventing the formation of cracks and defects during deformation. Moreover, this approach also suppressed the non‐radiative recombination of perovskite solar cells by leveraging the interaction between functional groups and defects. Through this method, the rigid inverted devices attained a power conversion efficiency of 24.42% alongside remarkable stability. Concurrently, flexible inverted devices achieved a power conversion efficiency of 22.21%. This strategy offers a promising avenue for fabricating flexible perovskite solar cells and enhancing their mechanical durability. Metal halide perovskites with high Young's modulus are prone to cracking under mechanical stress, which degrades device performance and durability. It is addressed by incorporating poly (lipoic acid‐co‐styrene) elastomer to lower the perovskite film's modulus. This strategy prevents cracks, reduces nonradiative recombination losses, and enhances power conversion efficiency. |
Author | Wang, Chenyun Zhou, Bin Tu, Yongguang Zhang, Yajie Sun, Lijie Lei, Yudong Feng, Haoyang Li, Bin Hu, Hanwei Zhang, Xinyue Wang, Zhenhua Ye, Fengjun Qu, Duo Bao, Zheng Zheng, Zebang Shang, Chuanzhen Zhang, Zhanfei |
Author_xml | – sequence: 1 givenname: Chenyun surname: Wang fullname: Wang, Chenyun organization: Northwestern Polytechnical University – sequence: 2 givenname: Chuanzhen surname: Shang fullname: Shang, Chuanzhen organization: Northwestern Polytechnical University – sequence: 3 givenname: Haoyang surname: Feng fullname: Feng, Haoyang organization: Northwestern Polytechnical University – sequence: 4 givenname: Yudong surname: Lei fullname: Lei, Yudong organization: Northwestern Polytechnical University – sequence: 5 givenname: Duo surname: Qu fullname: Qu, Duo organization: Northwestern Polytechnical University – sequence: 6 givenname: Bin surname: Zhou fullname: Zhou, Bin organization: Northwestern Polytechnical University – sequence: 7 givenname: Xinyue surname: Zhang fullname: Zhang, Xinyue organization: Northwestern Polytechnical University – sequence: 8 givenname: Hanwei surname: Hu fullname: Hu, Hanwei organization: Northwestern Polytechnical University – sequence: 9 givenname: Yajie surname: Zhang fullname: Zhang, Yajie organization: Northwestern Polytechnical University – sequence: 10 givenname: Zhanfei surname: Zhang fullname: Zhang, Zhanfei organization: Shanghai Institute of Space Power‐Sources – sequence: 11 givenname: Bin surname: Li fullname: Li, Bin organization: Shanghai Institute of Space Power‐Sources – sequence: 12 givenname: Zheng surname: Bao fullname: Bao, Zheng organization: Beijing Solarverse Optoelectronic Technology Co., Ltd – sequence: 13 givenname: Fengjun surname: Ye fullname: Ye, Fengjun organization: Beijing Solarverse Optoelectronic Technology Co., Ltd – sequence: 14 givenname: Zebang surname: Zheng fullname: Zheng, Zebang email: zebang.zheng@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 15 givenname: Zhenhua surname: Wang fullname: Wang, Zhenhua email: iamzhwang@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 16 givenname: Lijie surname: Sun fullname: Sun, Lijie email: sklspt@sina.com organization: Shanghai Institute of Space Power‐Sources – sequence: 17 givenname: Yongguang orcidid: 0000-0002-1402-4148 surname: Tu fullname: Tu, Yongguang email: iamygtu@nwpu.edu.cn organization: Northwestern Polytechnical University |
BookMark | eNqFkEFLAzEQhYNUUKtXzwueWzPJuskeRa0VKortwYss2d1Jm7ommqSV_nt3qVQQxNM8Hu-bYd4R6VlnkZBToEOglJ2rWr8NGWUp0IzBHjmEDLIBp0z2dhqeD8hRCEtKQQieHpKX6cain5sQTZXM3Gq-QGvsPFG2TqbRK2OTJ2xQhc7sjIjzTdK69xhVk4xVY2pMHtG7dXg1sZULF93aNVGZKhyTfa2agCffs09mo5vZ1Xgwebi9u7qcDCp-IWBQl1KwXNYlAE81lVmW64rKFIWgWsiUM5EDlDkvS6Ra1iAoAtN1pjmTSHmfnG3Xvnv3scIQi6VbedteLDikMpPsgvM2lW5TlXcheNRFZaKKxtnuz6YAWnQ9Fl2Pxa7HFhv-wt69eVN-8zeQb4FP0-Dmn3RxeT26_2G_AOEmiBA |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c05022 |
Cites_doi | 10.1126/science.1243982 10.1002/adma.202200320 10.1016/j.cej.2023.148464 10.1039/C8EE02751J 10.1002/jcc.22885 10.1038/s41467-023-41931-1 10.1126/sciadv.aat8192 10.34133/research.0112 10.1002/anie.202003813 10.1016/j.joule.2022.12.013 10.1039/D3RA05413F 10.1038/s41467-019-08507-4 10.1021/jacs.1c12732 10.1007/s40820-021-00672-w 10.1002/adma.202001479 10.1126/science.adi4107 10.1016/j.nanoen.2022.108154 10.1002/adma.202300513 10.1002/anie.202116632 10.1039/D0EE01736A 10.1002/sus2.144 10.1021/acsenergylett.4c00656 10.1002/adma.202313154 10.1016/j.joule.2021.04.014 10.1039/D2NR07110J 10.1017/CBO9780511623127.009 10.1557/JMR.1992.1564 10.1021/ja809598r 10.1002/smll.202005495 10.1002/adfm.202313462 10.1016/j.scriptamat.2022.115064 10.1016/j.apsusc.2017.09.073 10.1002/sus2.163 10.1002/smll.202307645 10.1016/j.matt.2021.06.028 10.1002/adma.202309208 10.34133/research.0309 10.1002/anie.202212268 10.1038/s41467-021-21292-3 10.1039/D3EE03435F 10.1002/anie.202116602 10.1038/s41560-018-0192-2 10.1007/s10853-010-4289-7 10.1039/D2CS00278G 10.1063/1.4885256 10.1038/s41563-021-01097-x 10.1038/nenergy.2016.81 10.1002/adfm.202214984 10.1002/aenm.201802139 10.1016/j.matt.2023.03.014 10.1002/adma.202211257 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202410621 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202410621 ADFM202410621 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: Natural Science Basic Research Program of Shaanxi Province funderid: 2024JC‐YBMS‐294 – fundername: National Natural Science Foundation of China funderid: 52105399 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3571-db87298db1134f08669fc084e770f784327911b93bbe0f8d170e12fd6f328e03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 09:26:32 EDT 2025 Tue Jul 01 00:31:06 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Jan 22 17:13:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3571-db87298db1134f08669fc084e770f784327911b93bbe0f8d170e12fd6f328e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1402-4148 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202410621 |
PQID | 3148682533 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3148682533 crossref_citationtrail_10_1002_adfm_202410621 crossref_primary_10_1002_adfm_202410621 wiley_primary_10_1002_adfm_202410621_ADFM202410621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 5 2023; 35 2023; 13 2021; 4 2023; 14 2021; 20 2023; 33 2023; 6 2023; 15 2023; 381 2019; 10 2023; 7 2022; 51 2023; 223 2019; 12 2024; 481 2013; 342 2020; 59 2020; 13 1993 2018; 428 2024; 34 2023; 3 2009; 131 2024 2020; 32 2023; 107 2024; 36 2024; 17 2012; 33 2023; 20 2010; 45 2022; 144 2021; 13 1992; 7 2018; 8 2018; 3 2016; 1 2021; 12 2014; 2 2018; 4 2022; 61 2024; 7 2024; 9 2021; 17 2022; 34 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 12 start-page: 596 year: 2019 publication-title: Energy Environ. Sci. – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 20 start-page: 1337 year: 2021 publication-title: Nat. Mater. – volume: 12 start-page: 973 year: 2021 publication-title: Nat. Commun. – volume: 45 start-page: 2530 year: 2010 publication-title: J. Mater. Sci. – volume: 20 year: 2023 publication-title: Small – volume: 3 start-page: 821 year: 2023 publication-title: SusMat – volume: 51 start-page: 7509 year: 2022 publication-title: Chem. Soc. Rev. – volume: 13 year: 2023 publication-title: RSC Adv. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 223 year: 2023 publication-title: Scr. Mater. – year: 2024 – volume: 381 start-page: 209 year: 2023 publication-title: Science – volume: 7 start-page: 1564 year: 1992 publication-title: J. Mater. Res. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 14 start-page: 6451 year: 2023 publication-title: Nat. Commun. – volume: 107 year: 2023 publication-title: Nano Energy – volume: 2 year: 2014 publication-title: APL Mater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 7 start-page: 0309 year: 2024 publication-title: Research – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2428 year: 2024 publication-title: ACS Energy Lett. – volume: 481 year: 2024 publication-title: Chem. Eng. J. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 648 year: 2018 publication-title: Nat. Energy – start-page: 194 year: 1993 – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 15 start-page: 6505 year: 2023 publication-title: Nanoscale – volume: 6 start-page: 1622 year: 2023 publication-title: Matter – volume: 3 start-page: 543 year: 2023 publication-title: SusMat – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 815 year: 2019 publication-title: Nat. Commun. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 4 start-page: 2765 year: 2021 publication-title: Matter – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 144 start-page: 5400 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1153 year: 2024 publication-title: Energy Environ. Sci. – volume: 428 start-page: 140 year: 2018 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 4344 year: 2020 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1587 year: 2021 publication-title: Joule – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 0112 year: 2023 publication-title: Research – volume: 13 start-page: 152 year: 2021 publication-title: Nano‐Micro Lett. – volume: 7 start-page: 398 year: 2023 publication-title: Joule – ident: e_1_2_7_1_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_44_1 doi: 10.1002/adma.202200320 – ident: e_1_2_7_37_1 doi: 10.1016/j.cej.2023.148464 – ident: e_1_2_7_38_1 doi: 10.1039/C8EE02751J – ident: e_1_2_7_46_1 doi: 10.1002/jcc.22885 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-023-41931-1 – ident: e_1_2_7_33_1 doi: 10.1126/sciadv.aat8192 – ident: e_1_2_7_18_1 doi: 10.34133/research.0112 – ident: e_1_2_7_24_1 doi: 10.1002/anie.202003813 – ident: e_1_2_7_23_1 doi: 10.1016/j.joule.2022.12.013 – ident: e_1_2_7_32_1 doi: 10.1039/D3RA05413F – ident: e_1_2_7_16_1 doi: 10.1038/s41467-019-08507-4 – ident: e_1_2_7_51_1 doi: 10.1021/jacs.1c12732 – ident: e_1_2_7_6_1 doi: 10.1007/s40820-021-00672-w – ident: e_1_2_7_15_1 doi: 10.1002/adma.202001479 – ident: e_1_2_7_7_1 doi: 10.1126/science.adi4107 – ident: e_1_2_7_48_1 doi: 10.1016/j.nanoen.2022.108154 – ident: e_1_2_7_5_1 – ident: e_1_2_7_25_1 doi: 10.1002/adma.202300513 – ident: e_1_2_7_34_1 doi: 10.1002/anie.202116632 – ident: e_1_2_7_35_1 doi: 10.1039/D0EE01736A – ident: e_1_2_7_52_1 doi: 10.1002/sus2.144 – ident: e_1_2_7_22_1 doi: 10.1021/acsenergylett.4c00656 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202313154 – ident: e_1_2_7_11_1 doi: 10.1016/j.joule.2021.04.014 – ident: e_1_2_7_31_1 doi: 10.1039/D2NR07110J – ident: e_1_2_7_41_1 doi: 10.1017/CBO9780511623127.009 – ident: e_1_2_7_40_1 doi: 10.1557/JMR.1992.1564 – ident: e_1_2_7_3_1 doi: 10.1021/ja809598r – ident: e_1_2_7_43_1 doi: 10.1002/smll.202005495 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.202313462 – ident: e_1_2_7_9_1 doi: 10.1016/j.scriptamat.2022.115064 – ident: e_1_2_7_49_1 doi: 10.1016/j.apsusc.2017.09.073 – ident: e_1_2_7_2_1 doi: 10.1002/sus2.163 – ident: e_1_2_7_29_1 doi: 10.1002/smll.202307645 – ident: e_1_2_7_10_1 doi: 10.1016/j.matt.2021.06.028 – ident: e_1_2_7_36_1 doi: 10.1002/adma.202309208 – ident: e_1_2_7_26_1 doi: 10.34133/research.0309 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202212268 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-021-21292-3 – ident: e_1_2_7_4_1 doi: 10.1039/D3EE03435F – ident: e_1_2_7_28_1 doi: 10.1002/anie.202116602 – ident: e_1_2_7_14_1 doi: 10.1038/s41560-018-0192-2 – ident: e_1_2_7_39_1 doi: 10.1007/s10853-010-4289-7 – ident: e_1_2_7_45_1 doi: 10.1039/D2CS00278G – ident: e_1_2_7_12_1 doi: 10.1063/1.4885256 – ident: e_1_2_7_42_1 doi: 10.1038/s41563-021-01097-x – ident: e_1_2_7_50_1 doi: 10.1038/nenergy.2016.81 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.202214984 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201802139 – ident: e_1_2_7_19_1 doi: 10.1016/j.matt.2023.03.014 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202211257 |
SSID | ssj0017734 |
Score | 2.5204136 |
Snippet | Metal halide perovskite with high Young's modulus is prone to form cracks when subjected to mechanical stresses such as bending, twisting, or impacting,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Defects Devices Durability Elastomers Energy conversion efficiency Functional groups Lipoic acid Mechanical properties mechanical stresses Metal halides Modulus of elasticity Nanoindentation perovskite solar cells Perovskites Photovoltaic cells Radiative recombination Solar cells Strain Young's modulus |
Title | Synergistic Toughening and Strain Releasing Strategy in Metal Halide Perovskite Photovoltaics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202410621 https://www.proquest.com/docview/3148682533 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4Spt9NJsei1qKUClthV4k7CsoSitNKtRf72ySpq0ggt6SsBOyO7s730xmvkXoSoC3psHz8XyumMeZJV5LqcAD42ektDGlxhU49x6C7iO_HzfHa1X8OT9EGXBzKyPbr90ClypprEhDpYldJTlYID_IKsldwpZDRYOSP4oIkf9WDohL8CLjJWujTxub4ptWaQU11wFrZnE6e0guvzVPNHmtz1NV15_faBz_05l9tFvAUdzO588B2rKTQ7SzRlJ4hJ6GC1cfmBE645E71Me6WAqWE4OH2QkTeAC2S7qgAy7IbhcYnvYsAHvcBaBvLO7b2fQjcaFi3H-eplPYFVP5opNjNOrcjW66XnEog6dZUxDPqBDweGgUIYzH4BAFrVj7IbdC-LEIOaMC9k_VYkpZPw4NEb4lNDZBzGhofXaCKpPpxJ4iLAxIMQ0ujeS8SYXUjFmhMg47LbisIm-pk0gXhOWuV29RTrVMIzdqUTlqVXRdtn_PqTp-bFlbqjgqlmwSMXAMA_CXGasimunql7dE7dtOr7w7-4vQOdp213l6TA1V0tncXgDISdVlNpG_AOxZ8ss |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EH9QHb7Ge-yD4FM0ezaaPopZ6VEQr-CJhr6AorbRR0F_vTC4PEEEfs-yE7DnfTGa-IWRbgbVmwfIJQmlEIIVnQcuYKADl57T2KecOE5y751HnWp7cNKtoQsyFKfghaocbnoz8vsYDjg7pvQ_WUO1STCUHFRRGmEo-gWW9c6vqsmaQYkoVP5YjhiFe7KbibQz53lf5r3rpA2x-hqy5zmnPElN9bRFq8rD7nJld-_aNyPFfw5kjMyUipfvFFponY76_QKY_8RQukturV0wRzDmdaQ_r-nh0p1Ddd_QqLzJBL0F9afQ70JLv9pVCa9cDtqcdwPrO0ws_HLyM0FtML-4G2QAuxkzf29ES6bWPegedoKzLEFjRVCxwJgZIHjvDmJAp2ERRK7VhLL1SYapiKbiCK9S0hDE-TGPHVOgZT12UCh77UCyT8f6g71cIVQ6khAWrRkvZ5EpbIbwyOY2dVVI3SFAtSmJLznIc1WNSsC3zBGctqWetQXbq_k8FW8ePPderNU7KUztKBNiGEZjMQjQIzxfrl7ck-4ftbv20-hehLTLZ6XXPkrPj89M1MoXtRbTMOhnPhs9-AzBPZjbzXf0OJo725g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbI-dP3YWLp21UOhT271Fct5DE1DtjYhJBnkZRh90rHhlMYtpH99T7bjJoMxWB8tdMaS7nS_O-t-QuhMQrRmIPKJiNA8EtzRqKV1HIHzs0o5z5gNBc79Qdz7Lr5Nm9OVKv6SH6JOuAXLKPbrYOD31l--koYq60MlOXggEodK8i0RkyTodWdUE0hRKcv_yjENJ7zodEnbSNjluvy6W3rFmquItXA53fdILT-2PGny6-Ix1xfm-Q8ex7eMZg_tVngUt0sF2kcbLjtAOysshYfox3gRCgQLRmc8Cbf6uJBMwSqzeFxcMYFH4LxUyDrgiu12gaG17wDZ4x4gfevw0D3MnuYhV4yHd7N8Bttirn6a-Qc06V5PrnpRdStDZHhT0sjqBAB5YjWlXHiIiOKWNyQRTkriZSI4k7CB6hbX2hGfWCqJo8zb2HOWOMI_os1slrlPCEsLUtxATKOEaDKpDOdO6oLEzkihGiharklqKsbyMKrfacm1zNIwa2k9aw10Xve_L7k6_trzeLnEaWWz85RDZBhDwMx5A7Firf7xlrTd6fbrp6P_ETpF28NON739Orj5jN6F5vKozDHazB8e3QkAnlx_KXT6BVrG9Z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Toughening+and+Strain+Releasing+Strategy+in+Metal+Halide+Perovskite+Photovoltaics&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chenyun&rft.au=Shang%2C+Chuanzhen&rft.au=Feng%2C+Haoyang&rft.au=Lei%2C+Yudong&rft.date=2024-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=52&rft_id=info:doi/10.1002%2Fadfm.202410621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202410621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |