Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction
Summary To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is perfor...
Saved in:
Published in | International transactions on electrical energy systems Vol. 30; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi Limited
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software. |
---|---|
AbstractList | Summary
To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software. To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software. |
Author | Youssef, Abdel‐Raheem Ali, Ahmed S. Ali, Mustafa M. Abdel‐Jaber, G.T. |
Author_xml | – sequence: 1 givenname: Mustafa M. orcidid: 0000-0002-7696-037X surname: Ali fullname: Ali, Mustafa M. organization: South Valley University – sequence: 2 givenname: Abdel‐Raheem orcidid: 0000-0002-8882-7867 surname: Youssef fullname: Youssef, Abdel‐Raheem email: abou_radwan@hotmail.com organization: South Valley University – sequence: 3 givenname: Ahmed S. orcidid: 0000-0003-2047-0053 surname: Ali fullname: Ali, Ahmed S. organization: Assiut University – sequence: 4 givenname: G.T. surname: Abdel‐Jaber fullname: Abdel‐Jaber, G.T. organization: South Valley University |
BookMark | eNqFkMtPwkAQxjcGExE5e93Ec2EfnZYeDcFHgqEH9LpZtlMoKd26WwT86y3WGG_OZSaT75vH75r0KlshIbecjThjYiwYsCBmcjLiggO_IP3fTu9PfUWG3m9ZG0nIeTzpk82bdoVelUh9gzX1xSfSdEFf0nRJdbm2rmg2O7r3RbWmO5thSR3m6LAySHWm66b4QGps1Thb0tw6atvWTpe0tgd0FI-N06YpbHVDLnNdehz-5AF5fZgtp0_BfPH4PL2fB0ZCzAPNDQADjhI0aJELwWOmY21CiJjBKJNSQiKSPJ-I0BhgTEZRAqsMQWSJATkgd93c2tn3PfpGbe3eVe1KJaQADjKUolWNO5Vx1vv2JVW79mx3UpypM1F1ZqbOzNQ30dYRdY5DUeLpP7maLWdpZ_wClDN5Jw |
CitedBy_id | crossref_primary_10_1002_2050_7038_12931 crossref_primary_10_3389_fenrg_2022_856702 crossref_primary_10_1016_j_seta_2023_103420 crossref_primary_10_1109_ACCESS_2021_3059884 crossref_primary_10_3390_s21155187 crossref_primary_10_1016_j_ijepes_2020_106598 crossref_primary_10_3390_en16062799 crossref_primary_10_1007_s40435_024_01434_3 crossref_primary_10_31763_ijrcs_v2i3_780 crossref_primary_10_1109_ACCESS_2022_3208583 crossref_primary_10_1016_j_conengprac_2021_104831 crossref_primary_10_3390_en16176204 crossref_primary_10_1063_5_0035134 crossref_primary_10_1016_j_heliyon_2024_e32032 crossref_primary_10_3390_jmse9111187 |
Cites_doi | 10.1016/j.apenergy.2017.06.086 10.1109/STA.2017.8314911 10.1016/j.renene.2013.10.036 10.1016/j.ijepes.2015.11.036 10.1016/j.ijhydene.2015.05.007 10.1109/TIE.2010.2048834 10.1007/978-981-10-4286-7_3 10.1109/TIE.2010.2064275 10.1109/ICCIAutom.2013.6912861 10.1007/978-1-4471-5058-9 10.1016/j.apenergy.2015.04.117 10.1016/j.enconman.2013.12.003 10.1109/ASCC.2013.6606327 10.1016/j.jestch.2019.04.004 10.1016/j.rser.2015.05.003 10.1016/j.ijepes.2015.07.036 10.1049/iet-rpg.2015.0132 10.1049/iet-pel.2017.0232 10.1016/j.egypro.2015.12.198 10.1016/j.rser.2014.11.088 10.1016/j.energy.2014.02.023 10.1016/j.renene.2010.04.028 10.1016/j.arcontrol.2017.02.002 10.1109/IDAACS.2017.8095263 10.1049/ip-c.1981.0043 10.1016/j.ijhydene.2016.03.105 10.1109/TIE.2010.2044732 10.1007/978-1-4614-4821-1 10.1016/j.enconman.2016.10.062 10.1016/j.ijepes.2018.10.034 10.1049/iet-rpg.2014.0070 10.1109/TEC.2009.2032613 10.1016/j.jestch.2018.07.005 10.1016/j.rser.2012.02.016 10.1016/j.egypro.2013.11.063 10.1016/0005-1098(79)90033-5 10.1049/PBRN013E 10.1016/j.promfg.2018.03.069 10.1109/JESTPE.2013.2280572 10.1049/iet-cta.2016.0430 10.1016/j.rser.2015.11.013 10.1109/TPEL.2011.2162251 10.1109/TEC.2013.2259627 10.1109/AUPEC.2014.6966524 10.1016/j.ijepes.2018.12.044 10.1109/TIE.2006.870658 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/2050-7038.12151 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7038 |
EndPage | n/a |
ExternalDocumentID | 10_1002_2050_7038_12151 ETEP12151 |
Genre | article |
GroupedDBID | 1OC 24P 31~ 8-1 8-4 8-5 AAEVG AAHHS AAJEY AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACPOU ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA GROUPED_DOAJ IX1 L8X LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E QB0 RHX SUPJJ WIH WIK 1OB AAYXX CITATION 7SP 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c3571-a1c55051e35a5a2f22170a7ac4560ce6d3335929ff824cc50036695bde52d9c53 |
ISSN | 2050-7038 |
IngestDate | Wed Nov 06 08:10:47 EST 2024 Thu Sep 26 18:58:50 EDT 2024 Sat Aug 24 01:09:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3571-a1c55051e35a5a2f22170a7ac4560ce6d3335929ff824cc50036695bde52d9c53 |
ORCID | 0000-0002-8882-7867 0000-0002-7696-037X 0000-0003-2047-0053 |
OpenAccessLink | https://doi.org/10.1002/2050-7038.12151 |
PQID | 2325153432 |
PQPubID | 2034359 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2325153432 crossref_primary_10_1002_2050_7038_12151 wiley_primary_10_1002_2050_7038_12151_ETEP12151 |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International transactions on electrical energy systems |
PublicationYear | 2020 |
Publisher | Hindawi Limited |
Publisher_xml | – name: Hindawi Limited |
References | 2006; 53 2013; 1 2013; 28 1979; 15 2012 2017; 43 2013; 42 2016; 10 2016; 74 2005 2019; 108 2012; 16 2011; 58 2011; 36 2019; 107 2017; 133 2014; 63 2015; 9 2018; 22 2018; 21 2014; 67 2016; 55 2016; 77 2015; 49 2010; 25 2015; 40 2015; 83 2017; 10 2017; 32 2015; 43 2015; 154 2019 2018 2016; 41 2017 2014; 79 2015 1981 2014 2011; 26 2013 2017; 203 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Liu Y (e_1_2_9_46_1) 2017; 32 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Tavner P (e_1_2_9_3_1) 2012 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 67 start-page: 444 year: 2014 end-page: 453 article-title: Improving efficiency of two‐type maximum power point tracking methods of tip‐speed ratio and optimum torque in wind turbine system using a quantum neural network publication-title: Energy – volume: 49 start-page: 1247 year: 2015 end-page: 1260 article-title: Variable step size modified P&O MPPT algorithm using GA‐based hybrid offline/online PID controller publication-title: Renew Sustain Energy Rev – volume: 10 start-page: 133 issue: 2 year: 2016 end-page: 139 article-title: Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates publication-title: IET Renew Power Gener – volume: 41 start-page: 9427 issue: 22 year: 2016 end-page: 9442 article-title: A novel combined MPPT‐pitch angle control for wide range variable speed wind turbine based on neural network publication-title: Int J Hydrogen Energy – volume: 53 start-page: 486 issue: 2 year: 2006 end-page: 494 article-title: Design of a maximum power tracking system for wind‐energy‐conversion applications publication-title: IEEE Trans Ind Electron – volume: 43 start-page: 1046 year: 2015 end-page: 1062 article-title: A review of estimation of effective wind speed based control of wind turbines publication-title: Renew Sustain Energy Rev – volume: 79 start-page: 281 year: 2014 end-page: 288 article-title: Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine publication-title: Energ Conver Manage – start-page: 1 year: 2013 end-page: 6 – start-page: 1 year: 2014 end-page: 6 – volume: 26 start-page: 3609 issue: 12 year: 2011 end-page: 3620 article-title: A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system publication-title: IEEE Trans Power Electron – volume: 28 start-page: 756 issue: 3 year: 2013 end-page: 767 article-title: Design and analysis of an MPPT technique for small‐scale wind energy conversion systems publication-title: IEEE Trans Energy Convers – start-page: 253 year: 1981 end-page: 261 – volume: 9 start-page: 682 issue: 6 year: 2015 end-page: 689 article-title: Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems publication-title: IET Renew Power Gener – volume: 16 start-page: 3220 issue: 5 year: 2012 end-page: 3227 article-title: A review of maximum power point tracking algorithms for wind energy systems publication-title: Renew Sustain Energy Rev – year: 2019 article-title: Optimal power extraction control schemes for five‐phase PMSG based wind generation systems publication-title: Int J Eng Sci Technol – volume: 154 start-page: 112 year: 2015 end-page: 121 article-title: Experimental power curve of small‐size wind turbines in turbulent urban environment publication-title: Appl Energy – volume: 1 start-page: 203 issue: 4 year: 2013 end-page: 216 article-title: A review on position/speed sensorless control for permanent‐magnet synchronous machine‐based wind energy conversion systems publication-title: IEEE J Emerging Selected Topics Power Electron – volume: 10 start-page: 1751 issue: 13 year: 2017 end-page: 1758 article-title: Maximum power point tracking for the permanent magnet synchronous generator‐based WECS by using the discrete‐time integral sliding mode controller with a chattering‐free reaching law publication-title: IET Power Electron – volume: 36 start-page: 2655 issue: 10 year: 2011 end-page: 2662 article-title: Maximum power point tracker of wind energy conversion system publication-title: Renew Energy – volume: 58 start-page: 2427 issue: 6 year: 2011 end-page: 2434 article-title: A novel improved variable step‐size incremental‐resistance MPPT method for PV systems publication-title: IEEE Trans Ind Electron – volume: 74 start-page: 429 year: 2016 end-page: 436 article-title: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine publication-title: Int J Electr Power Energy Syst – volume: 63 start-page: 785 year: 2014 end-page: 796 article-title: A novel adaptative maximum power point tracking algorithm for small wind turbines publication-title: Renew Energy – volume: 10 start-page: 2378 issue: 18 year: 2016 end-page: 2386 article-title: Robust closed loop reference MRAC with PI compensator publication-title: IET Control Theory Appl – start-page: 1137 year: 2017 end-page: 1143 – volume: 55 start-page: 957 year: 2016 end-page: 970 article-title: A review of conventional and advanced MPPT algorithms for wind energy systems publication-title: Renew Sustain Energy Rev – start-page: 256 year: 2017 end-page: 265 – volume: 58 start-page: 29 issue: 1 year: 2011 end-page: 36 article-title: A novel algorithm for fast and efficient speed‐sensorless maximum power point tracking in wind energy conversion systems publication-title: IEEE Trans Ind Electron – volume: 133 start-page: 427 year: 2017 end-page: 443 article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly‐fed induction generator based wind turbine publication-title: Energ Conver Manage – year: 2015 – start-page: 345 year: 2013 end-page: 350 – volume: 15 start-page: 653 issue: 6 year: 1979 end-page: 664 article-title: Direct and indirect model reference adaptive control publication-title: Automatica – start-page: 23 year: 2018 end-page: 32 – volume: 203 start-page: 816 year: 2017 end-page: 828 article-title: Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data publication-title: Appl Energy – volume: 32 start-page: 1553 year: 2017 end-page: 1567 article-title: Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC publication-title: IEEE Trans Power Syst – start-page: 493 year: 2017 end-page: 498 – volume: 22 start-page: 444 year: 2018 end-page: 454 article-title: Comparison between model reference discrete time indirect and direct adaptive controls publication-title: Procedia Manufacturing – volume: 108 start-page: 218 year: 2019 end-page: 231 article-title: Variable step size P&O MPPT algorithm for optimal power extraction of multi‐phase PMSG based wind generation system publication-title: Int J Electr Power Energy Syst – start-page: 2097 year: 2005 end-page: 2100 – year: 2012 – volume: 25 start-page: 228 issue: 1 year: 2010 end-page: 236 article-title: A novel scheme for rapid tracking of maximum power point in wind energy generation systems publication-title: IEEE Trans Energy Convers – volume: 43 start-page: 188 year: 2017 end-page: 198 article-title: A review on model reference adaptive control of robotic manipulators publication-title: Annu Rev Control – volume: 42 start-page: 614 year: 2013 end-page: 623 article-title: Improvement in perturb and observe method using state flow approach publication-title: Energy Procedia – volume: 21 start-page: 901 issue: 5 year: 2018 end-page: 908 article-title: A nonlinear maximum power point tracking technique for DFIG‐based wind energy conversion systems publication-title: Int J Eng Sci Technol – volume: 83 start-page: 79 year: 2015 end-page: 90 article-title: A Novel Maximum Power Tracking by VSAS approach for Permanent Magnet Direct Drive WECS publication-title: Energy Procedia – volume: 40 start-page: 13749 issue: 39 year: 2015 end-page: 13758 article-title: On‐Off control based particle swarm optimization for maximum power point tracking of wind turbine equipped by DFIG connected to the grid with energy storage publication-title: Int J Hydrogen Energy – volume: 77 start-page: 112 year: 2016 end-page: 122 article-title: An improved control scheme for grid connected doubly fed induction generator considering wind‐solar hybrid system publication-title: Int J Electr Power Energy Syst – volume: 58 start-page: 1154 issue: 4 year: 2011 end-page: 1161 article-title: Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter publication-title: IEEE Trans Ind Electron – volume: 107 start-page: 89 year: 2019 end-page: 97 article-title: Advanced multi‐sector P&O maximum power point tracking technique for wind energy conversion system publication-title: Int J Electr Power Energy Syst – year: 2013 – ident: e_1_2_9_2_1 doi: 10.1016/j.apenergy.2017.06.086 – ident: e_1_2_9_7_1 doi: 10.1109/STA.2017.8314911 – ident: e_1_2_9_27_1 doi: 10.1016/j.renene.2013.10.036 – ident: e_1_2_9_47_1 – ident: e_1_2_9_45_1 doi: 10.1016/j.ijepes.2015.11.036 – ident: e_1_2_9_9_1 doi: 10.1016/j.ijhydene.2015.05.007 – ident: e_1_2_9_19_1 doi: 10.1109/TIE.2010.2048834 – ident: e_1_2_9_5_1 doi: 10.1007/978-981-10-4286-7_3 – volume: 32 start-page: 1553 year: 2017 ident: e_1_2_9_46_1 article-title: Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC publication-title: IEEE Trans Power Syst contributor: fullname: Liu Y – ident: e_1_2_9_16_1 doi: 10.1109/TIE.2010.2064275 – ident: e_1_2_9_35_1 doi: 10.1109/ICCIAutom.2013.6912861 – ident: e_1_2_9_34_1 doi: 10.1007/978-1-4471-5058-9 – ident: e_1_2_9_14_1 doi: 10.1016/j.apenergy.2015.04.117 – ident: e_1_2_9_36_1 doi: 10.1016/j.enconman.2013.12.003 – ident: e_1_2_9_41_1 – ident: e_1_2_9_44_1 doi: 10.1109/ASCC.2013.6606327 – ident: e_1_2_9_49_1 doi: 10.1016/j.jestch.2019.04.004 – ident: e_1_2_9_28_1 doi: 10.1016/j.rser.2015.05.003 – ident: e_1_2_9_8_1 doi: 10.1016/j.ijepes.2015.07.036 – ident: e_1_2_9_18_1 doi: 10.1049/iet-rpg.2015.0132 – ident: e_1_2_9_6_1 doi: 10.1049/iet-pel.2017.0232 – ident: e_1_2_9_42_1 doi: 10.1016/j.egypro.2015.12.198 – ident: e_1_2_9_12_1 doi: 10.1016/j.rser.2014.11.088 – ident: e_1_2_9_13_1 doi: 10.1016/j.energy.2014.02.023 – ident: e_1_2_9_25_1 doi: 10.1016/j.renene.2010.04.028 – ident: e_1_2_9_32_1 doi: 10.1016/j.arcontrol.2017.02.002 – ident: e_1_2_9_39_1 doi: 10.1109/IDAACS.2017.8095263 – ident: e_1_2_9_15_1 doi: 10.1049/ip-c.1981.0043 – ident: e_1_2_9_43_1 doi: 10.1016/j.ijhydene.2016.03.105 – ident: e_1_2_9_29_1 doi: 10.1109/TIE.2010.2044732 – ident: e_1_2_9_33_1 doi: 10.1007/978-1-4614-4821-1 – ident: e_1_2_9_10_1 doi: 10.1016/j.enconman.2016.10.062 – ident: e_1_2_9_26_1 doi: 10.1016/j.ijepes.2018.10.034 – ident: e_1_2_9_24_1 doi: 10.1049/iet-rpg.2014.0070 – ident: e_1_2_9_31_1 doi: 10.1109/TEC.2009.2032613 – ident: e_1_2_9_40_1 doi: 10.1016/j.jestch.2018.07.005 – ident: e_1_2_9_22_1 doi: 10.1016/j.rser.2012.02.016 – ident: e_1_2_9_17_1 doi: 10.1016/j.egypro.2013.11.063 – ident: e_1_2_9_38_1 doi: 10.1016/0005-1098(79)90033-5 – volume-title: "Offshore Wind Turbines: Reliability," Availability and Maintenance year: 2012 ident: e_1_2_9_3_1 doi: 10.1049/PBRN013E contributor: fullname: Tavner P – ident: e_1_2_9_37_1 doi: 10.1016/j.promfg.2018.03.069 – ident: e_1_2_9_11_1 doi: 10.1109/JESTPE.2013.2280572 – ident: e_1_2_9_48_1 doi: 10.1049/iet-cta.2016.0430 – ident: e_1_2_9_4_1 doi: 10.1016/j.rser.2015.11.013 – ident: e_1_2_9_21_1 doi: 10.1109/TPEL.2011.2162251 – ident: e_1_2_9_30_1 doi: 10.1109/TEC.2013.2259627 – ident: e_1_2_9_20_1 doi: 10.1109/AUPEC.2014.6966524 – ident: e_1_2_9_50_1 doi: 10.1016/j.ijepes.2018.12.044 – ident: e_1_2_9_23_1 doi: 10.1109/TIE.2006.870658 |
SSID | ssj0000941178 |
Score | 2.372409 |
Snippet | Summary
To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy... To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Adaptive algorithms Algorithms Controllers DFIG Energy conversion Maximum power tracking Model reference adaptive control MPPT MRAC Rotor speed Segments Settling WECS Wind power Wind speed |
Title | Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2050-7038.12151 https://www.proquest.com/docview/2325153432 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikWCvKBA1KUbeLYm-RYoYWq0tIIpai3yHFsthL7ULN76YFfxQ9kPM5rSxGFSxRZ8iTyfB7PjOdByDsu4lQbE_gykrHPy4r7MjTKV4nQaaJjGVQYIPt5enLOTy_ExWj0cxC1tNuWE3V9a17J_3AVxoCvNkv2HzjbEYUBeAf-whM4DM878fgrGLqY-gSs2nj15bX2sjNvnmW5J79_W4Pdv1h6O_QGYMcbr2sq4slKbjBqqI1Vt-GGaxha2tQs2zrNA7F95dIehhrsvgtx27cbx3sH11UHGa9dVmE9KIkusQU2-mBt3paR3nwyEDt1rV2JyBL-tYvC-CIXuvEv9_OPF0urKXez96ecytIh8dMknwz9GiwY-DVQ_LFABD7IIyed9S1jjfxu7nUGOP3tWHBlZrvZWFIj7E_A9tb_xsHYhSu60s6ssAQKS6BAAvfIfQbizcrV-Y_eswcGcxiiCtB9sK0pFbCjGz-xrw71Ns7QUkJVJ39MHjU2Cj12gHtCRnr1lDwcVK58RhYt9KiFHrXQo9kZtdCjHfQoQo8i9GgHPdpCjzbQowA92kCPIvRoD73n5PzjLP9w4jdNO3wViTiEna6s0RvqSEghmWFg8wYylgo09UDpaRVFkQCd3JiEcaWELYg0TQWgRLAqVSJ6QQ5W65V-SejUMG7SKkxMWfIgTCQ3vNJxHMOhaHiqx-R9u3bFxtVmKf7AqjE5bNe2aDZwXYAxAdq8zawekyNc77-RKWb5LMO3V3f_9mvyoMf3ITnYXu30G9Bkt-VbBM4vk0iXpQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+step+size+PO+MPPT+algorithm+using+model+reference+adaptive+control+for+optimal+power+extraction&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Ali%2C+Mustafa+M.&rft.au=Youssef%2C+Abdel%E2%80%90Raheem&rft.au=Ali%2C+Ahmed+S.&rft.au=Abdel%E2%80%90Jaber%2C+G.T.&rft.date=2020-01-01&rft.issn=2050-7038&rft.eissn=2050-7038&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1002%2F2050-7038.12151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2050_7038_12151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon |