Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction

Summary To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is perfor...

Full description

Saved in:
Bibliographic Details
Published inInternational transactions on electrical energy systems Vol. 30; no. 1
Main Authors Ali, Mustafa M., Youssef, Abdel‐Raheem, Ali, Ahmed S., Abdel‐Jaber, G.T.
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi Limited 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software.
AbstractList Summary To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software.
To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion system (VS‐WECS), this paper suggests a variable step size perturb and observe (VS‐PO) MPPT algorithm. The VS‐PO technique is performed to split the power‐speed (P‐ω) curve with four segments every with a particular step size. A large step size is chosen for the two segments distant from the MPP. Otherwise, a smaller step size can be implemented. The proposed algorithm can achieve the maximum power without large oscillations and reduce the settling time under different wind speed conditions, which means high tracking efficiency. Moreover, the model reference adaptive control (MRC) is applied instead of a PI controller to regulate the rotor speed, which maximizes the extracted power. Also, the MRC successful for reducing the large oscillation and settling time compared with the PI controller. The suggested control technique is tested over a 1.5 MW DFIG WECS by MATLAB/Simulink software.
Author Youssef, Abdel‐Raheem
Ali, Ahmed S.
Ali, Mustafa M.
Abdel‐Jaber, G.T.
Author_xml – sequence: 1
  givenname: Mustafa M.
  orcidid: 0000-0002-7696-037X
  surname: Ali
  fullname: Ali, Mustafa M.
  organization: South Valley University
– sequence: 2
  givenname: Abdel‐Raheem
  orcidid: 0000-0002-8882-7867
  surname: Youssef
  fullname: Youssef, Abdel‐Raheem
  email: abou_radwan@hotmail.com
  organization: South Valley University
– sequence: 3
  givenname: Ahmed S.
  orcidid: 0000-0003-2047-0053
  surname: Ali
  fullname: Ali, Ahmed S.
  organization: Assiut University
– sequence: 4
  givenname: G.T.
  surname: Abdel‐Jaber
  fullname: Abdel‐Jaber, G.T.
  organization: South Valley University
BookMark eNqFkMtPwkAQxjcGExE5e93Ec2EfnZYeDcFHgqEH9LpZtlMoKd26WwT86y3WGG_OZSaT75vH75r0KlshIbecjThjYiwYsCBmcjLiggO_IP3fTu9PfUWG3m9ZG0nIeTzpk82bdoVelUh9gzX1xSfSdEFf0nRJdbm2rmg2O7r3RbWmO5thSR3m6LAySHWm66b4QGps1Thb0tw6atvWTpe0tgd0FI-N06YpbHVDLnNdehz-5AF5fZgtp0_BfPH4PL2fB0ZCzAPNDQADjhI0aJELwWOmY21CiJjBKJNSQiKSPJ-I0BhgTEZRAqsMQWSJATkgd93c2tn3PfpGbe3eVe1KJaQADjKUolWNO5Vx1vv2JVW79mx3UpypM1F1ZqbOzNQ30dYRdY5DUeLpP7maLWdpZ_wClDN5Jw
CitedBy_id crossref_primary_10_1002_2050_7038_12931
crossref_primary_10_3389_fenrg_2022_856702
crossref_primary_10_1016_j_seta_2023_103420
crossref_primary_10_1109_ACCESS_2021_3059884
crossref_primary_10_3390_s21155187
crossref_primary_10_1016_j_ijepes_2020_106598
crossref_primary_10_3390_en16062799
crossref_primary_10_1007_s40435_024_01434_3
crossref_primary_10_31763_ijrcs_v2i3_780
crossref_primary_10_1109_ACCESS_2022_3208583
crossref_primary_10_1016_j_conengprac_2021_104831
crossref_primary_10_3390_en16176204
crossref_primary_10_1063_5_0035134
crossref_primary_10_1016_j_heliyon_2024_e32032
crossref_primary_10_3390_jmse9111187
Cites_doi 10.1016/j.apenergy.2017.06.086
10.1109/STA.2017.8314911
10.1016/j.renene.2013.10.036
10.1016/j.ijepes.2015.11.036
10.1016/j.ijhydene.2015.05.007
10.1109/TIE.2010.2048834
10.1007/978-981-10-4286-7_3
10.1109/TIE.2010.2064275
10.1109/ICCIAutom.2013.6912861
10.1007/978-1-4471-5058-9
10.1016/j.apenergy.2015.04.117
10.1016/j.enconman.2013.12.003
10.1109/ASCC.2013.6606327
10.1016/j.jestch.2019.04.004
10.1016/j.rser.2015.05.003
10.1016/j.ijepes.2015.07.036
10.1049/iet-rpg.2015.0132
10.1049/iet-pel.2017.0232
10.1016/j.egypro.2015.12.198
10.1016/j.rser.2014.11.088
10.1016/j.energy.2014.02.023
10.1016/j.renene.2010.04.028
10.1016/j.arcontrol.2017.02.002
10.1109/IDAACS.2017.8095263
10.1049/ip-c.1981.0043
10.1016/j.ijhydene.2016.03.105
10.1109/TIE.2010.2044732
10.1007/978-1-4614-4821-1
10.1016/j.enconman.2016.10.062
10.1016/j.ijepes.2018.10.034
10.1049/iet-rpg.2014.0070
10.1109/TEC.2009.2032613
10.1016/j.jestch.2018.07.005
10.1016/j.rser.2012.02.016
10.1016/j.egypro.2013.11.063
10.1016/0005-1098(79)90033-5
10.1049/PBRN013E
10.1016/j.promfg.2018.03.069
10.1109/JESTPE.2013.2280572
10.1049/iet-cta.2016.0430
10.1016/j.rser.2015.11.013
10.1109/TPEL.2011.2162251
10.1109/TEC.2013.2259627
10.1109/AUPEC.2014.6966524
10.1016/j.ijepes.2018.12.044
10.1109/TIE.2006.870658
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/2050-7038.12151
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7038
EndPage n/a
ExternalDocumentID 10_1002_2050_7038_12151
ETEP12151
Genre article
GroupedDBID 1OC
24P
31~
8-1
8-4
8-5
AAEVG
AAHHS
AAJEY
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACPOU
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
GROUPED_DOAJ
IX1
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
QB0
RHX
SUPJJ
WIH
WIK
1OB
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3571-a1c55051e35a5a2f22170a7ac4560ce6d3335929ff824cc50036695bde52d9c53
ISSN 2050-7038
IngestDate Wed Nov 06 08:10:47 EST 2024
Thu Sep 26 18:58:50 EDT 2024
Sat Aug 24 01:09:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3571-a1c55051e35a5a2f22170a7ac4560ce6d3335929ff824cc50036695bde52d9c53
ORCID 0000-0002-8882-7867
0000-0002-7696-037X
0000-0003-2047-0053
OpenAccessLink https://doi.org/10.1002/2050-7038.12151
PQID 2325153432
PQPubID 2034359
PageCount 21
ParticipantIDs proquest_journals_2325153432
crossref_primary_10_1002_2050_7038_12151
wiley_primary_10_1002_2050_7038_12151_ETEP12151
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International transactions on electrical energy systems
PublicationYear 2020
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2006; 53
2013; 1
2013; 28
1979; 15
2012
2017; 43
2013; 42
2016; 10
2016; 74
2005
2019; 108
2012; 16
2011; 58
2011; 36
2019; 107
2017; 133
2014; 63
2015; 9
2018; 22
2018; 21
2014; 67
2016; 55
2016; 77
2015; 49
2010; 25
2015; 40
2015; 83
2017; 10
2017; 32
2015; 43
2015; 154
2019
2018
2016; 41
2017
2014; 79
2015
1981
2014
2011; 26
2013
2017; 203
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Liu Y (e_1_2_9_46_1) 2017; 32
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Tavner P (e_1_2_9_3_1) 2012
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 67
  start-page: 444
  year: 2014
  end-page: 453
  article-title: Improving efficiency of two‐type maximum power point tracking methods of tip‐speed ratio and optimum torque in wind turbine system using a quantum neural network
  publication-title: Energy
– volume: 49
  start-page: 1247
  year: 2015
  end-page: 1260
  article-title: Variable step size modified P&O MPPT algorithm using GA‐based hybrid offline/online PID controller
  publication-title: Renew Sustain Energy Rev
– volume: 10
  start-page: 133
  issue: 2
  year: 2016
  end-page: 139
  article-title: Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates
  publication-title: IET Renew Power Gener
– volume: 41
  start-page: 9427
  issue: 22
  year: 2016
  end-page: 9442
  article-title: A novel combined MPPT‐pitch angle control for wide range variable speed wind turbine based on neural network
  publication-title: Int J Hydrogen Energy
– volume: 53
  start-page: 486
  issue: 2
  year: 2006
  end-page: 494
  article-title: Design of a maximum power tracking system for wind‐energy‐conversion applications
  publication-title: IEEE Trans Ind Electron
– volume: 43
  start-page: 1046
  year: 2015
  end-page: 1062
  article-title: A review of estimation of effective wind speed based control of wind turbines
  publication-title: Renew Sustain Energy Rev
– volume: 79
  start-page: 281
  year: 2014
  end-page: 288
  article-title: Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine
  publication-title: Energ Conver Manage
– start-page: 1
  year: 2013
  end-page: 6
– start-page: 1
  year: 2014
  end-page: 6
– volume: 26
  start-page: 3609
  issue: 12
  year: 2011
  end-page: 3620
  article-title: A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system
  publication-title: IEEE Trans Power Electron
– volume: 28
  start-page: 756
  issue: 3
  year: 2013
  end-page: 767
  article-title: Design and analysis of an MPPT technique for small‐scale wind energy conversion systems
  publication-title: IEEE Trans Energy Convers
– start-page: 253
  year: 1981
  end-page: 261
– volume: 9
  start-page: 682
  issue: 6
  year: 2015
  end-page: 689
  article-title: Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems
  publication-title: IET Renew Power Gener
– volume: 16
  start-page: 3220
  issue: 5
  year: 2012
  end-page: 3227
  article-title: A review of maximum power point tracking algorithms for wind energy systems
  publication-title: Renew Sustain Energy Rev
– year: 2019
  article-title: Optimal power extraction control schemes for five‐phase PMSG based wind generation systems
  publication-title: Int J Eng Sci Technol
– volume: 154
  start-page: 112
  year: 2015
  end-page: 121
  article-title: Experimental power curve of small‐size wind turbines in turbulent urban environment
  publication-title: Appl Energy
– volume: 1
  start-page: 203
  issue: 4
  year: 2013
  end-page: 216
  article-title: A review on position/speed sensorless control for permanent‐magnet synchronous machine‐based wind energy conversion systems
  publication-title: IEEE J Emerging Selected Topics Power Electron
– volume: 10
  start-page: 1751
  issue: 13
  year: 2017
  end-page: 1758
  article-title: Maximum power point tracking for the permanent magnet synchronous generator‐based WECS by using the discrete‐time integral sliding mode controller with a chattering‐free reaching law
  publication-title: IET Power Electron
– volume: 36
  start-page: 2655
  issue: 10
  year: 2011
  end-page: 2662
  article-title: Maximum power point tracker of wind energy conversion system
  publication-title: Renew Energy
– volume: 58
  start-page: 2427
  issue: 6
  year: 2011
  end-page: 2434
  article-title: A novel improved variable step‐size incremental‐resistance MPPT method for PV systems
  publication-title: IEEE Trans Ind Electron
– volume: 74
  start-page: 429
  year: 2016
  end-page: 436
  article-title: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine
  publication-title: Int J Electr Power Energy Syst
– volume: 63
  start-page: 785
  year: 2014
  end-page: 796
  article-title: A novel adaptative maximum power point tracking algorithm for small wind turbines
  publication-title: Renew Energy
– volume: 10
  start-page: 2378
  issue: 18
  year: 2016
  end-page: 2386
  article-title: Robust closed loop reference MRAC with PI compensator
  publication-title: IET Control Theory Appl
– start-page: 1137
  year: 2017
  end-page: 1143
– volume: 55
  start-page: 957
  year: 2016
  end-page: 970
  article-title: A review of conventional and advanced MPPT algorithms for wind energy systems
  publication-title: Renew Sustain Energy Rev
– start-page: 256
  year: 2017
  end-page: 265
– volume: 58
  start-page: 29
  issue: 1
  year: 2011
  end-page: 36
  article-title: A novel algorithm for fast and efficient speed‐sensorless maximum power point tracking in wind energy conversion systems
  publication-title: IEEE Trans Ind Electron
– volume: 133
  start-page: 427
  year: 2017
  end-page: 443
  article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly‐fed induction generator based wind turbine
  publication-title: Energ Conver Manage
– year: 2015
– start-page: 345
  year: 2013
  end-page: 350
– volume: 15
  start-page: 653
  issue: 6
  year: 1979
  end-page: 664
  article-title: Direct and indirect model reference adaptive control
  publication-title: Automatica
– start-page: 23
  year: 2018
  end-page: 32
– volume: 203
  start-page: 816
  year: 2017
  end-page: 828
  article-title: Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data
  publication-title: Appl Energy
– volume: 32
  start-page: 1553
  year: 2017
  end-page: 1567
  article-title: Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC
  publication-title: IEEE Trans Power Syst
– start-page: 493
  year: 2017
  end-page: 498
– volume: 22
  start-page: 444
  year: 2018
  end-page: 454
  article-title: Comparison between model reference discrete time indirect and direct adaptive controls
  publication-title: Procedia Manufacturing
– volume: 108
  start-page: 218
  year: 2019
  end-page: 231
  article-title: Variable step size P&O MPPT algorithm for optimal power extraction of multi‐phase PMSG based wind generation system
  publication-title: Int J Electr Power Energy Syst
– start-page: 2097
  year: 2005
  end-page: 2100
– year: 2012
– volume: 25
  start-page: 228
  issue: 1
  year: 2010
  end-page: 236
  article-title: A novel scheme for rapid tracking of maximum power point in wind energy generation systems
  publication-title: IEEE Trans Energy Convers
– volume: 43
  start-page: 188
  year: 2017
  end-page: 198
  article-title: A review on model reference adaptive control of robotic manipulators
  publication-title: Annu Rev Control
– volume: 42
  start-page: 614
  year: 2013
  end-page: 623
  article-title: Improvement in perturb and observe method using state flow approach
  publication-title: Energy Procedia
– volume: 21
  start-page: 901
  issue: 5
  year: 2018
  end-page: 908
  article-title: A nonlinear maximum power point tracking technique for DFIG‐based wind energy conversion systems
  publication-title: Int J Eng Sci Technol
– volume: 83
  start-page: 79
  year: 2015
  end-page: 90
  article-title: A Novel Maximum Power Tracking by VSAS approach for Permanent Magnet Direct Drive WECS
  publication-title: Energy Procedia
– volume: 40
  start-page: 13749
  issue: 39
  year: 2015
  end-page: 13758
  article-title: On‐Off control based particle swarm optimization for maximum power point tracking of wind turbine equipped by DFIG connected to the grid with energy storage
  publication-title: Int J Hydrogen Energy
– volume: 77
  start-page: 112
  year: 2016
  end-page: 122
  article-title: An improved control scheme for grid connected doubly fed induction generator considering wind‐solar hybrid system
  publication-title: Int J Electr Power Energy Syst
– volume: 58
  start-page: 1154
  issue: 4
  year: 2011
  end-page: 1161
  article-title: Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter
  publication-title: IEEE Trans Ind Electron
– volume: 107
  start-page: 89
  year: 2019
  end-page: 97
  article-title: Advanced multi‐sector P&O maximum power point tracking technique for wind energy conversion system
  publication-title: Int J Electr Power Energy Syst
– year: 2013
– ident: e_1_2_9_2_1
  doi: 10.1016/j.apenergy.2017.06.086
– ident: e_1_2_9_7_1
  doi: 10.1109/STA.2017.8314911
– ident: e_1_2_9_27_1
  doi: 10.1016/j.renene.2013.10.036
– ident: e_1_2_9_47_1
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ijepes.2015.11.036
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ijhydene.2015.05.007
– ident: e_1_2_9_19_1
  doi: 10.1109/TIE.2010.2048834
– ident: e_1_2_9_5_1
  doi: 10.1007/978-981-10-4286-7_3
– volume: 32
  start-page: 1553
  year: 2017
  ident: e_1_2_9_46_1
  article-title: Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC
  publication-title: IEEE Trans Power Syst
  contributor:
    fullname: Liu Y
– ident: e_1_2_9_16_1
  doi: 10.1109/TIE.2010.2064275
– ident: e_1_2_9_35_1
  doi: 10.1109/ICCIAutom.2013.6912861
– ident: e_1_2_9_34_1
  doi: 10.1007/978-1-4471-5058-9
– ident: e_1_2_9_14_1
  doi: 10.1016/j.apenergy.2015.04.117
– ident: e_1_2_9_36_1
  doi: 10.1016/j.enconman.2013.12.003
– ident: e_1_2_9_41_1
– ident: e_1_2_9_44_1
  doi: 10.1109/ASCC.2013.6606327
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jestch.2019.04.004
– ident: e_1_2_9_28_1
  doi: 10.1016/j.rser.2015.05.003
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijepes.2015.07.036
– ident: e_1_2_9_18_1
  doi: 10.1049/iet-rpg.2015.0132
– ident: e_1_2_9_6_1
  doi: 10.1049/iet-pel.2017.0232
– ident: e_1_2_9_42_1
  doi: 10.1016/j.egypro.2015.12.198
– ident: e_1_2_9_12_1
  doi: 10.1016/j.rser.2014.11.088
– ident: e_1_2_9_13_1
  doi: 10.1016/j.energy.2014.02.023
– ident: e_1_2_9_25_1
  doi: 10.1016/j.renene.2010.04.028
– ident: e_1_2_9_32_1
  doi: 10.1016/j.arcontrol.2017.02.002
– ident: e_1_2_9_39_1
  doi: 10.1109/IDAACS.2017.8095263
– ident: e_1_2_9_15_1
  doi: 10.1049/ip-c.1981.0043
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ijhydene.2016.03.105
– ident: e_1_2_9_29_1
  doi: 10.1109/TIE.2010.2044732
– ident: e_1_2_9_33_1
  doi: 10.1007/978-1-4614-4821-1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.enconman.2016.10.062
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ijepes.2018.10.034
– ident: e_1_2_9_24_1
  doi: 10.1049/iet-rpg.2014.0070
– ident: e_1_2_9_31_1
  doi: 10.1109/TEC.2009.2032613
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jestch.2018.07.005
– ident: e_1_2_9_22_1
  doi: 10.1016/j.rser.2012.02.016
– ident: e_1_2_9_17_1
  doi: 10.1016/j.egypro.2013.11.063
– ident: e_1_2_9_38_1
  doi: 10.1016/0005-1098(79)90033-5
– volume-title: "Offshore Wind Turbines: Reliability," Availability and Maintenance
  year: 2012
  ident: e_1_2_9_3_1
  doi: 10.1049/PBRN013E
  contributor:
    fullname: Tavner P
– ident: e_1_2_9_37_1
  doi: 10.1016/j.promfg.2018.03.069
– ident: e_1_2_9_11_1
  doi: 10.1109/JESTPE.2013.2280572
– ident: e_1_2_9_48_1
  doi: 10.1049/iet-cta.2016.0430
– ident: e_1_2_9_4_1
  doi: 10.1016/j.rser.2015.11.013
– ident: e_1_2_9_21_1
  doi: 10.1109/TPEL.2011.2162251
– ident: e_1_2_9_30_1
  doi: 10.1109/TEC.2013.2259627
– ident: e_1_2_9_20_1
  doi: 10.1109/AUPEC.2014.6966524
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ijepes.2018.12.044
– ident: e_1_2_9_23_1
  doi: 10.1109/TIE.2006.870658
SSID ssj0000941178
Score 2.372409
Snippet Summary To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy...
To eliminate problems of traditional perturb and observe (TPO) maximum power point tracking (MPPT) relying on large scale variable speed wind energy conversion...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Adaptive algorithms
Algorithms
Controllers
DFIG
Energy conversion
Maximum power tracking
Model reference adaptive control
MPPT
MRAC
Rotor speed
Segments
Settling
WECS
Wind power
Wind speed
Title Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2050-7038.12151
https://www.proquest.com/docview/2325153432
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikWCvKBA1KUbeLYm-RYoYWq0tIIpai3yHFsthL7ULN76YFfxQ9kPM5rSxGFSxRZ8iTyfB7PjOdByDsu4lQbE_gykrHPy4r7MjTKV4nQaaJjGVQYIPt5enLOTy_ExWj0cxC1tNuWE3V9a17J_3AVxoCvNkv2HzjbEYUBeAf-whM4DM878fgrGLqY-gSs2nj15bX2sjNvnmW5J79_W4Pdv1h6O_QGYMcbr2sq4slKbjBqqI1Vt-GGaxha2tQs2zrNA7F95dIehhrsvgtx27cbx3sH11UHGa9dVmE9KIkusQU2-mBt3paR3nwyEDt1rV2JyBL-tYvC-CIXuvEv9_OPF0urKXez96ecytIh8dMknwz9GiwY-DVQ_LFABD7IIyed9S1jjfxu7nUGOP3tWHBlZrvZWFIj7E_A9tb_xsHYhSu60s6ssAQKS6BAAvfIfQbizcrV-Y_eswcGcxiiCtB9sK0pFbCjGz-xrw71Ns7QUkJVJ39MHjU2Cj12gHtCRnr1lDwcVK58RhYt9KiFHrXQo9kZtdCjHfQoQo8i9GgHPdpCjzbQowA92kCPIvRoD73n5PzjLP9w4jdNO3wViTiEna6s0RvqSEghmWFg8wYylgo09UDpaRVFkQCd3JiEcaWELYg0TQWgRLAqVSJ6QQ5W65V-SejUMG7SKkxMWfIgTCQ3vNJxHMOhaHiqx-R9u3bFxtVmKf7AqjE5bNe2aDZwXYAxAdq8zawekyNc77-RKWb5LMO3V3f_9mvyoMf3ITnYXu30G9Bkt-VbBM4vk0iXpQ
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+step+size+PO+MPPT+algorithm+using+model+reference+adaptive+control+for+optimal+power+extraction&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Ali%2C+Mustafa+M.&rft.au=Youssef%2C+Abdel%E2%80%90Raheem&rft.au=Ali%2C+Ahmed+S.&rft.au=Abdel%E2%80%90Jaber%2C+G.T.&rft.date=2020-01-01&rft.issn=2050-7038&rft.eissn=2050-7038&rft.volume=30&rft.issue=1&rft_id=info:doi/10.1002%2F2050-7038.12151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_2050_7038_12151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon