Multiparametric MRI‐Based Radiomic Signature for Preoperative Evaluation of Overall Survival in Intrahepatic Cholangiocarcinoma After Partial Hepatectomy

Background The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required. Purpose To develop a multiparametric magnetic resonance imaging (MRI)‐based radiomic signa...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 56; no. 3; pp. 739 - 751
Main Authors Yang, Yang, Zou, Xianlun, Zhou, Wei, Yuan, Guanjie, Hu, Daoyu, Kuang, Dong, Shen, Yaqi, Xie, Qingguo, Zhang, Qingpeng, Hu, Xuemei, Li, Zhen
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.28071

Cover

Loading…
Abstract Background The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required. Purpose To develop a multiparametric magnetic resonance imaging (MRI)‐based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification. Study Type Retrospective. Subjects One hundred and sixty‐three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48). Sequence Three‐dimensional T1‐weighted gradient‐echo sequence with and without contrast agent, T2‐weighted fast spin‐echo sequence, and diffusion‐weighted imaging with single‐shot echo‐planar sequence at 1.5 T or 3.0 T. Assessment OS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic‐radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models. Statistical Tests Harrell's concordance index (C‐index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature. Results The high‐risk patients of death defined by the radiomic signature showed significantly lower OS compared with low‐risk patients in validation set (3‐year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C‐index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%–43.8%, IDI improvement 16.1%–19.4%). The radiomic signature showed no significant difference of C‐index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%–34.3%, IDI improvement 8.1%–12.9%). Data Conclusion Multiparametric MRI‐based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients. Level of Evidence 4 Technical Efficacy Stage 4
AbstractList Background The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required. Purpose To develop a multiparametric magnetic resonance imaging (MRI)‐based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification. Study Type Retrospective. Subjects One hundred and sixty‐three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48). Sequence Three‐dimensional T1‐weighted gradient‐echo sequence with and without contrast agent, T2‐weighted fast spin‐echo sequence, and diffusion‐weighted imaging with single‐shot echo‐planar sequence at 1.5 T or 3.0 T. Assessment OS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic‐radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models. Statistical Tests Harrell's concordance index (C‐index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature. Results The high‐risk patients of death defined by the radiomic signature showed significantly lower OS compared with low‐risk patients in validation set (3‐year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C‐index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%–43.8%, IDI improvement 16.1%–19.4%). The radiomic signature showed no significant difference of C‐index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%–34.3%, IDI improvement 8.1%–12.9%). Data Conclusion Multiparametric MRI‐based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients. Level of Evidence 4 Technical Efficacy Stage 4
The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required. To develop a multiparametric magnetic resonance imaging (MRI)-based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification. Retrospective. One hundred and sixty-three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48). Three-dimensional T1-weighted gradient-echo sequence with and without contrast agent, T2-weighted fast spin-echo sequence, and diffusion-weighted imaging with single-shot echo-planar sequence at 1.5 T or 3.0 T. OS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic-radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models. Harrell's concordance index (C-index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature. The high-risk patients of death defined by the radiomic signature showed significantly lower OS compared with low-risk patients in validation set (3-year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C-index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%-43.8%, IDI improvement 16.1%-19.4%). The radiomic signature showed no significant difference of C-index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%-34.3%, IDI improvement 8.1%-12.9%). Multiparametric MRI-based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients. 4 TECHNICAL EFFICACY: Stage 4.
The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required.BACKGROUNDThe clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required.To develop a multiparametric magnetic resonance imaging (MRI)-based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification.PURPOSETo develop a multiparametric magnetic resonance imaging (MRI)-based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification.Retrospective.STUDY TYPERetrospective.One hundred and sixty-three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48).SUBJECTSOne hundred and sixty-three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48).Three-dimensional T1-weighted gradient-echo sequence with and without contrast agent, T2-weighted fast spin-echo sequence, and diffusion-weighted imaging with single-shot echo-planar sequence at 1.5 T or 3.0 T.SEQUENCEThree-dimensional T1-weighted gradient-echo sequence with and without contrast agent, T2-weighted fast spin-echo sequence, and diffusion-weighted imaging with single-shot echo-planar sequence at 1.5 T or 3.0 T.OS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic-radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models.ASSESSMENTOS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic-radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models.Harrell's concordance index (C-index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature.STATISTICAL TESTSHarrell's concordance index (C-index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature.The high-risk patients of death defined by the radiomic signature showed significantly lower OS compared with low-risk patients in validation set (3-year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C-index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%-43.8%, IDI improvement 16.1%-19.4%). The radiomic signature showed no significant difference of C-index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%-34.3%, IDI improvement 8.1%-12.9%).RESULTSThe high-risk patients of death defined by the radiomic signature showed significantly lower OS compared with low-risk patients in validation set (3-year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C-index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%-43.8%, IDI improvement 16.1%-19.4%). The radiomic signature showed no significant difference of C-index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%-34.3%, IDI improvement 8.1%-12.9%).Multiparametric MRI-based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients.DATA CONCLUSIONMultiparametric MRI-based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients.4 TECHNICAL EFFICACY: Stage 4.LEVEL OF EVIDENCE4 TECHNICAL EFFICACY: Stage 4.
BackgroundThe clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required.PurposeTo develop a multiparametric magnetic resonance imaging (MRI)‐based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification.Study TypeRetrospective.SubjectsOne hundred and sixty‐three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48).SequenceThree‐dimensional T1‐weighted gradient‐echo sequence with and without contrast agent, T2‐weighted fast spin‐echo sequence, and diffusion‐weighted imaging with single‐shot echo‐planar sequence at 1.5 T or 3.0 T.AssessmentOS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic‐radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models.Statistical TestsHarrell's concordance index (C‐index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature.ResultsThe high‐risk patients of death defined by the radiomic signature showed significantly lower OS compared with low‐risk patients in validation set (3‐year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C‐index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%–43.8%, IDI improvement 16.1%–19.4%). The radiomic signature showed no significant difference of C‐index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%–34.3%, IDI improvement 8.1%–12.9%).Data ConclusionMultiparametric MRI‐based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients.Level of Evidence4Technical EfficacyStage 4
Author Zou, Xianlun
Shen, Yaqi
Li, Zhen
Kuang, Dong
Zhang, Qingpeng
Yuan, Guanjie
Zhou, Wei
Xie, Qingguo
Yang, Yang
Hu, Xuemei
Hu, Daoyu
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 2
  givenname: Xianlun
  surname: Zou
  fullname: Zou, Xianlun
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 3
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 4
  givenname: Guanjie
  surname: Yuan
  fullname: Yuan, Guanjie
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 5
  givenname: Daoyu
  surname: Hu
  fullname: Hu, Daoyu
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 6
  givenname: Dong
  surname: Kuang
  fullname: Kuang, Dong
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 7
  givenname: Yaqi
  orcidid: 0000-0003-0589-8975
  surname: Shen
  fullname: Shen, Yaqi
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 8
  givenname: Qingguo
  surname: Xie
  fullname: Xie, Qingguo
  organization: Huazhong University of Science and Technology
– sequence: 9
  givenname: Qingpeng
  surname: Zhang
  fullname: Zhang, Qingpeng
  organization: City University of Hong Kong
– sequence: 10
  givenname: Xuemei
  orcidid: 0000-0001-9009-0983
  surname: Hu
  fullname: Hu, Xuemei
  email: mayjuly3720@163.com
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 11
  givenname: Zhen
  orcidid: 0000-0001-8037-4245
  surname: Li
  fullname: Li, Zhen
  organization: Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35049076$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URP_AhQdAlrggpBTbiZP4WFaFLmpV1MLZcrzj1qvETm1n0d54BO68HU-C0y0cKsRpRjO_bzT6vkO057wDhF5SckwJYe_WQ7DHrCUNfYIOKGesYLyt93JPeFnQvNhHhzGuCSFCVPwZ2i85qQRp6gP082Lqkx1VUAOkYDW-uFr--v7jvYqwwldqZf2Qh9f2xqk0BcDGB_w5gB8hqGQ3gE83qp9y6x32Bl9u8rzv8fUUNjZvsHV46VJQtzBmSOPFre-Vu7Feq6Ct84PCJyZBPqpCsllwNoOgkx-2z9FTo_oILx7qEfr64fTL4qw4v_y4XJycF7rkDS2qjqqKmrrVQnQlJaYTDNqyoyY7IroaaAOGCcG41qKuVsTolqiSa67bTkBdHqE3u7tj8HcTxCQHGzX0-VHwU5SsZrTmouYz-voRuvZTcPk7yRpCSVnxaqZePVBTN8BKjsEOKmzlH9sz8HYH6OBjDGD-IpTIOVM5ZyrvM80weQRrm-4dz77a_t8SupN8sz1s_3Ncfsp57zS_AX0xtyA
CitedBy_id crossref_primary_10_3389_fonc_2023_1133867
crossref_primary_10_1007_s10278_024_01103_z
crossref_primary_10_1007_s11547_023_01739_x
crossref_primary_10_1002_jmri_29446
crossref_primary_10_1002_jmri_29128
crossref_primary_10_17709_2410_1893_2024_11_1_5
crossref_primary_10_1016_j_eclinm_2024_102881
crossref_primary_10_1002_jmri_28130
crossref_primary_10_1002_jmri_28850
crossref_primary_10_1007_s00432_023_04859_z
crossref_primary_10_20517_2394_5079_2024_79
crossref_primary_10_1245_s10434_024_15457_9
crossref_primary_10_1186_s13244_023_01527_1
Cites_doi 10.1002/sim.5647
10.1037/0033-2909.86.2.420
10.1001/jamasurg.2013.5137
10.1007/s00330-009-1331-8
10.1148/radiol.2018181485
10.1016/j.ejrad.2019.02.025
10.1007/s00534-002-0732-8
10.1148/radiol.2020191145
10.1002/sim.6370
10.1186/s12885-018-5024-z
10.1118/1.4932365
10.2307/2529310
10.3389/fonc.2018.00360
10.7150/thno.34149
10.1007/s00261-012-9943-x
10.1002/sim.4085
10.21037/cco.2018.07.03
10.1007/s00268-017-4453-1
10.1016/j.surg.2014.11.006
10.1007/s00330-020-06861-2
10.1148/radiol.2015150998
10.3389/fonc.2021.698373
10.1001/jama.1982.03320430047030
10.1200/JCO.2012.41.5984
10.1634/theoncologist.2014-0470
10.1053/j.gastro.2012.04.008
10.1111/hpb.12441
10.1148/radiol.2016151205
10.1371/journal.pone.0238392
10.4143/crt.2019.423
10.1136/esmoopen-2020-000910
10.1097/PAS.0000000000000670
10.1001/jamasurg.2020.1973
10.1007/s00330-020-07284-9
10.1148/radiol.2018171187
10.1038/s41575-020-0310-z
10.1038/nrclinonc.2017.141
10.1001/jamaoncol.2016.2631
10.1007/s00330-018-5898-9
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine
2022 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine
– notice: 2022 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.28071
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 751
ExternalDocumentID 35049076
10_1002_jmri_28071
JMRI28071
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81771801; 81801695; 82071889
– fundername: National Natural Science Foundation of China
  grantid: 81771801
– fundername: National Natural Science Foundation of China
  grantid: 81801695
– fundername: National Natural Science Foundation of China
  grantid: 82071889
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3571-4b1a41f68c99b310fb92e83b1f0719b6e17ef29925cc964d0fc80a35c5c8b9e63
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 10:14:26 EDT 2025
Fri Jul 25 12:15:39 EDT 2025
Wed Feb 19 02:26:57 EST 2025
Tue Jul 01 03:56:52 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
Wed Jan 22 16:23:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords overall survival
radiomics
magnetic resonance imaging
prognostic stratification
liver
intrahepatic cholangiocarcinoma
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3571-4b1a41f68c99b310fb92e83b1f0719b6e17ef29925cc964d0fc80a35c5c8b9e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0589-8975
0000-0001-8037-4245
0000-0001-9009-0983
PMID 35049076
PQID 2701034546
PQPubID 1006400
PageCount 13
ParticipantIDs proquest_miscellaneous_2621659656
proquest_journals_2701034546
pubmed_primary_35049076
crossref_primary_10_1002_jmri_28071
crossref_citationtrail_10_1002_jmri_28071
wiley_primary_10_1002_jmri_28071_JMRI28071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 34
2018; 29
2019; 9
2015; 17
2012; 143
2019; 290
2018; 288
2020; 17
2011; 30
2020; 15
1982; 247
2016; 281
2018; 42
2003; 10
2018; 7
2014; 149
2018; 18
2018; 8
2020; 5
2021; 31
2016; 2
2021; 11
2013; 38
2020; 295
2020; 52
2020; 30
2017; 14
2013; 32
2015; 157
2015; 20
2015; 42
2013; 31
2019; 113
2016; 40
1997; 16
2020; 155
1977; 33
2016; 279
1979; 86
2009; 19
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 31
  start-page: 1188
  year: 2013
  end-page: 1195
  article-title: Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy
  publication-title: J Clin Oncol
– volume: 15
  year: 2020
  article-title: Efficacy of surgical management for recurrent intrahepatic cholangiocarcinoma: A multi‐institutional study by the Okayama Study Group of HBP surgery
  publication-title: PLoS One
– volume: 18
  start-page: 1148
  year: 2018
  article-title: Radiomics score: A potential prognostic imaging feature for postoperative survival of solitary HCC patients
  publication-title: BMC Cancer
– volume: 279
  start-page: 432
  year: 2016
  end-page: 442
  article-title: Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?
  publication-title: Radiology
– volume: 32
  start-page: 2430
  year: 2013
  end-page: 2442
  article-title: A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data
  publication-title: Stat Med
– volume: 34
  start-page: 685
  year: 2015
  end-page: 703
  article-title: Comparing two correlated C indices with right‐censored survival outcome: A one‐shot nonparametric approach
  publication-title: Stat Med
– volume: 281
  start-page: 150
  year: 2016
  end-page: 157
  article-title: Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging
  publication-title: Radiology
– volume: 38
  start-page: 793
  year: 2013
  end-page: 801
  article-title: Small intrahepatic mass‐forming cholangiocarcinoma: Target sign on diffusion‐weighted imaging for differentiation from hepatocellular carcinoma
  publication-title: Abdom Imaging
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
– volume: 30
  start-page: 5337
  year: 2020
  end-page: 5347
  article-title: Combined hepatocellular‐cholangiocarcinoma: Which preoperative clinical data and conventional MRI characteristics have value for the prediction of microvascular invasion and clinical significance?
  publication-title: Eur Radiol
– volume: 20
  start-page: 640
  year: 2015
  end-page: 647
  article-title: Adjuvant transarterial chemoembolization following liver resection for intrahepatic cholangiocarcinoma based on survival risk stratification
  publication-title: Oncologist
– volume: 113
  start-page: 182
  year: 2019
  end-page: 187
  article-title: A dichotomous imaging classification for cholangiocarcinomas based on new histologic concepts
  publication-title: Eur J Radiol
– volume: 7
  start-page: 52
  year: 2018
  article-title: Intrahepatic cholangiocarcinoma: The AJCC/UICC 8th edition updates
  publication-title: Chin Clin Oncol
– volume: 9
  start-page: 5374
  year: 2019
  end-page: 5385
  article-title: A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma
  publication-title: Theranostics
– volume: 17
  start-page: 557
  year: 2020
  end-page: 588
  article-title: Cholangiocarcinoma 2020: The next horizon in mechanisms and management
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 19
  start-page: 1744
  year: 2009
  end-page: 1751
  article-title: Can microvessel invasion of hepatocellular carcinoma be predicted by pre‐operative MRI?
  publication-title: Eur Radiol
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 155
  start-page: 823
  year: 2020
  end-page: 831
  article-title: Very early recurrence after liver resection for intrahepatic cholangiocarcinoma: Considering alternative treatment approaches
  publication-title: JAMA Surg
– volume: 5
  year: 2020
  article-title: Machine learning: An approach to preoperatively predict PD‐1/PD‐L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers
  publication-title: ESMO Open
– volume: 42
  start-page: 2551
  year: 2018
  end-page: 2560
  article-title: Surgical management of intrahepatic cholangiocarcinoma in patients with cirrhosis: Impact of lymphadenectomy on peri‐operative outcomes
  publication-title: World J Surg
– volume: 40
  start-page: 1021
  year: 2016
  end-page: 1030
  article-title: Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma
  publication-title: Am J Surg Pathol
– volume: 8
  start-page: 360
  year: 2018
  article-title: Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma
  publication-title: Front Oncol
– volume: 30
  start-page: 11
  year: 2011
  end-page: 21
  article-title: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
  publication-title: Stat Med
– volume: 143
  start-page: 88
  year: 2012
  end-page: 98.e3
  article-title: Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers
  publication-title: Gastroenterology
– volume: 288
  start-page: 7
  year: 2018
  end-page: 13
  article-title: Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: Recent advances and challenges
  publication-title: Radiology
– volume: 10
  start-page: 288
  year: 2003
  end-page: 291
  article-title: Intrahepatic cholangiocarcinoma: Macroscopic type and stage classification
  publication-title: J Hepatobiliary Pancreat Surg
– volume: 149
  start-page: 565
  year: 2014
  end-page: 574
  article-title: Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: Systematic review and meta‐analysis
  publication-title: JAMA Surg
– volume: 31
  start-page: 2272
  year: 2021
  end-page: 2280
  article-title: How can we combat multicenter variability in MR radiomics? Validation of a correction procedure
  publication-title: Eur Radiol
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Stat Med
– volume: 52
  start-page: 469
  year: 2020
  end-page: 480
  article-title: An integrated nomogram combining clinical factors and microtubule‐associated protein 1 light chain 3B expression to predict postoperative prognosis in patients with intrahepatic cholangiocarcinoma
  publication-title: Cancer Res Treat
– volume: 2
  start-page: 1636
  year: 2016
  end-page: 1642
  article-title: The potential of radiomic‐based phenotyping in precision medicine: A review
  publication-title: JAMA Oncol
– volume: 157
  start-page: 666
  year: 2015
  end-page: 675
  article-title: Is there a role for systematic hepatic pedicle lymphadenectomy in intrahepatic cholangiocarcinoma? A review of 17 years of experience in a tertiary institution
  publication-title: Surgery
– volume: 295
  start-page: 328
  year: 2020
  end-page: 338
  article-title: The image biomarker standardization initiative: Standardized quantitative radiomics for high‐throughput image‐based phenotyping
  publication-title: Radiology
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  article-title: Radiomics: The bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 17
  start-page: 669
  year: 2015
  end-page: 680
  article-title: Intrahepatic cholangiocarcinoma: Expert consensus statement
  publication-title: HPB (Oxford)
– volume: 42
  start-page: 6283
  year: 2015
  end-page: 6293
  article-title: Semiautomatic segmentation of liver metastases on volumetric CT images
  publication-title: Med Phys
– volume: 11
  year: 2021
  article-title: Progress of MRI radiomics in hepatocellular carcinoma
  publication-title: Front Oncol
– volume: 29
  start-page: 3111
  year: 2018
  end-page: 3121
  article-title: A proposal of imaging classification of intrahepatic mass‐forming cholangiocarcinoma into ductal and parenchymal types: Clinicopathologic significance
  publication-title: Eur Radiol
– volume: 290
  start-page: 691
  year: 2019
  end-page: 699
  article-title: Intrahepatic mass‐forming cholangiocarcinoma: Arterial enhancement patterns at MRI and prognosis
  publication-title: Radiology
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  article-title: Intraclass correlations: Uses in assessing rater reliability
  publication-title: Psychol Bull
– ident: e_1_2_7_36_1
  doi: 10.1002/sim.5647
– ident: e_1_2_7_29_1
  doi: 10.1037/0033-2909.86.2.420
– ident: e_1_2_7_3_1
  doi: 10.1001/jamasurg.2013.5137
– ident: e_1_2_7_26_1
  doi: 10.1007/s00330-009-1331-8
– ident: e_1_2_7_13_1
  doi: 10.1148/radiol.2018181485
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ejrad.2019.02.025
– ident: e_1_2_7_22_1
  doi: 10.1007/s00534-002-0732-8
– ident: e_1_2_7_30_1
  doi: 10.1148/radiol.2020191145
– ident: e_1_2_7_34_1
  doi: 10.1002/sim.6370
– ident: e_1_2_7_18_1
  doi: 10.1186/s12885-018-5024-z
– ident: e_1_2_7_39_1
  doi: 10.1118/1.4932365
– ident: e_1_2_7_28_1
  doi: 10.2307/2529310
– ident: e_1_2_7_19_1
  doi: 10.3389/fonc.2018.00360
– ident: e_1_2_7_20_1
  doi: 10.7150/thno.34149
– ident: e_1_2_7_27_1
  doi: 10.1007/s00261-012-9943-x
– ident: e_1_2_7_35_1
  doi: 10.1002/sim.4085
– ident: e_1_2_7_6_1
  doi: 10.21037/cco.2018.07.03
– ident: e_1_2_7_41_1
  doi: 10.1007/s00268-017-4453-1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.surg.2014.11.006
– ident: e_1_2_7_15_1
  doi: 10.1007/s00330-020-06861-2
– ident: e_1_2_7_25_1
  doi: 10.1148/radiol.2015150998
– ident: e_1_2_7_17_1
  doi: 10.3389/fonc.2021.698373
– ident: e_1_2_7_33_1
  doi: 10.1001/jama.1982.03320430047030
– ident: e_1_2_7_7_1
  doi: 10.1200/JCO.2012.41.5984
– ident: e_1_2_7_11_1
  doi: 10.1634/theoncologist.2014-0470
– ident: e_1_2_7_10_1
  doi: 10.1053/j.gastro.2012.04.008
– ident: e_1_2_7_4_1
  doi: 10.1111/hpb.12441
– ident: e_1_2_7_24_1
  doi: 10.1148/radiol.2016151205
– ident: e_1_2_7_38_1
  doi: 10.1371/journal.pone.0238392
– ident: e_1_2_7_9_1
  doi: 10.4143/crt.2019.423
– ident: e_1_2_7_21_1
  doi: 10.1136/esmoopen-2020-000910
– ident: e_1_2_7_23_1
  doi: 10.1097/PAS.0000000000000670
– ident: e_1_2_7_8_1
  doi: 10.1001/jamasurg.2020.1973
– ident: e_1_2_7_31_1
  doi: 10.1007/s00330-020-07284-9
– ident: e_1_2_7_12_1
  doi: 10.1148/radiol.2018171187
– ident: e_1_2_7_2_1
  doi: 10.1038/s41575-020-0310-z
– ident: e_1_2_7_16_1
  doi: 10.1038/nrclinonc.2017.141
– ident: e_1_2_7_37_1
  doi: 10.1001/jamaoncol.2016.2631
– ident: e_1_2_7_40_1
  doi: 10.1007/s00330-018-5898-9
– ident: e_1_2_7_32_1
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
SSID ssj0009945
Score 2.4457917
Snippet Background The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with...
The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor...
BackgroundThe clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 739
SubjectTerms Accuracy
Auditory discrimination
Biomarkers
Cholangiocarcinoma
Contrast agents
Diffusion rate
Evaluation
Hepatectomy
intrahepatic cholangiocarcinoma
liver
Magnetic resonance imaging
Mathematical models
Medical imaging
Metastases
overall survival
Patients
prognostic stratification
Radiomics
Reclassification
Regression analysis
Regression models
Statistical analysis
Statistical tests
Surgery
Survival
Tumors
Title Multiparametric MRI‐Based Radiomic Signature for Preoperative Evaluation of Overall Survival in Intrahepatic Cholangiocarcinoma After Partial Hepatectomy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28071
https://www.ncbi.nlm.nih.gov/pubmed/35049076
https://www.proquest.com/docview/2701034546
https://www.proquest.com/docview/2621659656
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDlUvfVDaLqXIqFxaKcsmsZ1Y4gIItCBti5Yicami2HFoCpugZRcJTv0Jvfff8UuYcbJZ0VaV2lskj-PXjOfz6xuADW6loUBvXmhj4XG_l3taCeNZnqK7liaWLorC4KPsn_DDU3G6AFuztzA1P0S74UaW4eZrMvBUX23OSUO_jcZFl7hcaO1Dl7UIEQ3n3FFKuQjFiB9Cz0exlps02JxnfeiNfoOYDxGrczn7T-HLrLL1TZPz7nSiu-b2Fx7H_23NM3jSYFG2XSvPc1iw5RI8GjSn7S_gp3udS-TgI4q7ZdhgeHD3_ccOOr6MDdOsoBfN7Lg4q9lBGeJfdjS21aWt6cTZXkslzqqcfbqm_a8LdjzF6QlTWFGyA9pb_mrpWrdhu7TOLs8KdK9jrEE1Stk2hTBnR6TfmKFPgnTMMLpZhpP9vc-7fa8J5uCZUES4TtV-yv1cxkYpjZgy1yqwcaj9HNustLR-ZHP0jYEwRkme9XIT99JQGGFirawMX8JiWZX2NTCTRb6j5eeILSLJ414mZZwpneMvdBR14P1sUBPTMJ1TwI2LpOZoDhLq7cT1dgfetbKXNb_HH6VWZ7qRNDZ-lQQRxcjggssOrLfJaJ105JKWtpqijAx8KRSC5g68qnWqLSYUdOoaYcoHpxl_KT85xAF2Xyv_IvwGHgf0WsNdiVuFxcl4at8ihproNWcr9-hQGlo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQlaCbvgvTDsWobKiUYZLYTrwEBJqhDKABJHZR7DiQlknQPCrBqp_Anr_jS7jXCRlBq0plF8nXSezcm3v8OoeQVWaERqE3xzchd5jbTh0luXYMiyFdCx0Kq6LQ2xedE7Z7yk-rvTl4Fqbkh6gn3DAy7P8aAxwnpNenrKE_BsOshWQuMPh5gZLedkTVn7JHSWk1igFB-I4LdjU7qbc-rfs4H_0BMh9jVpt0dl6Xyqojy1WIe01-tiZj1dLXT5gcn92eN-RVBUfpRuk_b8mMyd-RuV614P6e3NoDusgPPkDpLU17_e7d75tNyH0J7cdJhoea6VF2VhKEUoDA9HBoiktTMorT7ZpNnBYpPfiFU2AX9GgCfygooVlOuzi9fG5wZ7emWzjUzs8yyLBDeINiENMNVDGnh-jiUKGDhrjSMLj6QE52to-3Ok6l5-BonwcwVFVuzNxUhFpKBbAyVdIzoa_cFNoslTBuYFJIjx7XWgqWtFMdtmOfa65DJY3wP5LZvMjNIqE6CVzLzM8AXgSChe1EiDCRKoVbqCBokLWHrxrpiuwcNTcuopKm2YuwtyPb2w3ytba9LCk-_mrVfHCOqArzUeQFKJPBOBMNslIXQ4Diqkucm2ICNsJzBZeAmxtkoXSq-jE-x4XXAEq-Wdf4x_OjXfjA9urT_xgvk_nOcW8v2uvuf_9MXnp4eMPukGuS2fFwYpYAUo3VFxs492vQHnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIU28cL90DDCCF5DS5WI7scTL2Fa1g46qY9Jepih27BG2JlVpkeCJn8A7_45fwjlOmmqAkOAtko_j2zk-n2_fIeQZM0JjoDcvMgn3WOBbT0muPcMycNdCJ8JFURgeiv4xOzjhJ2vk5fItTM0P0W64oWW4-RoNfJrb7RVp6IfJrOgilwusfa4w4Seo03vjFXmUlC5EMQCIyAtAriUnDbdXeS-7o98w5mXI6nxO7zo5Xda2vmpy3l3MVVd_-YXI8X-bc4Nca8Ao3am15yZZM-UtsjFsjttvk-_ueS6yg08w8Jamw_Hgx9dvr8Dz5XSc5QU-aaZHxVlND0oBANPRzFRTU_OJ0_2WS5xWlr79hBtgF_RoAfMTpNCipAPcXH5v8F63pru40C7PCvCvM6hBNcnoDsYwpyNUcMjQR0E8Z5h8vkOOe_vvdvteE83B0xGPYaGqgowFViRaSgWg0ioZmiRSgYU2SyVMEBsLzjHkWkvBct_qxM8irrlOlDQiukvWy6o09wnVeRw4Xn4G4CIWLPFzIZJcKgu_UHHcIc-Xg5rqhuocI25cpDVJc5hib6eutzvkaSs7rQk-_ii1tdSNtDHyj2kYY5AMxpnokCdtMpgnnrlkpakWICPCQHAJqLlD7tU61RYTcTx2jSHlhdOMv5SfHsAAu6_NfxF-TDZGe730zeDw9QNyNcSXG-563BZZn88W5iHgqbl65MzmJyI0HS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparametric+MRI+%E2%80%90Based+Radiomic+Signature+for+Preoperative+Evaluation+of+Overall+Survival+in+Intrahepatic+Cholangiocarcinoma+After+Partial+Hepatectomy&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Yang%2C+Yang&rft.au=Zou%2C+Xianlun&rft.au=Zhou%2C+Wei&rft.au=Yuan%2C+Guanjie&rft.date=2022-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=56&rft.issue=3&rft.spage=739&rft.epage=751&rft_id=info:doi/10.1002%2Fjmri.28071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_28071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon