Reconfigurable Parfocal Zoom Metalens

Zoom lenses with variable focal lengths and magnification ratios are essential for many optical imaging applications. Conventional zoom lenses are composed of multiple refractive optics, and optical zoom is attained via translational motion of one or more lens elements, which adds to module size, co...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 10; no. 17
Main Authors Yang, Fan, Lin, Hung‐I, Shalaginov, Mikhail Y., Stoll, Katherine, An, Sensong, Rivero‐Baleine, Clara, Kang, Myungkoo, Agarwal, Anuradha, Richardson, Kathleen, Zhang, Hualiang, Hu, Juejun, Gu, Tian
Format Journal Article
LanguageEnglish
Published 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zoom lenses with variable focal lengths and magnification ratios are essential for many optical imaging applications. Conventional zoom lenses are composed of multiple refractive optics, and optical zoom is attained via translational motion of one or more lens elements, which adds to module size, complexity, and cost. In this paper, a zoom lens design based on multi‐functional optical metasurfaces is presented, which achieves large step zoom ratios, minimal distortion, and diffraction‐limited optical quality without requiring mechanical moving parts. Two embodiments of the concept are experimentally demonstrated based on polarization‐multiplexing in the visible and phase change materials in the mid‐infrared, both yielding 10× parfocal zoom in accordance with the design. This work presents a solid‐state zoom lens design based on multi‐functional optical metasurfaces which achieves large step zoom ratios, minimal distortion, and diffraction‐limited optical quality without requiring mechanical moving parts. Two embodiments of the concept are experimentally demonstrated based on polarization‐multiplexing in the visible and phase change materials in the mid‐infrared, both yielding 10× parfocal zoom in accordance with the design.
AbstractList Zoom lenses with variable focal lengths and magnification ratios are essential for many optical imaging applications. Conventional zoom lenses are composed of multiple refractive optics, and optical zoom is attained via translational motion of one or more lens elements, which adds to module size, complexity, and cost. In this paper, a zoom lens design based on multi‐functional optical metasurfaces is presented, which achieves large step zoom ratios, minimal distortion, and diffraction‐limited optical quality without requiring mechanical moving parts. Two embodiments of the concept are experimentally demonstrated based on polarization‐multiplexing in the visible and phase change materials in the mid‐infrared, both yielding 10× parfocal zoom in accordance with the design. This work presents a solid‐state zoom lens design based on multi‐functional optical metasurfaces which achieves large step zoom ratios, minimal distortion, and diffraction‐limited optical quality without requiring mechanical moving parts. Two embodiments of the concept are experimentally demonstrated based on polarization‐multiplexing in the visible and phase change materials in the mid‐infrared, both yielding 10× parfocal zoom in accordance with the design.
Author Richardson, Kathleen
Stoll, Katherine
Yang, Fan
Zhang, Hualiang
Lin, Hung‐I
Gu, Tian
Shalaginov, Mikhail Y.
Hu, Juejun
An, Sensong
Kang, Myungkoo
Agarwal, Anuradha
Rivero‐Baleine, Clara
Author_xml – sequence: 1
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Hung‐I
  surname: Lin
  fullname: Lin, Hung‐I
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Mikhail Y.
  surname: Shalaginov
  fullname: Shalaginov, Mikhail Y.
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Katherine
  surname: Stoll
  fullname: Stoll, Katherine
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Sensong
  surname: An
  fullname: An, Sensong
  organization: Massachusetts Institute of Technology
– sequence: 6
  givenname: Clara
  surname: Rivero‐Baleine
  fullname: Rivero‐Baleine, Clara
  organization: Lockheed Martin Corporation
– sequence: 7
  givenname: Myungkoo
  surname: Kang
  fullname: Kang, Myungkoo
  organization: University of Central Florida
– sequence: 8
  givenname: Anuradha
  surname: Agarwal
  fullname: Agarwal, Anuradha
  organization: Massachusetts Institute of Technology
– sequence: 9
  givenname: Kathleen
  surname: Richardson
  fullname: Richardson, Kathleen
  organization: University of Central Florida
– sequence: 10
  givenname: Hualiang
  surname: Zhang
  fullname: Zhang, Hualiang
  organization: University of Massachusetts Lowell
– sequence: 11
  givenname: Juejun
  orcidid: 0000-0002-5185-5629
  surname: Hu
  fullname: Hu, Juejun
  email: hujuejun@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 12
  givenname: Tian
  surname: Gu
  fullname: Gu, Tian
  email: gutian@mit.edu
  organization: Massachusetts Institute of Technology
BookMark eNpNj0FLw0AQRhepYK29es7FY-rMTpLNHkvVKrS0iF68LLubWYkkWUkU6b-3RSk9fe9dPniXYtTFjoW4RpghgLy1VWxnEqQEUBLPxFiizlMEhaMTvhDTYfgAgL2QztRY3Dyzj12o37976xpOtrYP0dsmeYuxTdb8ZRvuhitxHmwz8PR_J-L14f5l8ZiuNsunxXyVesoVplJnRakIZVWRdKhK64kz7wg1OVfumXUOwVkEVwQOnioCCoWVWeXYZzQR-u_3p254Zz77urX9ziCYQ6Q5RJpjpJnfbdZHo190skjz
CitedBy_id crossref_primary_10_1364_OE_491736
crossref_primary_10_1002_adom_202201475
crossref_primary_10_1002_andp_202300197
crossref_primary_10_1109_LAWP_2024_3370579
crossref_primary_10_3390_s23239413
crossref_primary_10_3390_nano13182530
crossref_primary_10_1002_advs_202309648
crossref_primary_10_1515_nanoph_2022_0385
crossref_primary_10_1002_adpr_202300159
crossref_primary_10_1002_lpor_202300731
crossref_primary_10_1186_s40580_023_00372_8
crossref_primary_10_1364_JOSAB_496653
crossref_primary_10_1002_smll_202304145
crossref_primary_10_1021_acsphotonics_4c00013
crossref_primary_10_1088_2040_8986_acfbe8
crossref_primary_10_1002_smsc_202300098
crossref_primary_10_29026_oea_2024_230216
crossref_primary_10_1515_nanoph_2023_0088
crossref_primary_10_1364_OE_507056
ContentType Journal Article
Copyright 2022 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
DBID 24P
WIN
DOI 10.1002/adom.202200721
DatabaseName Wiley Online Library
Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID ADOM202200721
Genre article
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: HR00111720029
– fundername: Massachusetts Institute of Technology
GroupedDBID 0R~
1OC
24P
33P
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
ID FETCH-LOGICAL-c3571-294687312dd32b178ac3e4cb3193bb83e4e950fba10b6fefc3d303f6a24dbec43
IEDL.DBID 24P
ISSN 2195-1071
IngestDate Sat Aug 24 00:53:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 17
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3571-294687312dd32b178ac3e4cb3193bb83e4e950fba10b6fefc3d303f6a24dbec43
ORCID 0000-0002-5185-5629
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202200721
PageCount 10
ParticipantIDs wiley_primary_10_1002_adom_202200721_ADOM202200721
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced optical materials
PublicationYear 2022
References 2009; 45
2017; 6
2017; 42
2021; 21
2013; 25
2020; 20
2013; 21
2019; 10
2021; 29
2019; 17
2015; 349
2020; 11
2018; 43
2014; 22
2003; 11
2018; 7
2020; 8
2018; 6
2020; 7
2021; 11814
2018; 9
2018; 5
2018; 4
2019; 64
1993; 32
1982; 21
2020; 9
2021; 118
2019; 115
2019; 27
2016; 634
2009; 17
2021; 9
2021; 46
2019; 7
2011; 334
2021; 7
2015; 6
2019; 6
2021; 2
2021; 148
2019; 36
2016; 10
1992; 31
2016; 16
2007; 15
2015; 592
2021; 16
2021; 15
2015; 27
2021; 12
2021; 11
2013; 38
2013; 339
2022
2017; 17
2021
2017; 11
2020; 28
2022; 11
2001; 79
2018; 13
References_xml – volume: 21
  start-page: 2174
  year: 1982
  publication-title: Appl. Opt.
– volume: 45
  start-page: 646
  year: 2009
  publication-title: Electron. Lett.
– volume: 6
  start-page: 8241
  year: 2015
  publication-title: Nat. Commun.
– volume: 334
  start-page: 333
  year: 2011
  publication-title: Science
– volume: 20
  start-page: 7429
  year: 2020
  publication-title: Nano Lett.
– volume: 32
  start-page: 4181
  year: 1993
  publication-title: Appl. Opt.
– volume: 27
  start-page: 4597
  year: 2015
  publication-title: Adv. Mater.
– volume: 16
  start-page: 661
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 12
  start-page: 6493
  year: 2021
  publication-title: Nat. Commun.
– year: 2021
– volume: 11814
  year: 2021
– volume: 10
  start-page: 1002
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 2432
  year: 2019
  publication-title: ACS Photonics
– volume: 11
  start-page: 2370
  year: 2003
  publication-title: Opt. Express
– volume: 15
  start-page: 4769
  year: 2021
  publication-title: ACS Nano
– volume: 15
  start-page: 2307
  year: 2007
  publication-title: Opt. Express
– volume: 9
  start-page: 3605
  year: 2020
  publication-title: Nanophotonics
– volume: 7
  year: 2021
  publication-title: Sc. Adv.
– volume: 12
  start-page: 1225
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 746
  year: 2020
  publication-title: Optica
– volume: 11
  start-page: 1941
  year: 2022
  publication-title: Nanophotonics
– volume: 31
  start-page: 2274
  year: 1992
  publication-title: Appl. Opt.
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 10
  start-page: 60
  year: 2016
  publication-title: Nat. Photonics
– volume: 2
  year: 2021
  publication-title: Adv. Photonics Res.
– volume: 7
  start-page: 1095
  year: 2018
  publication-title: Nanophotonics
– volume: 36
  start-page: 2810
  year: 2019
  publication-title: JOSA B
– volume: 634
  start-page: 1
  year: 2016
  publication-title: Phys. Rep.
– volume: 21
  start-page: 3849
  year: 2021
  publication-title: Nano Lett.
– year: 2022
– volume: 42
  start-page: 1261
  year: 2017
  publication-title: Opt. Lett.
– volume: 10
  start-page: 4279
  year: 2019
  publication-title: Nat. commun.
– volume: 46
  start-page: 3548
  year: 2021
  publication-title: Opt. Lett.
– volume: 592
  start-page: 69
  year: 2015
  publication-title: Thin Solid Films
– volume: 38
  start-page: 2779
  year: 2013
  publication-title: Opt. Lett.
– volume: 17
  year: 2019
  publication-title: Chin. Opt. Lett.
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 46
  start-page: 1930
  year: 2021
  publication-title: Opt. Lett.
– volume: 148
  year: 2021
  publication-title: Mater. Res. Bull.
– volume: 22
  year: 2014
  publication-title: Opt. Express
– volume: 9
  year: 2021
  publication-title: IEEE Access
– volume: 12
  start-page: 96
  year: 2021
  publication-title: Nat. Commun.
– volume: 43
  start-page: 94
  year: 2018
  publication-title: Opt. Lett.
– volume: 29
  start-page: 7925
  year: 2021
  publication-title: Opt. Express
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 11
  start-page: 729
  year: 2021
  publication-title: Nanomaterials
– volume: 11
  start-page: 1485
  year: 2021
  publication-title: Nanomaterials
– volume: 21
  start-page: 5133
  year: 2021
  publication-title: Nano Lett.
– volume: 7
  start-page: 476
  year: 2020
  publication-title: Optica
– volume: 7
  start-page: 120
  year: 2019
  publication-title: ACS Photonics
– volume: 339
  year: 2013
  publication-title: Science
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 16
  start-page: 2818
  year: 2016
  publication-title: Nano Lett.
– volume: 21
  start-page: 8669
  year: 2013
  publication-title: Opt. Express
– volume: 16
  start-page: 667
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 1481
  year: 2018
  publication-title: Nat. Commun.
– volume: 21
  start-page: 1751
  year: 2013
  publication-title: Opt. Express
– volume: 349
  start-page: 1310
  year: 2015
  publication-title: Science
– volume: 11
  start-page: 3205
  year: 2020
  publication-title: Nat. Commun.
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 227
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 1041
  year: 2018
  publication-title: Nanophotonics
– volume: 64
  start-page: 1525
  year: 2019
  publication-title: Sci. Bull.
– volume: 7
  start-page: 953
  year: 2018
  publication-title: Nanophotonics
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 3641
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  year: 2017
  publication-title: Light: Sci. Appl.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 46
  start-page: 5735
  year: 2021
  publication-title: Opt. Lett.
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 79
  start-page: 3597
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 6118
  year: 2009
  publication-title: Opt. Express
– volume: 5
  start-page: 825
  year: 2018
  publication-title: Optica
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 5
  start-page: 4497
  year: 2018
  publication-title: ACS Photonics
– volume: 9
  start-page: 3505
  year: 2020
  publication-title: Nanophotonics
– volume: 25
  start-page: 3050
  year: 2013
  publication-title: Adv. Mater.
SSID ssj0001073947
Score 2.4860005
Snippet Zoom lenses with variable focal lengths and magnification ratios are essential for many optical imaging applications. Conventional zoom lenses are composed of...
SourceID wiley
SourceType Publisher
SubjectTerms metalens
metasurfaces
parfocal lens
phase change materials
polarization
reconfigurable optics
zoom lens
Title Reconfigurable Parfocal Zoom Metalens
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202200721
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I97KAKPV-JU4YwVUFVKgA5UqlsiPM2JJUR__v74ktHRls4dEii-X7_PF33eEPHjNXM61pZDpQGVkHNRY6agsIIWs4KAEqpHLt2w0ka9TNf2j4m_9ITYFN8yM5nuNCW7sor81DTV-hkpyjsU2VJLvR26j8b3mcrytsuCPqKbLGMemhHHKfp0bU97fvcUuPW3wZXhMDjtimAzaSJ6QPahPyVFHEpMuBRdn5BE3jHX4_lrNUfWUjM08IB4ln5ECJyVEMh13pudkMnz5eBrRrtcBdULljPJCZjoXjHsvuGW5Nk6AdDZmiLBWxzEUKg3WsNRmAYITPoJPyAyXPoZBigvSq2c1XJJEheCFCqpA6I7QYwumAUwE4yC9A31FePOc1U_rZ1G1zsW8wuWoNstRDZ7fy83s-j8X3ZADHLdHsm5JbzlfwV3E8KW9b8K0BnLskrg
link.rule.ids 315,786,790,11589,27957,27958,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWDhjXiTAUariR-JM1ZAVaApHVoJsUR-nBFLikr7__ElaStWtjiSI8WnL9_ni787Qu6cSmzGlKGQKk9FUBxUG2GpyCGGNGcgObqRi1E6mIqXd7k6TYhemKY-xDrhhsiov9cIcExIdzdVQ7WboZWcYbYNreTb2NYbscnEeJNmwT9RdZsxhl0JwzBZlW6MWffvI_7q05pg-gdkr1WGUa8J5SHZguqI7LcqMWox-HNM7nHHWPmvz-UcbU_RWM89ElL0ETRwVEBQ02FrekKm_afJw4C2zQ6o5TJLKMtFqjKeMOc4M0mmtOUgrAkQ4caocA25jL3RSWxSD95yF9jHp5oJF-Ig-CnpVLMKzkgkvXdcepkjdwfuMXmiAHRgYy-cBXVOWP2e5XdT0KJsShezEpejXC9H2Xt8K9aji_9MuiU7g0kxLIfPo9dLsov3m_NZV6SzmC_hOhD6wtzUIfsFcFqWGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgnjxLb7NQY9Ls89sjsVa6qO1BwvFS9ineElLbf-_O0ls7dVbNpBAdph830zyfYPQnVPEZlQZ7KUKmEfGgbXhFvPcp17m1AsGauTBUPbH_HkiJn9U_LU_xKrhBplRva8hwWcutNemodpNQUlOodkGSvJtLlMF5Rflo3WXBT5EVVPGKAwljEvy69yY0vbmLTbpaYUvvQO01xDDpFNH8hBt-fII7TckMWlS8PsY3UPBWIavz-UcVE_JSM8D4FHyESlwMvCRTMfK9ASNe4_vD33czDrAlomMYJpzqTJGqHOMGpIpbZnn1sQMYcaoeOxzkQajSWpk8MEyF8EnSE25i2Hg7BS1ymnpz1AiQnBMBJEDdEfoMTlR3usIxoE769U5otVzFrPaz6KonYtpAdtRrLaj6HTfBqvVxX8uukU7o26veH0avlyiXThd_511hVqL-dJfRzhfmJsqYj_kj5VL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+Parfocal+Zoom+Metalens&rft.jtitle=Advanced+optical+materials&rft.au=Yang%2C+Fan&rft.au=Lin%2C+Hung%E2%80%90I&rft.au=Shalaginov%2C+Mikhail+Y.&rft.au=Stoll%2C+Katherine&rft.date=2022-09-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=10&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202200721&rft.externalDBID=10.1002%252Fadom.202200721&rft.externalDocID=ADOM202200721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon