Tunable Built‐In Electric Field in Ru Nanoclusters‐Based Electrocatalyst Boosts Water Splitting and Simulated Seawater Electrolysis

The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heter...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 7
Main Authors Chen, Wenxia, Wei, Wei, Li, Fan, Wang, Yujie, Liu, Meng, Dong, Shuai, Cui, Jinhai, Zhang, Yongya, Wang, Rui, Ostrikov, Kostya (Ken), Zang, Shuang‐Quan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes. The Ru nanoclusters form a strong and stable interface with phytate‐modified NiFe LDH/NF under the dual action of phytic acid capture and BEF. The as‐formed BEF in Ru NCs/P,O‐NiFe LDH/NF causes efficient electron transfer from P,O‐NiFe LDH/NF to Ru NCs. Unexpectedly, the prepared Ru NCs/P,O‐NiFe LDH/NF exhibits outstanding electrocatalytic performance in pH‐universal water splitting and simulated seawater splitting.
AbstractList The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes. The Ru nanoclusters form a strong and stable interface with phytate‐modified NiFe LDH/NF under the dual action of phytic acid capture and BEF. The as‐formed BEF in Ru NCs/P,O‐NiFe LDH/NF causes efficient electron transfer from P,O‐NiFe LDH/NF to Ru NCs. Unexpectedly, the prepared Ru NCs/P,O‐NiFe LDH/NF exhibits outstanding electrocatalytic performance in pH‐universal water splitting and simulated seawater splitting.
The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes.
Author Li, Fan
Ostrikov, Kostya (Ken)
Zhang, Yongya
Wang, Yujie
Cui, Jinhai
Wei, Wei
Dong, Shuai
Zang, Shuang‐Quan
Chen, Wenxia
Liu, Meng
Wang, Rui
Author_xml – sequence: 1
  givenname: Wenxia
  surname: Chen
  fullname: Chen, Wenxia
  organization: Shangqiu Normal University
– sequence: 2
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  organization: Shangqiu Normal University
– sequence: 3
  givenname: Fan
  surname: Li
  fullname: Li, Fan
  organization: Shangqiu Normal University
– sequence: 4
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: Liaoning Petrochemical University
– sequence: 5
  givenname: Meng
  surname: Liu
  fullname: Liu, Meng
  organization: Shangqiu Normal University
– sequence: 6
  givenname: Shuai
  surname: Dong
  fullname: Dong, Shuai
  organization: Shangqiu Normal University
– sequence: 7
  givenname: Jinhai
  surname: Cui
  fullname: Cui, Jinhai
  organization: Shangqiu Normal University
– sequence: 8
  givenname: Yongya
  surname: Zhang
  fullname: Zhang, Yongya
  organization: Shangqiu Normal University
– sequence: 9
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  email: wangruijy@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 10
  givenname: Kostya (Ken)
  surname: Ostrikov
  fullname: Ostrikov, Kostya (Ken)
  organization: Queensland University of Technology (QUT)
– sequence: 11
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNqFkE1LXDEUhkOxUL-2XQe6nmlyc-d-LB3rVGFUqIrdXc5NTkokk0yTXGR27tz6G_0lZpxBoVBcnZfD85wD7x7Zcd4hIV85G3PGiu-g9GJcsEJwVrXsE9nlFa9GghXNzlvmv7-QvRjvGON1Lcpd8ng9OOgt0ulgbHp-eDpz9MSiTMFIOjNoFTWO_hroBTgv7RAThpixKURUW9JLSGBXMdGp9zFFeguZoldLa1Iy7g8Fp-iVWQw273NCuH8FtnY2TTwgnzXYiIfbuU9uZifXx6ej-eXPs-Oj-UiKSc1GAFq3yGqJTQsC217VhS4b2ehJ01a1riul-qrEXijFehCyYdirXM8EuWq1Evvk2-buMvi_A8bU3fkhuPyyK9qiEqXgfJKp8YaSwccYUHfLYBYQVh1n3brsbl1291Z2Fsp_BGkSJONdCmDs_7V2o90bi6sPnnRHP2bn7-4LyHqb1Q
CitedBy_id crossref_primary_10_1002_cctc_202401584
crossref_primary_10_1021_acsanm_4c05305
crossref_primary_10_1002_adfm_202422634
crossref_primary_10_1016_j_cej_2024_157098
crossref_primary_10_1002_adfm_202422734
crossref_primary_10_1016_j_ijhydene_2024_09_075
crossref_primary_10_1002_adfm_202500568
crossref_primary_10_1002_adma_202401568
crossref_primary_10_1039_D4SC06673A
crossref_primary_10_1016_j_catcom_2023_106788
crossref_primary_10_1016_j_apsusc_2024_161353
crossref_primary_10_1021_acs_cgd_4c01122
crossref_primary_10_1002_cssc_202401436
crossref_primary_10_1039_D4TA02120G
crossref_primary_10_3390_catal15030211
crossref_primary_10_1021_acsanm_4c06960
crossref_primary_10_1002_adsu_202400958
crossref_primary_10_1002_smll_202402511
crossref_primary_10_1002_smll_202402654
crossref_primary_10_1039_D4QI01587H
crossref_primary_10_1002_aenm_202403752
crossref_primary_10_3390_nano14141172
crossref_primary_10_1016_j_apsusc_2024_161258
crossref_primary_10_1016_j_jcis_2024_05_216
crossref_primary_10_1016_j_cej_2024_153187
crossref_primary_10_1007_s12598_024_02859_7
crossref_primary_10_1002_aenm_202405828
crossref_primary_10_1002_inf2_12623
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1007_s12274_024_6485_9
crossref_primary_10_1002_cctc_202301541
crossref_primary_10_1016_j_apcatb_2024_124512
crossref_primary_10_1016_j_apcatb_2025_125265
crossref_primary_10_1002_adfm_202315773
crossref_primary_10_1002_adfm_202413826
Cites_doi 10.1016/j.cej.2021.131849
10.1021/acsnano.2c09888
10.1002/aenm.202202522
10.1021/acscatal.7b00587
10.1002/adma.202206828
10.1002/anie.202012798
10.1002/adfm.202109731
10.1039/D2TA03764E
10.1002/anie.202116057
10.1039/D1NR00075F
10.1002/anie.202116699
10.1007/s40843-021-1994-8
10.1016/j.apcatb.2023.122683
10.1002/adma.202003846
10.1038/s41467-022-31660-2
10.1021/acscatal.1c05813
10.1016/j.nanoen.2022.107712
10.1002/aenm.202102353
10.1038/s41467-023-37091-x
10.1002/aenm.202000814
10.1038/s41467-021-24828-9
10.1002/adfm.202009743
10.1039/C8TA10952D
10.1002/smll.201905884
10.1002/adma.202110696
10.1126/science.aao6538
10.1021/acssuschemeng.0c08147
10.1039/C9TA13476J
10.1002/aenm.201903854
10.1039/C7NR08943K
10.1039/D1TA01725J
10.1021/jacs.0c10776
10.1016/j.jechem.2022.08.012
10.1002/aenm.202000882
10.1038/s41467-021-27788-2
10.1002/adfm.202103318
10.1002/adma.202208209
10.1016/j.jcis.2020.10.072
10.1016/j.jechem.2022.05.041
10.1002/adma.202110552
10.1002/adfm.202006484
10.1021/acsnano.2c00901
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202310690
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202310690
ADFM202310690
Genre article
GrantInformation_xml – fundername: Zhongyuan Thousand Talents (Zhongyuan Scholars) Program of Henan Province
  funderid: 234000510007
– fundername: Natural Science Foundation of Henan Province
  funderid: 232300421380; 222300420258
– fundername: Scientific and Technological Research Project in Henan Province
  funderid: 222102240065
– fundername: Key Scientific Research Project of Colleges and Universities in Henan Province
  funderid: 23A150055; 22A530006
– fundername: National Natural Science Foundation of China
  funderid: 21825106; 92061201; 22301172
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3570-aaff9e07ce89a3e9bd72f48c8f58967f76ddb64eb3dd0ba3c80ebd1005e1d9fd3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 02:04:29 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Tue Jul 01 00:30:51 EDT 2025
Wed Jan 22 16:15:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-aaff9e07ce89a3e9bd72f48c8f58967f76ddb64eb3dd0ba3c80ebd1005e1d9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6728-0559
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202310690
PQID 2926343115
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2926343115
crossref_primary_10_1002_adfm_202310690
crossref_citationtrail_10_1002_adfm_202310690
wiley_primary_10_1002_adfm_202310690_ADFM202310690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2017; 7
2023; 35
2023; 14
2021; 586
2021; 426
2020; 16
2022; 65
2020; 10
2021; 143
2017; 358
2020; 8
2021; 13
2021; 32
2021; 31
2021; 12
2021; 11
2021; 33
2022; 61
2023; 331
2022; 12
2022; 34
2022; 13
2022; 74
2022; 75
2022; 10
2021; 60
2018; 10
2022; 16
2022; 102
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 7993
  year: 2022
  publication-title: ACS Nano
– volume: 7
  start-page: 3090
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 358
  start-page: 1427
  year: 2017
  publication-title: Science
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 60
  start-page: 3212
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 5655
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3958
  year: 2022
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4587
  year: 2021
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 179
  year: 2022
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 65
  start-page: 2421
  year: 2022
  publication-title: Sci. China Mater.
– volume: 9
  start-page: 1826
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 7279
  year: 2021
  publication-title: Nanoscale
– volume: 16
  year: 2020
  publication-title: Small
– volume: 331
  year: 2023
  publication-title: Appl. Catal. B
– volume: 143
  start-page: 309
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 586
  start-page: 84
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1873
  year: 2023
  publication-title: Nat. Commun.
– volume: 74
  start-page: 85
  year: 2022
  publication-title: J. Energy Chem.
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 7
  start-page: 3824
  year: 2017
  publication-title: ACS Catal.
– volume: 75
  start-page: 16
  year: 2022
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3821
  year: 2022
  publication-title: ACS Catal.
– volume: 10
  start-page: 4463
  year: 2018
  publication-title: Nanoscale
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_14_1
  doi: 10.1016/j.cej.2021.131849
– ident: e_1_2_7_19_1
  doi: 10.1021/acsnano.2c09888
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202202522
– ident: e_1_2_7_38_1
  doi: 10.1021/acscatal.7b00587
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.202206828
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202012798
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.202109731
– ident: e_1_2_7_20_1
  doi: 10.1039/D2TA03764E
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202116057
– ident: e_1_2_7_33_1
  doi: 10.1039/D1NR00075F
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202116699
– ident: e_1_2_7_34_1
  doi: 10.1007/s40843-021-1994-8
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apcatb.2023.122683
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202003846
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-022-31660-2
– ident: e_1_2_7_1_1
  doi: 10.1021/acscatal.1c05813
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2022.107712
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.202102353
– ident: e_1_2_7_32_1
  doi: 10.1038/s41467-023-37091-x
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.202000814
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-021-24828-9
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.202009743
– ident: e_1_2_7_36_1
  doi: 10.1039/C8TA10952D
– ident: e_1_2_7_29_1
  doi: 10.1002/smll.201905884
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.202110696
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aao6538
– ident: e_1_2_7_8_1
  doi: 10.1021/acssuschemeng.0c08147
– ident: e_1_2_7_37_1
  doi: 10.1039/C9TA13476J
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201903854
– ident: e_1_2_7_30_1
  doi: 10.1039/C7NR08943K
– ident: e_1_2_7_17_1
  doi: 10.1039/D1TA01725J
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.0c10776
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jechem.2022.08.012
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.202000882
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-021-27788-2
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.202103318
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.202208209
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcis.2020.10.072
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jechem.2022.05.041
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202110552
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.202006484
– ident: e_1_2_7_13_1
  doi: 10.1021/acsnano.2c00901
SSID ssj0017734
Score 2.6363873
Snippet The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bifunctional electrocatalyst
built‐in electric field
Clean energy
Density functional theory
Electric fields
Electrocatalysts
Electrolysis
Electron transfer
Hydrogen evolution reactions
Hydroxides
industrial process conditions
Intermetallic compounds
Iron compounds
Nanoclusters
Nickel compounds
Oxygen evolution reactions
pH‐universal
Seawater
simulated seawater electrolysis
Simulation
Water splitting
Title Tunable Built‐In Electric Field in Ru Nanoclusters‐Based Electrocatalyst Boosts Water Splitting and Simulated Seawater Electrolysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202310690
https://www.proquest.com/docview/2926343115
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXOBQKKXqFop8QOopkIcTx8fdwopWXQ4siL1FfoylVbdJRRIhOHHjym_kl2A72bAgIaRyS6QZKxm_Po9nvkFoj8U6EkqDxxPGPMIV8bi9ZdcJcEoFBNy5BkYnyfE5-TWJJwtZ_A0_ROdwszPDrdd2gnNRHjyRhnKlbSa5xSfmhGcWYRuwZVHRaccfFVDaXCsngQ3wCiZz1kY_PHiu_nxXeoKai4DV7TjDdcTn39oEmvzZryuxL29e0Di-52c20IcWjuJ-M34-oiXIN9HaAknhJ3R3Vrv8Kjyop7Pq4fb-Z46PXPGcqcRDGwCHpzk-rbFZqAs5qy3zQmnEBmZ_VK1k4bxE12WFB0VRViW-MBD3Eo8NAnZx15jnCo-nf20tMaM0Bn7lBFptR5uyhc6HR2c_jr22fIMno5j6HudaM_CphJTxCJhQNNQklamOU5ZQTROlRELMaV4pX_BIpj4IZQwSQ6CYVtFntJwXOXxBWACJQKc27TYlQoUiDn0AadAjEEYh6iFv3n2ZbLnNbYmNWdawMoeZNXDWGbiHvnfy_xpWj1cld-ajIWtnd5mFLEwiYnmKeih03fpGK1n_cDjq3r7-j9I2WjXPpAkY30HL1WUN3wweqsQuWukfjn6Pd93YfwTCDAj7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADb8RCAR-QOKXNw4njY5d2tYVuD92t6C3yYyytWBLUJEJw4saV38gvweM82iIhJDgmmrES22N_Hs98Q8grkdpEGQuBzIQImDQskHjLbjOQnCuIpHcNLI6z-Sl7e5YO0YSYC9PxQ4wON7QMv16jgaNDeveCNVQai6nkCFDcEe86uYFlvZE-f_9kZJCKOO8ulrMIQ7yis4G3MYx3r-pf3ZcuwOZlyOr3nNldooav7UJNPuy0jdrRX38jcvyv37lH7vSIlO51U-g-uQblA3L7Ek_hQ_J91foUKzpt15vm57cfhyU98PVz1prOMAaOrkt60lK3Vld60yL5Qu3Epm6LNL1k5R1FX-qGTquqbmr63qHcc7p0INiHXlNZGrpcf8RyYk5pCfKzF-i1PXPKI3I6O1i9mQd9BYdAJykPAymtFRByDbmQCQhleGxZrnOb5iLjlmfGqIy5A70xoZKJzkNQxnVICpER1iSPyVZZlfCEUAUsAZtj5m3OlIlVGocA2gFIYIJDMiHBMH6F7unNscrGpuiImeMCO7gYO3hCXo_ynzpijz9Kbg_ToegNvC5iEWcJQ6qiCYn9uP6llWJvf7YYn57-i9JLcnO-WhwVR4fH756RW-496-LHt8lWc97CcwePGvXCG8Av51ULgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOpTwqFkrxAYlT2jwcOz52u41aoBXqtmJvkR9jacWSVE0iVE7cuPIb-SW1nWy6RUJIcEw0YyX2jP3ZnvkGoTc8NYnUBgJBOQ-I0CQQ7pbdUBCMSYiEPxo4PqGH5-TdLJ2tZPF3_BDDgZvzDD9fOwe_0Gb3hjRUaOMyyR0-sTu8u-geoSF3xRsmpwOBVMRYd69MIxfhFc2WtI1hvHtb__aydIM1VxGrX3LyR0gsP7aLNPm80zZyR337jcfxf_5mA633eBTvdQb0GN2B8gl6uMJS-BT9OGt9ghUet_NF8-v7z6MSH_jqOXOFcxcBh-clPm2xnakrtWgd9UJtxcZ2gdS9ZOWPia7qBo-rqm5q_Mli3Es8tRDYB15jUWo8nX9xxcSs0hTEVy_Qa3velGfoPD842z8M-voNgUpSFgZCGMMhZAoyLhLgUrPYkExlJs04ZYZRrSUldjuvdShForIQpLYdkkKkudHJJlorqxKeIyyBJGAyl3ebEaljmcYhgLLwEQhnkIxQsBy-QvXk5q7GxqLoaJnjwnVwMXTwCL0d5C86Wo8_Sm4traHo3bsuYh7ThDiiohGK_bD-pZVib5IfD08v_kXpNbr_cZIXH45O3r9ED-xr0gWPb6G15rKFVxYbNXLbm_81w6AKMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Built%E2%80%90In+Electric+Field+in+Ru+Nanoclusters%E2%80%90Based+Electrocatalyst+Boosts+Water+Splitting+and+Simulated+Seawater+Electrolysis&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Wenxia&rft.au=Wei%2C+Wei&rft.au=Li%2C+Fan&rft.au=Wang%2C+Yujie&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202310690&rft.externalDBID=10.1002%252Fadfm.202310690&rft.externalDocID=ADFM202310690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon