Tunable Built‐In Electric Field in Ru Nanoclusters‐Based Electrocatalyst Boosts Water Splitting and Simulated Seawater Electrolysis
The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heter...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes.
The Ru nanoclusters form a strong and stable interface with phytate‐modified NiFe LDH/NF under the dual action of phytic acid capture and BEF. The as‐formed BEF in Ru NCs/P,O‐NiFe LDH/NF causes efficient electron transfer from P,O‐NiFe LDH/NF to Ru NCs. Unexpectedly, the prepared Ru NCs/P,O‐NiFe LDH/NF exhibits outstanding electrocatalytic performance in pH‐universal water splitting and simulated seawater splitting. |
---|---|
AbstractList | The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes.
The Ru nanoclusters form a strong and stable interface with phytate‐modified NiFe LDH/NF under the dual action of phytic acid capture and BEF. The as‐formed BEF in Ru NCs/P,O‐NiFe LDH/NF causes efficient electron transfer from P,O‐NiFe LDH/NF to Ru NCs. Unexpectedly, the prepared Ru NCs/P,O‐NiFe LDH/NF exhibits outstanding electrocatalytic performance in pH‐universal water splitting and simulated seawater splitting. The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is expected to advance practical applications of clean hydrogen energy. Here, the study reports a built‐in electric field approach to assemble heterogeneous Ru nanoclusters (Ru NCs) anchored in P,O co‐doped NiFe layered double hydroxide bifunctional electrocatalysts (Ru NCs/P,O‐NiFe LDH) for overall water splitting. It is revealed that the BEF ensures electron enrichment via unidirectional electron transfer from P,O‐NiFe LDH to Ru nanoclusters due to the difference in the corresponding Fermi levels. The optimized Ru NCs/P,O‐NiFe LDH/NF shows excellent electrocatalytic activity toward hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting in a wide pH range, as well as simulated seawater electrolysis under industry‐relevant conditions. The long‐term catalyst stability under high currents and industrial process temperatures is also demonstrated. Density functional theory calculations further confirm that the active sites at the BEF interface effectively reduce the energy barrier of water electrolysis, thereby facilitating the electrocatalytic processes. |
Author | Li, Fan Ostrikov, Kostya (Ken) Zhang, Yongya Wang, Yujie Cui, Jinhai Wei, Wei Dong, Shuai Zang, Shuang‐Quan Chen, Wenxia Liu, Meng Wang, Rui |
Author_xml | – sequence: 1 givenname: Wenxia surname: Chen fullname: Chen, Wenxia organization: Shangqiu Normal University – sequence: 2 givenname: Wei surname: Wei fullname: Wei, Wei organization: Shangqiu Normal University – sequence: 3 givenname: Fan surname: Li fullname: Li, Fan organization: Shangqiu Normal University – sequence: 4 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: Liaoning Petrochemical University – sequence: 5 givenname: Meng surname: Liu fullname: Liu, Meng organization: Shangqiu Normal University – sequence: 6 givenname: Shuai surname: Dong fullname: Dong, Shuai organization: Shangqiu Normal University – sequence: 7 givenname: Jinhai surname: Cui fullname: Cui, Jinhai organization: Shangqiu Normal University – sequence: 8 givenname: Yongya surname: Zhang fullname: Zhang, Yongya organization: Shangqiu Normal University – sequence: 9 givenname: Rui surname: Wang fullname: Wang, Rui email: wangruijy@zzu.edu.cn organization: Zhengzhou University – sequence: 10 givenname: Kostya (Ken) surname: Ostrikov fullname: Ostrikov, Kostya (Ken) organization: Queensland University of Technology (QUT) – sequence: 11 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University |
BookMark | eNqFkE1LXDEUhkOxUL-2XQe6nmlyc-d-LB3rVGFUqIrdXc5NTkokk0yTXGR27tz6G_0lZpxBoVBcnZfD85wD7x7Zcd4hIV85G3PGiu-g9GJcsEJwVrXsE9nlFa9GghXNzlvmv7-QvRjvGON1Lcpd8ng9OOgt0ulgbHp-eDpz9MSiTMFIOjNoFTWO_hroBTgv7RAThpixKURUW9JLSGBXMdGp9zFFeguZoldLa1Iy7g8Fp-iVWQw273NCuH8FtnY2TTwgnzXYiIfbuU9uZifXx6ej-eXPs-Oj-UiKSc1GAFq3yGqJTQsC217VhS4b2ehJ01a1riul-qrEXijFehCyYdirXM8EuWq1Evvk2-buMvi_A8bU3fkhuPyyK9qiEqXgfJKp8YaSwccYUHfLYBYQVh1n3brsbl1291Z2Fsp_BGkSJONdCmDs_7V2o90bi6sPnnRHP2bn7-4LyHqb1Q |
CitedBy_id | crossref_primary_10_1002_cctc_202401584 crossref_primary_10_1021_acsanm_4c05305 crossref_primary_10_1002_adfm_202422634 crossref_primary_10_1016_j_cej_2024_157098 crossref_primary_10_1002_adfm_202422734 crossref_primary_10_1016_j_ijhydene_2024_09_075 crossref_primary_10_1002_adfm_202500568 crossref_primary_10_1002_adma_202401568 crossref_primary_10_1039_D4SC06673A crossref_primary_10_1016_j_catcom_2023_106788 crossref_primary_10_1016_j_apsusc_2024_161353 crossref_primary_10_1021_acs_cgd_4c01122 crossref_primary_10_1002_cssc_202401436 crossref_primary_10_1039_D4TA02120G crossref_primary_10_3390_catal15030211 crossref_primary_10_1021_acsanm_4c06960 crossref_primary_10_1002_adsu_202400958 crossref_primary_10_1002_smll_202402511 crossref_primary_10_1002_smll_202402654 crossref_primary_10_1039_D4QI01587H crossref_primary_10_1002_aenm_202403752 crossref_primary_10_3390_nano14141172 crossref_primary_10_1016_j_apsusc_2024_161258 crossref_primary_10_1016_j_jcis_2024_05_216 crossref_primary_10_1016_j_cej_2024_153187 crossref_primary_10_1007_s12598_024_02859_7 crossref_primary_10_1002_aenm_202405828 crossref_primary_10_1002_inf2_12623 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1007_s12274_024_6485_9 crossref_primary_10_1002_cctc_202301541 crossref_primary_10_1016_j_apcatb_2024_124512 crossref_primary_10_1016_j_apcatb_2025_125265 crossref_primary_10_1002_adfm_202315773 crossref_primary_10_1002_adfm_202413826 |
Cites_doi | 10.1016/j.cej.2021.131849 10.1021/acsnano.2c09888 10.1002/aenm.202202522 10.1021/acscatal.7b00587 10.1002/adma.202206828 10.1002/anie.202012798 10.1002/adfm.202109731 10.1039/D2TA03764E 10.1002/anie.202116057 10.1039/D1NR00075F 10.1002/anie.202116699 10.1007/s40843-021-1994-8 10.1016/j.apcatb.2023.122683 10.1002/adma.202003846 10.1038/s41467-022-31660-2 10.1021/acscatal.1c05813 10.1016/j.nanoen.2022.107712 10.1002/aenm.202102353 10.1038/s41467-023-37091-x 10.1002/aenm.202000814 10.1038/s41467-021-24828-9 10.1002/adfm.202009743 10.1039/C8TA10952D 10.1002/smll.201905884 10.1002/adma.202110696 10.1126/science.aao6538 10.1021/acssuschemeng.0c08147 10.1039/C9TA13476J 10.1002/aenm.201903854 10.1039/C7NR08943K 10.1039/D1TA01725J 10.1021/jacs.0c10776 10.1016/j.jechem.2022.08.012 10.1002/aenm.202000882 10.1038/s41467-021-27788-2 10.1002/adfm.202103318 10.1002/adma.202208209 10.1016/j.jcis.2020.10.072 10.1016/j.jechem.2022.05.041 10.1002/adma.202110552 10.1002/adfm.202006484 10.1021/acsnano.2c00901 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202310690 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202310690 ADFM202310690 |
Genre | article |
GrantInformation_xml | – fundername: Zhongyuan Thousand Talents (Zhongyuan Scholars) Program of Henan Province funderid: 234000510007 – fundername: Natural Science Foundation of Henan Province funderid: 232300421380; 222300420258 – fundername: Scientific and Technological Research Project in Henan Province funderid: 222102240065 – fundername: Key Scientific Research Project of Colleges and Universities in Henan Province funderid: 23A150055; 22A530006 – fundername: National Natural Science Foundation of China funderid: 21825106; 92061201; 22301172 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3570-aaff9e07ce89a3e9bd72f48c8f58967f76ddb64eb3dd0ba3c80ebd1005e1d9fd3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 02:04:29 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Tue Jul 01 00:30:51 EDT 2025 Wed Jan 22 16:15:41 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3570-aaff9e07ce89a3e9bd72f48c8f58967f76ddb64eb3dd0ba3c80ebd1005e1d9fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6728-0559 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202310690 |
PQID | 2926343115 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2926343115 crossref_primary_10_1002_adfm_202310690 crossref_citationtrail_10_1002_adfm_202310690 wiley_primary_10_1002_adfm_202310690_ADFM202310690 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2017; 7 2023; 35 2023; 14 2021; 586 2021; 426 2020; 16 2022; 65 2020; 10 2021; 143 2017; 358 2020; 8 2021; 13 2021; 32 2021; 31 2021; 12 2021; 11 2021; 33 2022; 61 2023; 331 2022; 12 2022; 34 2022; 13 2022; 74 2022; 75 2022; 10 2021; 60 2018; 10 2022; 16 2022; 102 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 16 start-page: 7993 year: 2022 publication-title: ACS Nano – volume: 7 start-page: 3090 year: 2019 publication-title: J. Mater. Chem. A – volume: 358 start-page: 1427 year: 2017 publication-title: Science – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 16 year: 2022 publication-title: ACS Nano – volume: 60 start-page: 3212 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 8 start-page: 5655 year: 2020 publication-title: J. Mater. Chem. A – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 13 start-page: 3958 year: 2022 publication-title: Nat. Commun. – volume: 12 start-page: 4587 year: 2021 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 179 year: 2022 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 65 start-page: 2421 year: 2022 publication-title: Sci. China Mater. – volume: 9 start-page: 1826 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 13 start-page: 7279 year: 2021 publication-title: Nanoscale – volume: 16 year: 2020 publication-title: Small – volume: 331 year: 2023 publication-title: Appl. Catal. B – volume: 143 start-page: 309 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 586 start-page: 84 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1873 year: 2023 publication-title: Nat. Commun. – volume: 74 start-page: 85 year: 2022 publication-title: J. Energy Chem. – volume: 102 year: 2022 publication-title: Nano Energy – volume: 7 start-page: 3824 year: 2017 publication-title: ACS Catal. – volume: 75 start-page: 16 year: 2022 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3821 year: 2022 publication-title: ACS Catal. – volume: 10 start-page: 4463 year: 2018 publication-title: Nanoscale – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – ident: e_1_2_7_14_1 doi: 10.1016/j.cej.2021.131849 – ident: e_1_2_7_19_1 doi: 10.1021/acsnano.2c09888 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202202522 – ident: e_1_2_7_38_1 doi: 10.1021/acscatal.7b00587 – ident: e_1_2_7_26_1 doi: 10.1002/adma.202206828 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202012798 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.202109731 – ident: e_1_2_7_20_1 doi: 10.1039/D2TA03764E – ident: e_1_2_7_18_1 doi: 10.1002/anie.202116057 – ident: e_1_2_7_33_1 doi: 10.1039/D1NR00075F – ident: e_1_2_7_16_1 doi: 10.1002/anie.202116699 – ident: e_1_2_7_34_1 doi: 10.1007/s40843-021-1994-8 – ident: e_1_2_7_35_1 doi: 10.1016/j.apcatb.2023.122683 – ident: e_1_2_7_41_1 doi: 10.1002/adma.202003846 – ident: e_1_2_7_12_1 doi: 10.1038/s41467-022-31660-2 – ident: e_1_2_7_1_1 doi: 10.1021/acscatal.1c05813 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2022.107712 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.202102353 – ident: e_1_2_7_32_1 doi: 10.1038/s41467-023-37091-x – ident: e_1_2_7_28_1 doi: 10.1002/aenm.202000814 – ident: e_1_2_7_9_1 doi: 10.1038/s41467-021-24828-9 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.202009743 – ident: e_1_2_7_36_1 doi: 10.1039/C8TA10952D – ident: e_1_2_7_29_1 doi: 10.1002/smll.201905884 – ident: e_1_2_7_21_1 doi: 10.1002/adma.202110696 – ident: e_1_2_7_11_1 doi: 10.1126/science.aao6538 – ident: e_1_2_7_8_1 doi: 10.1021/acssuschemeng.0c08147 – ident: e_1_2_7_37_1 doi: 10.1039/C9TA13476J – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201903854 – ident: e_1_2_7_30_1 doi: 10.1039/C7NR08943K – ident: e_1_2_7_17_1 doi: 10.1039/D1TA01725J – ident: e_1_2_7_40_1 doi: 10.1021/jacs.0c10776 – ident: e_1_2_7_2_1 doi: 10.1016/j.jechem.2022.08.012 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.202000882 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-021-27788-2 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.202103318 – ident: e_1_2_7_42_1 doi: 10.1002/adma.202208209 – ident: e_1_2_7_15_1 doi: 10.1016/j.jcis.2020.10.072 – ident: e_1_2_7_24_1 doi: 10.1016/j.jechem.2022.05.041 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202110552 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.202006484 – ident: e_1_2_7_13_1 doi: 10.1021/acsnano.2c00901 |
SSID | ssj0017734 |
Score | 2.6363873 |
Snippet | The development of bifunctional electrocatalysts suitable for a wide pH range and seawater splitting under simulated industrial electrolysis conditions is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | bifunctional electrocatalyst built‐in electric field Clean energy Density functional theory Electric fields Electrocatalysts Electrolysis Electron transfer Hydrogen evolution reactions Hydroxides industrial process conditions Intermetallic compounds Iron compounds Nanoclusters Nickel compounds Oxygen evolution reactions pH‐universal Seawater simulated seawater electrolysis Simulation Water splitting |
Title | Tunable Built‐In Electric Field in Ru Nanoclusters‐Based Electrocatalyst Boosts Water Splitting and Simulated Seawater Electrolysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202310690 https://www.proquest.com/docview/2926343115 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXOBQKKXqFop8QOopkIcTx8fdwopWXQ4siL1FfoylVbdJRRIhOHHjym_kl2A72bAgIaRyS6QZKxm_Po9nvkFoj8U6EkqDxxPGPMIV8bi9ZdcJcEoFBNy5BkYnyfE5-TWJJwtZ_A0_ROdwszPDrdd2gnNRHjyRhnKlbSa5xSfmhGcWYRuwZVHRaccfFVDaXCsngQ3wCiZz1kY_PHiu_nxXeoKai4DV7TjDdcTn39oEmvzZryuxL29e0Di-52c20IcWjuJ-M34-oiXIN9HaAknhJ3R3Vrv8Kjyop7Pq4fb-Z46PXPGcqcRDGwCHpzk-rbFZqAs5qy3zQmnEBmZ_VK1k4bxE12WFB0VRViW-MBD3Eo8NAnZx15jnCo-nf20tMaM0Bn7lBFptR5uyhc6HR2c_jr22fIMno5j6HudaM_CphJTxCJhQNNQklamOU5ZQTROlRELMaV4pX_BIpj4IZQwSQ6CYVtFntJwXOXxBWACJQKc27TYlQoUiDn0AadAjEEYh6iFv3n2ZbLnNbYmNWdawMoeZNXDWGbiHvnfy_xpWj1cld-ajIWtnd5mFLEwiYnmKeih03fpGK1n_cDjq3r7-j9I2WjXPpAkY30HL1WUN3wweqsQuWukfjn6Pd93YfwTCDAj7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADb8RCAR-QOKXNw4njY5d2tYVuD92t6C3yYyytWBLUJEJw4saV38gvweM82iIhJDgmmrES22N_Hs98Q8grkdpEGQuBzIQImDQskHjLbjOQnCuIpHcNLI6z-Sl7e5YO0YSYC9PxQ4wON7QMv16jgaNDeveCNVQai6nkCFDcEe86uYFlvZE-f_9kZJCKOO8ulrMIQ7yis4G3MYx3r-pf3ZcuwOZlyOr3nNldooav7UJNPuy0jdrRX38jcvyv37lH7vSIlO51U-g-uQblA3L7Ek_hQ_J91foUKzpt15vm57cfhyU98PVz1prOMAaOrkt60lK3Vld60yL5Qu3Epm6LNL1k5R1FX-qGTquqbmr63qHcc7p0INiHXlNZGrpcf8RyYk5pCfKzF-i1PXPKI3I6O1i9mQd9BYdAJykPAymtFRByDbmQCQhleGxZrnOb5iLjlmfGqIy5A70xoZKJzkNQxnVICpER1iSPyVZZlfCEUAUsAZtj5m3OlIlVGocA2gFIYIJDMiHBMH6F7unNscrGpuiImeMCO7gYO3hCXo_ynzpijz9Kbg_ToegNvC5iEWcJQ6qiCYn9uP6llWJvf7YYn57-i9JLcnO-WhwVR4fH756RW-496-LHt8lWc97CcwePGvXCG8Av51ULgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOpTwqFkrxAYlT2jwcOz52u41aoBXqtmJvkR9jacWSVE0iVE7cuPIb-SW1nWy6RUJIcEw0YyX2jP3ZnvkGoTc8NYnUBgJBOQ-I0CQQ7pbdUBCMSYiEPxo4PqGH5-TdLJ2tZPF3_BDDgZvzDD9fOwe_0Gb3hjRUaOMyyR0-sTu8u-geoSF3xRsmpwOBVMRYd69MIxfhFc2WtI1hvHtb__aydIM1VxGrX3LyR0gsP7aLNPm80zZyR337jcfxf_5mA633eBTvdQb0GN2B8gl6uMJS-BT9OGt9ghUet_NF8-v7z6MSH_jqOXOFcxcBh-clPm2xnakrtWgd9UJtxcZ2gdS9ZOWPia7qBo-rqm5q_Mli3Es8tRDYB15jUWo8nX9xxcSs0hTEVy_Qa3velGfoPD842z8M-voNgUpSFgZCGMMhZAoyLhLgUrPYkExlJs04ZYZRrSUldjuvdShForIQpLYdkkKkudHJJlorqxKeIyyBJGAyl3ebEaljmcYhgLLwEQhnkIxQsBy-QvXk5q7GxqLoaJnjwnVwMXTwCL0d5C86Wo8_Sm4traHo3bsuYh7ThDiiohGK_bD-pZVib5IfD08v_kXpNbr_cZIXH45O3r9ED-xr0gWPb6G15rKFVxYbNXLbm_81w6AKMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Built%E2%80%90In+Electric+Field+in+Ru+Nanoclusters%E2%80%90Based+Electrocatalyst+Boosts+Water+Splitting+and+Simulated+Seawater+Electrolysis&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Wenxia&rft.au=Wei%2C+Wei&rft.au=Li%2C+Fan&rft.au=Wang%2C+Yujie&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202310690&rft.externalDBID=10.1002%252Fadfm.202310690&rft.externalDocID=ADFM202310690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |