Proximal Newton-Type Methods for Minimizing Composite Functions
We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newton-type methods inherit the desirable convergence behavior of Newton-type meth...
Saved in:
Published in | SIAM journal on optimization Vol. 24; no. 3; pp. 1420 - 1443 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1052-6234 1095-7189 |
DOI | 10.1137/130921428 |
Cover
Loading…
Abstract | We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newton-type methods inherit the desirable convergence behavior of Newton-type methods for minimizing smooth functions, even when search directions are computed inexactly. Many popular methods tailored to problems arising in bioinformatics, signal processing, and statistical learning are special cases of proximal Newton-type methods, and our analysis yields new convergence results for some of these methods. [PUBLICATION ABSTRACT] |
---|---|
AbstractList | We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newton-type methods inherit the desirable convergence behavior of Newton-type methods for minimizing smooth functions, even when search directions are computed inexactly. Many popular methods tailored to problems arising in bioinformatics, signal processing, and statistical learning are special cases of proximal Newton-type methods, and our analysis yields new convergence results for some of these methods. [PUBLICATION ABSTRACT] We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newton-type methods inherit the desirable convergence behavior of Newton-type methods for minimizing smooth functions, even when search directions are computed inexactly. Many popular methods tailored to problems arising in bioinformatics, signal processing, and statistical learning are special cases of proximal Newton-type methods, and our analysis yields new convergence results for some of these methods. |
Author | Saunders, Michael A. Lee, Jason D. Sun, Yuekai |
Author_xml | – sequence: 1 givenname: Jason D. surname: Lee fullname: Lee, Jason D. – sequence: 2 givenname: Yuekai surname: Sun fullname: Sun, Yuekai – sequence: 3 givenname: Michael A. surname: Saunders fullname: Saunders, Michael A. |
BookMark | eNptkLFOwzAQhi1UJNrCwBtEYoEh1GfXTjwhVFFAaoGhzFHi2OAqsYvtCMrTk6qIoWK6G77_1903QgPrrELoHPA1AM0mQLEgMCX5ERoCFizNIBeD3c5IygmdnqBRCGuMcS54PkQ3L959mbZskif1GZ1NV9uNSpYqvrs6JNr5ZGmsac23sW_JzLUbF0xUybyzMhpnwyk61mUT1NnvHKPX-d1q9pAunu8fZ7eLVFLGY6pBVQqYrjkwQnjGaU4kKwkBoqscSl4LAVLVdc0ZaK0rwbiqp7SCiigJlI7R5b53491Hp0IsWhOkaprSKteFAjjBmArOsx69OEDXrvO2v64AxnKAjAHuqcmekt6F4JUupInl7qfoS9MUgIud0OJPaJ-4OkhsfG_Ob_9hfwBqonXA |
CitedBy_id | crossref_primary_10_1007_s10915_023_02165_x crossref_primary_10_1088_1751_8121_acb530 crossref_primary_10_1137_20M1344160 crossref_primary_10_1137_23M1565097 crossref_primary_10_1007_s10107_018_1280_6 crossref_primary_10_1109_TCI_2024_3369404 crossref_primary_10_1287_moor_2021_1138 crossref_primary_10_1007_s00245_018_9541_6 crossref_primary_10_1007_s11590_023_02092_8 crossref_primary_10_1016_j_csda_2020_106943 crossref_primary_10_1007_s11425_020_1865_1 crossref_primary_10_1137_20M1350431 crossref_primary_10_1137_21M1398513 crossref_primary_10_1007_s10589_018_9984_3 crossref_primary_10_1137_21M1401103 crossref_primary_10_1007_s10589_024_00595_3 crossref_primary_10_1007_s10589_024_00625_0 crossref_primary_10_1007_s11222_019_09911_y crossref_primary_10_1007_s10115_017_1038_0 crossref_primary_10_1007_s10107_018_1235_y crossref_primary_10_1016_j_apnum_2024_01_002 crossref_primary_10_1109_TSP_2020_2996374 crossref_primary_10_1007_s10985_021_09544_2 crossref_primary_10_1016_j_matpur_2018_06_007 crossref_primary_10_1137_24M1646662 crossref_primary_10_1137_20M1341428 crossref_primary_10_1080_10556788_2020_1713128 crossref_primary_10_1007_s10589_021_00287_2 crossref_primary_10_1080_10556788_2016_1138222 crossref_primary_10_1007_s11081_021_09705_0 crossref_primary_10_1109_TCI_2020_3038171 crossref_primary_10_1007_s10915_023_02302_6 crossref_primary_10_1257_pandp_20211036 crossref_primary_10_1016_j_apnum_2023_07_004 crossref_primary_10_1080_10618600_2024_2374579 crossref_primary_10_1137_16M1073741 crossref_primary_10_1007_s10589_022_00357_z crossref_primary_10_1007_s10994_019_05859_2 crossref_primary_10_1109_TAC_2019_2948268 crossref_primary_10_1137_16M1082299 crossref_primary_10_1007_s10107_022_01915_3 crossref_primary_10_1007_s10589_021_00264_9 crossref_primary_10_1007_s11075_023_01700_z crossref_primary_10_1007_s11081_020_09577_w crossref_primary_10_1186_s12918_018_0657_8 crossref_primary_10_1007_s10589_017_9900_2 crossref_primary_10_1007_s10107_023_01980_2 crossref_primary_10_1145_3650108 crossref_primary_10_1080_00401706_2016_1256840 crossref_primary_10_1137_18M1181249 crossref_primary_10_1080_02331934_2024_2345395 crossref_primary_10_1098_rsta_2020_0191 crossref_primary_10_1137_16M1082767 crossref_primary_10_1137_15M102469X crossref_primary_10_1007_s10107_022_01797_5 crossref_primary_10_1007_s10589_022_00426_3 crossref_primary_10_12677_AAM_2022_117497 crossref_primary_10_1007_s10107_018_1282_4 crossref_primary_10_1109_TCNS_2017_2674962 crossref_primary_10_1007_s00245_019_09554_5 crossref_primary_10_1007_s10589_020_00243_6 crossref_primary_10_1007_s10107_018_1346_5 crossref_primary_10_1007_s10589_025_00658_z crossref_primary_10_1007_s10107_021_01629_y crossref_primary_10_1287_moor_2021_1212 crossref_primary_10_1137_21M1409536 crossref_primary_10_1515_jiip_2015_0092 crossref_primary_10_1007_s10107_022_01873_w crossref_primary_10_1137_140966587 crossref_primary_10_1214_20_EJS1729 crossref_primary_10_1007_s10589_019_00059_z crossref_primary_10_1109_TPAMI_2024_3388370 crossref_primary_10_1137_130936397 crossref_primary_10_1007_s10915_017_0624_3 crossref_primary_10_1137_18M1229225 crossref_primary_10_1007_s10107_022_01916_2 crossref_primary_10_1190_geo2018_0192_1 crossref_primary_10_1063_5_0023345 crossref_primary_10_1093_gji_ggaa434 crossref_primary_10_1007_s10898_022_01215_2 crossref_primary_10_1093_imanum_dry073 crossref_primary_10_1007_s10589_019_00080_2 crossref_primary_10_1007_s12532_019_00163_5 crossref_primary_10_1109_TAC_2021_3115449 crossref_primary_10_1007_s10589_024_00600_9 crossref_primary_10_1137_22M1498991 crossref_primary_10_1007_s10107_017_1180_1 crossref_primary_10_1007_s10898_020_00955_3 crossref_primary_10_1080_10556788_2022_2142587 crossref_primary_10_14495_jsiaml_16_5 crossref_primary_10_1007_s00186_016_0566_9 crossref_primary_10_1007_s10589_024_00618_z crossref_primary_10_1002_nla_2409 crossref_primary_10_1016_j_acha_2019_08_005 crossref_primary_10_1137_19M1286025 crossref_primary_10_3390_math7020131 crossref_primary_10_1088_1361_6560_aaa94f crossref_primary_10_1080_10556788_2018_1471141 crossref_primary_10_1007_s10589_022_00369_9 crossref_primary_10_1007_s10589_023_00515_x crossref_primary_10_1137_17M1142478 crossref_primary_10_1137_16M1080240 crossref_primary_10_1016_j_jcp_2020_109449 crossref_primary_10_1007_s10462_020_09816_7 crossref_primary_10_1007_s10915_024_02748_2 crossref_primary_10_1007_s10898_022_01248_7 crossref_primary_10_1007_s10589_024_00613_4 crossref_primary_10_1080_10556788_2022_2157000 crossref_primary_10_1002_mrm_27874 crossref_primary_10_1007_s10898_020_00892_1 crossref_primary_10_1137_22M1482822 crossref_primary_10_1007_s10589_024_00560_0 crossref_primary_10_1007_s10107_020_01606_x crossref_primary_10_1137_16M1097572 crossref_primary_10_1137_23M157185X crossref_primary_10_1137_23M1565346 crossref_primary_10_1137_21M1411111 crossref_primary_10_1007_s10107_024_02110_2 crossref_primary_10_1137_18M1167152 crossref_primary_10_1007_s10589_023_00525_9 crossref_primary_10_1016_j_neucom_2021_10_005 crossref_primary_10_1093_imanum_drz027 crossref_primary_10_1007_s00180_022_01249_w crossref_primary_10_1007_s11222_023_10230_6 crossref_primary_10_1080_00401706_2024_2430204 crossref_primary_10_1214_20_EJS1780 crossref_primary_10_1287_moor_2022_1320 crossref_primary_10_1007_s10915_022_01933_5 crossref_primary_10_1016_j_media_2021_102200 crossref_primary_10_1109_TSP_2025_3536846 crossref_primary_10_1137_22M1538971 crossref_primary_10_1007_s11336_022_09863_9 crossref_primary_10_1007_s10915_025_02805_4 |
Cites_doi | 10.1111/j.2517-6161.1996.tb02080.x 10.1093/biostatistics/kxm045 10.1137/0917003 10.1109/TSP.2009.2016892 10.1137/080716542 10.1080/00207728108963798 10.1007/s10107-011-0452-4 10.1007/s10107-007-0170-0 10.1007/s12532-011-0029-5 10.1137/0719025 10.1214/07-AOAS131 10.1090/S0025-5718-1974-0343581-1 10.1137/090747695 10.1007/s10208-009-9045-5 10.1137/S105262349427577X |
ContentType | Journal Article |
Copyright | 2014, Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: 2014, Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION 3V. 7RQ 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U U9A 7SC 7SR 7TB 8FD FR3 H8D JG9 KR7 L7M L~C L~D |
DOI | 10.1137/130921428 |
DatabaseName | CrossRef ProQuest Central (Corporate) Career & Technical Education Database ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Computer and Information Systems Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Materials Research Database Aerospace Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Agricultural Science Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1095-7189 |
EndPage | 1443 |
ExternalDocumentID | 3416851401 10_1137_130921428 |
GroupedDBID | -~X .4S .DC 123 4.4 7RQ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYOK AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU EDO EJD EMK EST ESX F5P FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS TWZ YNT 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U U9A 7SC 7SR 7TB 8FD FR3 H8D JG9 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c356t-f1ebe15fd61522676382c5a2212fb81a6d991ceddd651fffb956ed43b1b2ec133 |
IEDL.DBID | BENPR |
ISSN | 1052-6234 |
IngestDate | Thu Jul 10 17:07:15 EDT 2025 Sat Aug 16 22:23:21 EDT 2025 Tue Jul 01 04:05:30 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-f1ebe15fd61522676382c5a2212fb81a6d991ceddd651fffb956ed43b1b2ec133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1558117510 |
PQPubID | 666300 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1620039667 proquest_journals_1558117510 crossref_citationtrail_10_1137_130921428 crossref_primary_10_1137_130921428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on optimization |
PublicationYear | 2014 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | atypb9 atypb8 atypb19 Kim D. (atypb14) 2010 Schmidt M. (atypb24) 2009; 5 atypb16 Tibshirani R. (atypb25) 1996; 58 atypb27 atypb28 atypb29 atypb11 Yuan G.X. (atypb31) 2012; 13 atypb12 atypb1 Rolfs B. (atypb21) 2012 atypb2 atypb10 Yu J. (atypb30) 2010; 11 atypb7 Lee J.D. (atypb15) 2012 atypb6 |
References_xml | – volume: 58 start-page: 267 year: 1996 ident: atypb25 publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: atypb11 doi: 10.1093/biostatistics/kxm045 – ident: atypb9 doi: 10.1137/0917003 – start-page: 1583 year: 2012 ident: atypb21 publication-title: NV – ident: atypb29 doi: 10.1109/TSP.2009.2016892 – ident: atypb1 doi: 10.1137/080716542 – ident: atypb12 doi: 10.1080/00207728108963798 – volume: 5 start-page: 456 year: 2009 ident: atypb24 publication-title: J. Mach. Learn. Res. – ident: atypb16 doi: 10.1007/s10107-011-0452-4 – volume: 13 start-page: 1999 year: 2012 ident: atypb31 publication-title: J. Mach. Learn. Res. – ident: atypb27 doi: 10.1007/s10107-007-0170-0 – start-page: 519 year: 2010 ident: atypb14 publication-title: WI – ident: atypb2 doi: 10.1007/s12532-011-0029-5 – ident: atypb7 doi: 10.1137/0719025 – ident: atypb10 doi: 10.1214/07-AOAS131 – start-page: 827 year: 2012 ident: atypb15 publication-title: NV – volume: 11 start-page: 1145 year: 2010 ident: atypb30 publication-title: J. Mach. Learn. Res. – ident: atypb8 doi: 10.1090/S0025-5718-1974-0343581-1 – ident: atypb28 doi: 10.1137/090747695 – ident: atypb6 doi: 10.1007/s10208-009-9045-5 – ident: atypb19 doi: 10.1137/S105262349427577X |
SSID | ssj0008968 |
Score | 2.5366535 |
Snippet | We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1420 |
SubjectTerms | Approximation Bioinformatics Composite functions Convergence Convex analysis Handles Learning Mathematical analysis Mathematical models Methods Optimization Signal processing |
Title | Proximal Newton-Type Methods for Minimizing Composite Functions |
URI | https://www.proquest.com/docview/1558117510 https://www.proquest.com/docview/1620039667 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLVE8eFnaTTaPnopKYxFSiljoLWQfgYBNah8g_npn0220IB5DdgOZnf3mm318A3CnMCYxJilRQirCcJRJgLBH0FUcyeyuw0ux6mjkDSfsZepOzYLb0hyr3GJiCdSyEHqNvINxT9-JRBfqzz-Irhqld1dNCY0aNBCCA_TwxuNgNH6tsDjomctwrk0w0DOjLUQdv4Pg3Sv1xnYj0i4gl1EmPIJDQw-th814HsOeyk_g4JdoID5FldLq8hT640Xxmc2wD8KVLgesE0srKutCLy1kpFaU5dks-8K-lp78-pCWskIMZ6XHncEkHLw9DYkpikCE43orklI0O3VTiVQEqRPCQ2ALN7Hx_1Me0MSTyPiEklJ6Lk3TlGMCpCRzOOW2EpiRnkM9L3J1AZbXVT63_V5XpZT5nCdM65dxEXDPZpz5TbjfGiYWRjFcF654j8vMwfHjyoZNuK2azjcyGX81am2tG5uZsox_xrUJN9Vr9HG9cZHkqlhjG08focPEzL_8_xNXsI-Ehm2WSFpQXy3W6hpJw4q3oRaEz23jH99YS7-u |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD4MfVAfxCtOp1ZR8CVsSdPLHmSIOje3Dh822FtdmhQGrpu74OVH-Rs96drqQHzbY2lSSvLlO-ckJ98BuFBokziXlKhAKsJxlomLtEcQKqbkrGSKWKzaa9m1Dn_sWt0cfKV3YXRaZcqJMVHLYaD3yIto9_SdSIRQZfRKdNUofbqaltCYw6KhPt4wZJtc1-9wfi8Zq963b2skqSpAAtOypySk-N_UCiXacvQ9cH25LLB6DDk8FC7t2RJdpkBJKW2LhmEoMIJQkpuCCqYCqjdAkfJXuWmWdQqhW33ImN8tJ1fvLEbQreCJkhE1nSKainKsbrZo_xbpP7Zp1S3YTJxR42aOnm3IqWgHNn5JFOKTl-m6Tnah8jQevvcH2AfJURcf1mGs4cVVqCcG-r-G14_6g_4n9jU01eiUMGVU0XjG-N6DzlIGax9WomGkDsCwS8oRzCmXVEi5I0SPa7U0EbjCZlxwJw9X6cD4QaJPrstkvPhxnGI6fjaGeTjPmo7mohx_NSqko-sn63Li_6AoD2fZa1xR-pikF6nhDNvYOmEPw0Dn8P9PnMJare01_Wa91TiCdXSl-HxzpgAr0_FMHaO7MhUnMUYMeF42KL8Bf6n7Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Newton-Type+Methods+for+Minimizing+Composite+Functions&rft.jtitle=SIAM+journal+on+optimization&rft.au=Lee%2C+Jason+D&rft.au=Sun%2C+Yuekai&rft.au=Saunders%2C+Michael+A&rft.date=2014-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=24&rft.issue=3&rft.spage=1420&rft_id=info:doi/10.1137%2F130921428&rft.externalDocID=3416851401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon |