Interpreting the differences in microbial carbon and nitrogen use efficiencies estimated by 18O labeling and ecoenzyme stoichiometry
•Microbial CUE and NUE estimated by the 18O-approach were negatively related to those estimated by the enzyme model using C:P stoichiometry.•Microbial CUE and NUE estimated by the 18O-approach and enzyme model using C:P stoichiometry showed opposite responses to pH, MAP, and AP.•Microbial CUE and NU...
Saved in:
Published in | Geoderma Vol. 444; p. 116856 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Microbial CUE and NUE estimated by the 18O-approach were negatively related to those estimated by the enzyme model using C:P stoichiometry.•Microbial CUE and NUE estimated by the 18O-approach and enzyme model using C:P stoichiometry showed opposite responses to pH, MAP, and AP.•Microbial CUE and NUE estimated by both the 18O-approach and enzyme model using C:P stoichiometry showed a positive relationship under the condition of P limitation.
Microbial carbon and nitrogen use efficiencies (CUE and NUE) are central to our understanding of soil C and N cycling. Although both the 18O-labeling approach and ecoenzyme stoichiometry model have been widely used to estimate microbial CUE and NUE, comparisons of the two methods are scarce. Here, we investigated soil microbial CUE and NUE of 11 locations along a forest transect in eastern China using both the 18O-approach and ecoenzyme model. We found that microbial CUE-18O and NUE-18O estimated by the 18O-approach were positively related to each other and both decreased with soil acidification and phosphorus acquisition as measured by enzyme activity. However, CUEC:N and NUEN:C, estimated by C:N stoichiometry using the enzyme model were negatively related to each other and neither showed any relationship to soil acidification or phosphorus acquisition. Finally, CUEC:P and NUEN:P estimated according to C:P stoichiometry were positively related to each other and both increased with soil acidification and phosphorus acquisition efforts. We suggest that a reason for these differences is that the 18O-approach reflects the intracellular biochemical transformation of C, N, and P while the enzyme models reflect stoichiometric imbalances between external substrates and microbial biomass, i.e., different aspects of microbial metabolism. Moreover, differences between the C:N and C:P-based enzyme models resulted from P-limitation to soil microorganisms in this system. For these reasons, microbial element use efficiencies need to be clearly defined, i.e., as derived from growth-based or soil enzyme-based measurements, and caution must be made when comparing results obtained from different methods, and under different conditions of resource availability. |
---|---|
AbstractList | Microbial carbon and nitrogen use efficiencies (CUE and NUE) are central to our understanding of soil C and N cycling. Although both the 18O-labeling approach and ecoenzyme stoichiometry model have been widely used to estimate microbial CUE and NUE, comparisons of the two methods are scarce. Here, we investigated soil microbial CUE and NUE of 11 locations along a forest transect in eastern China using both the 18O-approach and ecoenzyme model. We found that microbial CUE-18O and NUE-18O estimated by the 18O-approach were positively related to each other and both decreased with soil acidification and phosphorus acquisition as measured by enzyme activity. However, CUEC:N and NUEN:C, estimated by C:N stoichiometry using the enzyme model were negatively related to each other and neither showed any relationship to soil acidification or phosphorus acquisition. Finally, CUEC:P and NUEN:P estimated according to C:P stoichiometry were positively related to each other and both increased with soil acidification and phosphorus acquisition efforts. We suggest that a reason for these differences is that the 18O-approach reflects the intracellular biochemical transformation of C, N, and P while the enzyme models reflect stoichiometric imbalances between external substrates and microbial biomass, i.e., different aspects of microbial metabolism. Moreover, differences between the C:N and C:P-based enzyme models resulted from P-limitation to soil microorganisms in this system. For these reasons, microbial element use efficiencies need to be clearly defined, i.e., as derived from growth-based or soil enzyme-based measurements, and caution must be made when comparing results obtained from different methods, and under different conditions of resource availability. •Microbial CUE and NUE estimated by the 18O-approach were negatively related to those estimated by the enzyme model using C:P stoichiometry.•Microbial CUE and NUE estimated by the 18O-approach and enzyme model using C:P stoichiometry showed opposite responses to pH, MAP, and AP.•Microbial CUE and NUE estimated by both the 18O-approach and enzyme model using C:P stoichiometry showed a positive relationship under the condition of P limitation. Microbial carbon and nitrogen use efficiencies (CUE and NUE) are central to our understanding of soil C and N cycling. Although both the 18O-labeling approach and ecoenzyme stoichiometry model have been widely used to estimate microbial CUE and NUE, comparisons of the two methods are scarce. Here, we investigated soil microbial CUE and NUE of 11 locations along a forest transect in eastern China using both the 18O-approach and ecoenzyme model. We found that microbial CUE-18O and NUE-18O estimated by the 18O-approach were positively related to each other and both decreased with soil acidification and phosphorus acquisition as measured by enzyme activity. However, CUEC:N and NUEN:C, estimated by C:N stoichiometry using the enzyme model were negatively related to each other and neither showed any relationship to soil acidification or phosphorus acquisition. Finally, CUEC:P and NUEN:P estimated according to C:P stoichiometry were positively related to each other and both increased with soil acidification and phosphorus acquisition efforts. We suggest that a reason for these differences is that the 18O-approach reflects the intracellular biochemical transformation of C, N, and P while the enzyme models reflect stoichiometric imbalances between external substrates and microbial biomass, i.e., different aspects of microbial metabolism. Moreover, differences between the C:N and C:P-based enzyme models resulted from P-limitation to soil microorganisms in this system. For these reasons, microbial element use efficiencies need to be clearly defined, i.e., as derived from growth-based or soil enzyme-based measurements, and caution must be made when comparing results obtained from different methods, and under different conditions of resource availability. |
ArticleNumber | 116856 |
Author | Qu, Lingrui Wang, Chao Wanek, Wolfgang Sun, Lifei Moorhead, Daryl L. Li, Shuailin Sang, Changpeng Cui, Yongxing |
Author_xml | – sequence: 1 givenname: Lifei surname: Sun fullname: Sun, Lifei organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China – sequence: 2 givenname: Lingrui surname: Qu fullname: Qu, Lingrui organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China – sequence: 3 givenname: Daryl L. orcidid: 0000-0002-3460-5302 surname: Moorhead fullname: Moorhead, Daryl L. organization: Department of Environmental Sciences, University of Toledo, 43606 Toledo, USA – sequence: 4 givenname: Yongxing orcidid: 0000-0002-8624-2785 surname: Cui fullname: Cui, Yongxing organization: Department of Agroecology, Aarhus University, 8830 Tjele, Denmark – sequence: 5 givenname: Wolfgang orcidid: 0000-0003-2178-8258 surname: Wanek fullname: Wanek, Wolfgang organization: Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria – sequence: 6 givenname: Shuailin orcidid: 0000-0001-9743-2915 surname: Li fullname: Li, Shuailin organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China – sequence: 7 givenname: Changpeng orcidid: 0000-0002-7347-1423 surname: Sang fullname: Sang, Changpeng organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China – sequence: 8 givenname: Chao orcidid: 0000-0002-5756-7505 surname: Wang fullname: Wang, Chao email: cwang@iae.ac.cn organization: CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China |
BookMark | eNqFkd1uFCEYhompidvqLRhuYFYYfmYn8UDTaN2kSU_aYwLMx_bbzEADaLIee-EyXfXAkx7xE54HeN9LchFTBELec7bljOsPx-0B0gR5sdue9XLLud4p_Yps-G7oO92r8YJsWDvZDUzzN-SylGNbDqxnG_JrHyvkpwwV44HWR6AThgAZoodCMdIFfU4O7Uy9zS5FauNEI9acDhDp9wIUQkCPDcBGQKm42AoTdSfKd3d0tg7m1b1y4BPEn6cFaKkJ_SOmBWo-vSWvg50LvPszXpGHr1_ur791t3c3--vPt50XStcu8H5QmjO944JZxZic3KilGx1IJYJlbgwjsEFaPgzQJkpyL4T0owjBWhBXZH_2TskezVNuL80nkyya542UD8bmin4GMzW_79sVvVDSBem88KOSWo4tXi9Xlz67WjylZAj_fJyZtRdzNH97MWsv5txLAz_-B3qstmKKNVucX8Y_nXFoQf1AyKY8hw8TZvC1_QRfUvwGR6Ox7g |
CitedBy_id | crossref_primary_10_1038_s41467_024_52160_5 crossref_primary_10_1016_j_soilbio_2025_109770 |
Cites_doi | 10.1016/S0003-2670(00)88444-5 10.1016/j.scitotenv.2023.161746 10.1016/j.apsoil.2022.104579 10.1111/2041-210X.12512 10.1111/j.1461-0248.2006.00919.x 10.1016/j.soilbio.2018.10.006 10.1016/j.catena.2023.106968 10.1038/nature20139 10.1002/ldr.4318 10.1890/03-9000 10.1038/s41467-018-05980-1 10.1016/j.soilbio.2013.08.004 10.1146/annurev-ecolsys-071112-124414 10.1016/j.soilbio.2015.10.019 10.59717/j.xinn-geo.2024.100048 10.3390/f14020357 10.1016/S0038-0717(02)00074-3 10.1038/s41467-018-06232-y 10.1021/es071217x 10.1038/ngeo846 10.1016/j.soilbio.2011.03.017 10.1016/j.soilbio.2016.01.016 10.1207/S15328007SEM0702_4 10.1016/j.soilbio.2023.108967 10.1016/j.soilbio.2009.02.031 10.1016/j.foreco.2022.120341 10.1016/j.soilbio.2019.05.019 10.1111/gcb.14781 10.1111/j.1365-2389.1955.tb00849.x 10.1890/15-2110.1 10.1016/0038-0717(87)90052-6 10.1016/j.soilbio.2018.09.036 10.1111/j.1461-0248.2005.00756.x 10.1038/ncomms4694 10.1016/j.soilbio.2006.01.022 10.1016/j.soilbio.2008.10.032 10.1038/ncomms13630 10.1111/gcb.16861 10.1007/s00374-003-0678-2 10.1016/0038-0717(82)90001-3 10.1016/j.soilbio.2022.108677 10.1016/j.geoderma.2022.115932 10.18637/jss.v035.b01 10.1016/j.geoderma.2023.116416 10.2136/sssaj1989.03615995005300060016x 10.3390/f14040853 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.geoderma.2024.116856 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_da50c20042354bf4bc3c954649116c4e 10_1016_j_geoderma_2024_116856 S0016706124000855 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c356t-f127561068130a5004db964b9be453fa0b9f9e074a177ee07541c334c93ffaae3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:29:19 EDT 2025 Tue Jul 01 04:05:02 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Sat Aug 17 15:43:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial element use efficiencies Ecoenzymatic stoichiometry theory Microbial growth Extracellular enzymes Nutrient limitation Soil carbon and nitrogen cycling |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-f127561068130a5004db964b9be453fa0b9f9e074a177ee07541c334c93ffaae3 |
ORCID | 0000-0002-3460-5302 0000-0002-7347-1423 0000-0002-8624-2785 0000-0003-2178-8258 0000-0001-9743-2915 0000-0002-5756-7505 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706124000855 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_da50c20042354bf4bc3c954649116c4e crossref_primary_10_1016_j_geoderma_2024_116856 crossref_citationtrail_10_1016_j_geoderma_2024_116856 elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_116856 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Murphy, Riley (b0130) 1962; 27 Auwal, Sun, Adamu, Meng, Van Zwieten, Pal Singh, Luo, Xu (b0020) 2023; 224 Schimel, Weintraub, Moorhead (b0150) 2022; 169 Brant, Sulzman, Myrold (b0025) 2006; 38 Cui, Moorhead, Peng, Sinsabaugh, Peñuelas (b0050) 2024 German, Weintraub, Grandy, Lauber, Rinkes, Allison (b0060) 2011; 43 Zhang, Zheng, Noll, Hu, Wanek (b0235) 2019; 135 Allison, LeBauer, Ofrecio, Reyes, Ta, Tran (b0010) 2009; 41 Kallenbach, Frey, Grandy (b0080) 2016; 7 Allison (b0005) 2005; 8 Wild, Schnecker, Bárta, Čapek, Guggenberger, Hofhansl, Kaiser, Lashchinsky, Mikutta, Mooshammer, Šantrůčková, Shibistova, Urich, Zimov, Richter (b0225) 2013; 67 Sinsabaugh, Turner, Talbot, Waring, Powers, Kuske, Moorhead, Shah (b0180) 2016; 86 He, Zhang, Shen, Ling, Nan (b0070) 2023 Shipley (b0165) 2000; 7 Li, Shi, Li, Hu, Ma (b0090) 2023; 870 Scott, Condron (b0155) 2003; 39 Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch, Schnecker, Takriti, Watzka, Wild, Keiblinger, Zechmeister-Boltenstern, Richter (b0120) 2014; 5 Lv, Zheng, Zhai, Li (b0100) 2022; 178 Moorhead, Sinsabaugh, Hill, Weintraub (b0115) 2016; 93 Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (b0125) 2014; 5 Saunders, Williams (b0145) 1955; 6 Sinsabaugh, Follstad Shah (b0175) 2012; 43 Sun, Li, Qu, Wang, Sang, Wang, Sun, Wanek, Moorhead, Bai, Wang (b0200) 2023; 432 Chen, Liu, Mao, Qin, Wang, Liu, Blagodatsky, Yang, Zhang, Zhang, Yu, Yang (b0045) 2018; 9 Ji, Yuan, Liu, Yu, Li, Wu, Qin, Chen (b0075) 2023 Valero-Mora (b0210) 2010; 35 Simpson, Simpson, Smith, Kelleher (b0170) 2007; 41 Brooks, Stark, McInteer, Preston (b0035) 1989; 53 R Core Team (b0135) 2021 Allison, Wallenstein, Bradford (b0015) 2010; 3 Slessarev, Lin, Bingham, Johnson, Dai, Schimel, Chadwick (b0185) 2016; 540 Liang, Amelung, Lehmann, Kästner (b0095) 2019; 25 Manzoni, Porporato (b0110) 2009; 41 Zheng, Hu, Zhang, Noll, Bockle, Richter, Wanek (b0240) 2019; 128 Sun, Wang, Ruan (b0205) 2022; 519 Brown, Gillooly, Allen, Savage, West (b0040) 2004; 85 Frost, Benstead, Cross, Hillebrand, Larson, Xenopoulos, Yoshida (b0055) 2006; 9 Shen, Ye, Liu, Deng, He, Cheng (b0160) 2023; 14 Saiya-Cork, Sinsabaugh, Zak (b0140) 2002; 34 Song, Li, Liu, Liang, Li, Zhang, Zheng, Wang, Wu, Wu (b0190) 2022 Spohn, Klaus, Wanek, Richter (b0195) 2016; 96 Brookes, Powlson, Jenkinson (b0030) 1982; 14 Wang, Wu, Li, Chen, Chen, Yin, Yao, Chen (b0220) 2022; 422 Lefcheck (b0085) 2016; 7 Wu, Zou, Wang, Zhou, Zheng, Huang, He (b0230) 2023; 178 Geyer, Dijkstra, Sinsabaugh, Frey (b0065) 2019; 128 Malik, Puissant, Buckeridge, Goodall, Jehmlich, Chowdhury, Gweon, Peyton, Mason, van Agtmaal, Blaud, Clark, Whitaker, Pywell, Ostle, Gleixner, Griffiths (b0105) 2018; 9 Vance, Brookes, Jenkinson (b0215) 1987; 19 Slessarev (10.1016/j.geoderma.2024.116856_b0185) 2016; 540 Lefcheck (10.1016/j.geoderma.2024.116856_b0085) 2016; 7 He (10.1016/j.geoderma.2024.116856_b0070) 2023 Sinsabaugh (10.1016/j.geoderma.2024.116856_b0175) 2012; 43 Brooks (10.1016/j.geoderma.2024.116856_b0035) 1989; 53 Liang (10.1016/j.geoderma.2024.116856_b0095) 2019; 25 Frost (10.1016/j.geoderma.2024.116856_b0055) 2006; 9 Auwal (10.1016/j.geoderma.2024.116856_b0020) 2023; 224 Kallenbach (10.1016/j.geoderma.2024.116856_b0080) 2016; 7 Mooshammer (10.1016/j.geoderma.2024.116856_b0120) 2014; 5 Cui (10.1016/j.geoderma.2024.116856_b0050) 2024 Allison (10.1016/j.geoderma.2024.116856_b0010) 2009; 41 Chen (10.1016/j.geoderma.2024.116856_b0045) 2018; 9 Mooshammer (10.1016/j.geoderma.2024.116856_b0125) 2014; 5 Zhang (10.1016/j.geoderma.2024.116856_b0235) 2019; 135 Sinsabaugh (10.1016/j.geoderma.2024.116856_b0180) 2016; 86 Spohn (10.1016/j.geoderma.2024.116856_b0195) 2016; 96 Manzoni (10.1016/j.geoderma.2024.116856_b0110) 2009; 41 Brant (10.1016/j.geoderma.2024.116856_b0025) 2006; 38 Murphy (10.1016/j.geoderma.2024.116856_b0130) 1962; 27 Song (10.1016/j.geoderma.2024.116856_b0190) 2022 Zheng (10.1016/j.geoderma.2024.116856_b0240) 2019; 128 R Core Team (10.1016/j.geoderma.2024.116856_b0135) 2021 Malik (10.1016/j.geoderma.2024.116856_b0105) 2018; 9 Schimel (10.1016/j.geoderma.2024.116856_b0150) 2022; 169 Wang (10.1016/j.geoderma.2024.116856_b0220) 2022; 422 Sun (10.1016/j.geoderma.2024.116856_b0200) 2023; 432 Sun (10.1016/j.geoderma.2024.116856_b0205) 2022; 519 Brookes (10.1016/j.geoderma.2024.116856_b0030) 1982; 14 Saiya-Cork (10.1016/j.geoderma.2024.116856_b0140) 2002; 34 Saunders (10.1016/j.geoderma.2024.116856_b0145) 1955; 6 Lv (10.1016/j.geoderma.2024.116856_b0100) 2022; 178 Brown (10.1016/j.geoderma.2024.116856_b0040) 2004; 85 Allison (10.1016/j.geoderma.2024.116856_b0005) 2005; 8 Ji (10.1016/j.geoderma.2024.116856_b0075) 2023 Wild (10.1016/j.geoderma.2024.116856_b0225) 2013; 67 Valero-Mora (10.1016/j.geoderma.2024.116856_b0210) 2010; 35 Moorhead (10.1016/j.geoderma.2024.116856_b0115) 2016; 93 German (10.1016/j.geoderma.2024.116856_b0060) 2011; 43 Scott (10.1016/j.geoderma.2024.116856_b0155) 2003; 39 Shen (10.1016/j.geoderma.2024.116856_b0160) 2023; 14 Wu (10.1016/j.geoderma.2024.116856_b0230) 2023; 178 Li (10.1016/j.geoderma.2024.116856_b0090) 2023; 870 Simpson (10.1016/j.geoderma.2024.116856_b0170) 2007; 41 Vance (10.1016/j.geoderma.2024.116856_b0215) 1987; 19 Allison (10.1016/j.geoderma.2024.116856_b0015) 2010; 3 Shipley (10.1016/j.geoderma.2024.116856_b0165) 2000; 7 Geyer (10.1016/j.geoderma.2024.116856_b0065) 2019; 128 |
References_xml | – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: b0195 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling publication-title: Soil Biol. Biochem. – start-page: 100048 year: 2024 ident: b0050 article-title: Predicting microbial nutrient limitations from a stoichiometry-based threshold framework publication-title: Innov. Geosci. – volume: 9 start-page: 3591 year: 2018 ident: b0105 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. – volume: 53 start-page: 1707 year: 1989 end-page: 1711 ident: b0035 article-title: Diffusion method to prepare soil extracts for automated nitrogen-15 analysis publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 13630 year: 2016 ident: b0080 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: b0095 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Global Change Biol. – volume: 41 start-page: 293 year: 2009 end-page: 302 ident: b0010 article-title: Low levels of nitrogen addition stimulate decomposition by boreal forest fungi publication-title: Soil Biol. Biochem. – year: 2021 ident: b0135 article-title: R: A Language and Environment for Statistical Computing – volume: 128 start-page: 45 year: 2019 end-page: 55 ident: b0240 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biol. Biochem. – volume: 128 start-page: 79 year: 2019 end-page: 88 ident: b0065 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biol. Biochem. – volume: 7 start-page: 573 year: 2016 end-page: 579 ident: b0085 article-title: piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics publication-title: Methods Ecol. Evol. – volume: 34 start-page: 1309 year: 2002 end-page: 1315 ident: b0140 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biol. Biochem. – volume: 9 start-page: 774 year: 2006 end-page: 779 ident: b0055 article-title: Threshold elemental ratios of carbon and phosphorus in aquatic consumers publication-title: Ecol. Lett. – volume: 5 start-page: 22 year: 2014 ident: b0125 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 519 year: 2022 ident: b0205 article-title: Increased microbial carbon and nitrogen use efficiencies under drought stress in a poplar plantation publication-title: For. Ecol. Manage. – volume: 6 start-page: 254 year: 1955 end-page: 267 ident: b0145 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J. Soil Sci. – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: b0130 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 41 start-page: 1355 year: 2009 end-page: 1379 ident: b0110 article-title: Soil carbon and nitrogen mineralization: Theory and models across scales publication-title: Soil Biol. Biochem. – volume: 422 year: 2022 ident: b0220 article-title: Effects of C: N imbalance on soil microbial physiology in subtropical tree plantations associated with ectomycorrhizal and arbuscular mycorrhizal fungi publication-title: Geoderma – volume: 85 start-page: 1771 year: 2004 end-page: 1789 ident: b0040 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 43 start-page: 313 year: 2012 end-page: 343 ident: b0175 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annu. Rev. Ecol. Evolut. Syst. – volume: 224 year: 2023 ident: b0020 article-title: The phosphorus limitation in the post-fire forest soils increases soil CO publication-title: CATENA – volume: 38 start-page: 2219 year: 2006 end-page: 2232 ident: b0025 article-title: Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation publication-title: Soil Biol. Biochem. – volume: 7 start-page: 206 year: 2000 end-page: 218 ident: b0165 article-title: A new inferential test for path models based on directed acyclic graphs publication-title: Struct. Eq. Model.: A Multidiscip. J. – volume: 540 start-page: 567 year: 2016 end-page: 569 ident: b0185 article-title: Water balance creates a threshold in soil pH at the global scale publication-title: Nature – volume: 9 start-page: 3951 year: 2018 ident: b0045 article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency publication-title: Nat. Commun. – volume: 43 start-page: 1387 year: 2011 end-page: 1397 ident: b0060 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biol. Biochem. – year: 2023 ident: b0070 article-title: Microbial carbon use efficiency in different ecosystems: A meta-analysis based on a biogeochemical equilibrium model publication-title: Global Change Biol. – volume: 178 year: 2022 ident: b0100 article-title: Cover cropping and chemical fertilizer seasonally mediate microbial carbon and phosphorus metabolisms in an apple orchard: Evidence from the enzymatic stoichiometry method publication-title: Appl. Soil Ecol. – volume: 14 start-page: 319 year: 1982 end-page: 329 ident: b0030 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. – volume: 14 start-page: 357 year: 2023 ident: b0160 article-title: Linkage between leaf-litter-soil, microbial resource limitation, and carbon-use efficiency in successive Chinese fir (Cunninghamia lanceolata) plantations publication-title: Forests – volume: 870 year: 2023 ident: b0090 article-title: Extracellular enzyme stoichiometry and microbial resource limitation following various grassland reestablishment in abandoned cropland publication-title: Sci. Total Environ. – volume: 169 year: 2022 ident: b0150 article-title: Estimating microbial carbon use efficiency in soil: Isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use publication-title: Soil Biol. Biochem. – volume: 67 start-page: 85 year: 2013 end-page: 93 ident: b0225 article-title: Nitrogen dynamics in turbic cryosols from Siberia and Greenland publication-title: Soil Biol. Biochem. – volume: 135 start-page: 304 year: 2019 end-page: 315 ident: b0235 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. – year: 2022 ident: b0190 article-title: Altered microbial resource limitation regulates soil organic carbon sequestration based on ecoenzyme stoichiometry under long-term tillage systems publication-title: Land Degradat. Dev. – volume: 5 start-page: 3694 year: 2014 ident: b0120 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. – volume: 41 start-page: 8070 year: 2007 end-page: 8076 ident: b0170 article-title: Microbially derived inputs to soil organic matter: Are current estimates too low? publication-title: Environ. Sci. Technol. – volume: 178 year: 2023 ident: b0230 article-title: Effects of multispecies restoration on soil extracellular enzyme activity stoichiometry in Pinus massoniana plantations of subtropical China publication-title: Soil Biol. Biochem. – year: 2023 ident: b0075 article-title: Short-term effects of Bamboo biochar and oyster shell powder on soil organic carbon fraction, microbial respiration, and enzymatic stoichiometry in a Lei Bamboo Plantation publication-title: Forests – volume: 35 start-page: 1 year: 2010 end-page: 3 ident: b0210 article-title: ggplot2: Elegant graphics for data analysis publication-title: J. Stat. Softw. – volume: 3 start-page: 336 year: 2010 end-page: 340 ident: b0015 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. – volume: 86 start-page: 172 year: 2016 end-page: 189 ident: b0180 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecol. Monogr. – volume: 432 year: 2023 ident: b0200 article-title: Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments publication-title: Geoderma – volume: 93 start-page: 1 year: 2016 end-page: 7 ident: b0115 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biol. Biochem. – volume: 8 start-page: 626 year: 2005 end-page: 635 ident: b0005 article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecol. Lett. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: b0215 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 39 start-page: 65 year: 2003 end-page: 73 ident: b0155 article-title: Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system publication-title: Biol. Fert. Soils – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.geoderma.2024.116856_b0130 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 870 year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0090 article-title: Extracellular enzyme stoichiometry and microbial resource limitation following various grassland reestablishment in abandoned cropland publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161746 – volume: 178 year: 2022 ident: 10.1016/j.geoderma.2024.116856_b0100 article-title: Cover cropping and chemical fertilizer seasonally mediate microbial carbon and phosphorus metabolisms in an apple orchard: Evidence from the enzymatic stoichiometry method publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2022.104579 – volume: 7 start-page: 573 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0085 article-title: piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12512 – volume: 5 start-page: 22 issue: 22 year: 2014 ident: 10.1016/j.geoderma.2024.116856_b0125 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 9 start-page: 774 issue: 7 year: 2006 ident: 10.1016/j.geoderma.2024.116856_b0055 article-title: Threshold elemental ratios of carbon and phosphorus in aquatic consumers publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2006.00919.x – volume: 128 start-page: 45 year: 2019 ident: 10.1016/j.geoderma.2024.116856_b0240 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.10.006 – volume: 224 year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0020 article-title: The phosphorus limitation in the post-fire forest soils increases soil CO2 emission via declining cellular carbon use efficiency and increasing extracellular phosphatase publication-title: CATENA doi: 10.1016/j.catena.2023.106968 – volume: 540 start-page: 567 issue: 7634 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0185 article-title: Water balance creates a threshold in soil pH at the global scale publication-title: Nature doi: 10.1038/nature20139 – year: 2022 ident: 10.1016/j.geoderma.2024.116856_b0190 article-title: Altered microbial resource limitation regulates soil organic carbon sequestration based on ecoenzyme stoichiometry under long-term tillage systems publication-title: Land Degradat. Dev. doi: 10.1002/ldr.4318 – volume: 85 start-page: 1771 issue: 7 year: 2004 ident: 10.1016/j.geoderma.2024.116856_b0040 article-title: Toward a metabolic theory of ecology publication-title: Ecology doi: 10.1890/03-9000 – volume: 9 start-page: 3591 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2024.116856_b0105 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. doi: 10.1038/s41467-018-05980-1 – volume: 67 start-page: 85 year: 2013 ident: 10.1016/j.geoderma.2024.116856_b0225 article-title: Nitrogen dynamics in turbic cryosols from Siberia and Greenland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.004 – volume: 43 start-page: 313 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2024.116856_b0175 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annu. Rev. Ecol. Evolut. Syst. doi: 10.1146/annurev-ecolsys-071112-124414 – volume: 93 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0115 article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.10.019 – start-page: 100048 year: 2024 ident: 10.1016/j.geoderma.2024.116856_b0050 article-title: Predicting microbial nutrient limitations from a stoichiometry-based threshold framework publication-title: Innov. Geosci. doi: 10.59717/j.xinn-geo.2024.100048 – volume: 14 start-page: 357 issue: 2 year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0160 article-title: Linkage between leaf-litter-soil, microbial resource limitation, and carbon-use efficiency in successive Chinese fir (Cunninghamia lanceolata) plantations publication-title: Forests doi: 10.3390/f14020357 – volume: 34 start-page: 1309 issue: 9 year: 2002 ident: 10.1016/j.geoderma.2024.116856_b0140 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00074-3 – volume: 9 start-page: 3951 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2024.116856_b0045 article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency publication-title: Nat. Commun. doi: 10.1038/s41467-018-06232-y – volume: 41 start-page: 8070 issue: 23 year: 2007 ident: 10.1016/j.geoderma.2024.116856_b0170 article-title: Microbially derived inputs to soil organic matter: Are current estimates too low? publication-title: Environ. Sci. Technol. doi: 10.1021/es071217x – volume: 3 start-page: 336 issue: 5 year: 2010 ident: 10.1016/j.geoderma.2024.116856_b0015 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. doi: 10.1038/ngeo846 – volume: 43 start-page: 1387 issue: 7 year: 2011 ident: 10.1016/j.geoderma.2024.116856_b0060 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.03.017 – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0195 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.016 – volume: 7 start-page: 206 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2024.116856_b0165 article-title: A new inferential test for path models based on directed acyclic graphs publication-title: Struct. Eq. Model.: A Multidiscip. J. doi: 10.1207/S15328007SEM0702_4 – volume: 178 year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0230 article-title: Effects of multispecies restoration on soil extracellular enzyme activity stoichiometry in Pinus massoniana plantations of subtropical China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2023.108967 – volume: 41 start-page: 1355 issue: 7 year: 2009 ident: 10.1016/j.geoderma.2024.116856_b0110 article-title: Soil carbon and nitrogen mineralization: Theory and models across scales publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.02.031 – volume: 519 year: 2022 ident: 10.1016/j.geoderma.2024.116856_b0205 article-title: Increased microbial carbon and nitrogen use efficiencies under drought stress in a poplar plantation publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2022.120341 – volume: 135 start-page: 304 year: 2019 ident: 10.1016/j.geoderma.2024.116856_b0235 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.019 – volume: 25 start-page: 3578 issue: 11 year: 2019 ident: 10.1016/j.geoderma.2024.116856_b0095 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Global Change Biol. doi: 10.1111/gcb.14781 – volume: 6 start-page: 254 issue: 2 year: 1955 ident: 10.1016/j.geoderma.2024.116856_b0145 article-title: Observations on the determination of total organic phosphorus in soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1955.tb00849.x – volume: 86 start-page: 172 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0180 article-title: Stoichiometry of microbial carbon use efficiency in soils publication-title: Ecol. Monogr. doi: 10.1890/15-2110.1 – volume: 19 start-page: 703 issue: 6 year: 1987 ident: 10.1016/j.geoderma.2024.116856_b0215 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 128 start-page: 79 year: 2019 ident: 10.1016/j.geoderma.2024.116856_b0065 article-title: Clarifying the interpretation of carbon use efficiency in soil through methods comparison publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.09.036 – volume: 8 start-page: 626 issue: 6 year: 2005 ident: 10.1016/j.geoderma.2024.116856_b0005 article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2005.00756.x – volume: 5 start-page: 3694 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2024.116856_b0120 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. doi: 10.1038/ncomms4694 – volume: 38 start-page: 2219 issue: 8 year: 2006 ident: 10.1016/j.geoderma.2024.116856_b0025 article-title: Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.01.022 – volume: 41 start-page: 293 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2024.116856_b0010 article-title: Low levels of nitrogen addition stimulate decomposition by boreal forest fungi publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.032 – volume: 7 start-page: 13630 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2024.116856_b0080 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. doi: 10.1038/ncomms13630 – year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0070 article-title: Microbial carbon use efficiency in different ecosystems: A meta-analysis based on a biogeochemical equilibrium model publication-title: Global Change Biol. doi: 10.1111/gcb.16861 – year: 2021 ident: 10.1016/j.geoderma.2024.116856_b0135 – volume: 39 start-page: 65 issue: 2 year: 2003 ident: 10.1016/j.geoderma.2024.116856_b0155 article-title: Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system publication-title: Biol. Fert. Soils doi: 10.1007/s00374-003-0678-2 – volume: 14 start-page: 319 issue: 4 year: 1982 ident: 10.1016/j.geoderma.2024.116856_b0030 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90001-3 – volume: 169 year: 2022 ident: 10.1016/j.geoderma.2024.116856_b0150 article-title: Estimating microbial carbon use efficiency in soil: Isotope-based and enzyme-based methods measure fundamentally different aspects of microbial resource use publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108677 – volume: 422 year: 2022 ident: 10.1016/j.geoderma.2024.116856_b0220 article-title: Effects of C: N imbalance on soil microbial physiology in subtropical tree plantations associated with ectomycorrhizal and arbuscular mycorrhizal fungi publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115932 – volume: 35 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2024.116856_b0210 article-title: ggplot2: Elegant graphics for data analysis publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.b01 – volume: 432 year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0200 article-title: Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116416 – volume: 53 start-page: 1707 issue: 6 year: 1989 ident: 10.1016/j.geoderma.2024.116856_b0035 article-title: Diffusion method to prepare soil extracts for automated nitrogen-15 analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300060016x – year: 2023 ident: 10.1016/j.geoderma.2024.116856_b0075 article-title: Short-term effects of Bamboo biochar and oyster shell powder on soil organic carbon fraction, microbial respiration, and enzymatic stoichiometry in a Lei Bamboo Plantation publication-title: Forests doi: 10.3390/f14040853 |
SSID | ssj0017020 |
Score | 2.4408 |
Snippet | •Microbial CUE and NUE estimated by the 18O-approach were negatively related to those estimated by the enzyme model using C:P stoichiometry.•Microbial CUE and... Microbial carbon and nitrogen use efficiencies (CUE and NUE) are central to our understanding of soil C and N cycling. Although both the 18O-labeling approach... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 116856 |
SubjectTerms | Ecoenzymatic stoichiometry theory Extracellular enzymes Microbial element use efficiencies Microbial growth Nutrient limitation Soil carbon and nitrogen cycling |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAatakficeCqCoGWKjULbKdC6SiKUrTocz8cM5OUmXrwhZFOcvynX2flbvvI-QBshjcNSMwIKKAa8kDNdQ6gDQEsApUmvoC2Vc5nfGXuZh3pL5cTVhND1wv3CDVYmhHvnxDcJNxY5lVgkuOu1RaDu70xZzXXqaa_wcRoqBOP_ACveGkxTzT0IjjOSFjJ1ndSUWesb-TkTpZZnJCjht4SMf1tE7JARRn5Gj8UTYUGXBOfnd1gph1KOI32oqc4JaneUGXuSdXwmGsLs2qoLpIKe7ccoXBQjdroOB5I8Dp8q6po9lA2AopNVsaxm8U48I3qXs7vJ1C8bNdAkWUmNtP161fldsLMps8vz9Ng0ZLIbBMyCrIHJE7QiUZY9JyKgg8NUpyowxwwTI9NCpTgHhCh1EE-CB4aBnjVrEs0xrYJekVqwKuCE2lxJzP4hFacakhBk8zGDsem9DKsE9Eu6yJbYjGnd7FV9JWlC2S1h2Jc0dSu6NPBju775pqY6_Fo_Pa7mtHle1fYAAlTQAl-wKoT1Tr86RBHTWawKHyPRO4_o8J3JBDN2RdDnRLelW5gTtEOpW590H9B1ON_YI priority: 102 providerName: Directory of Open Access Journals |
Title | Interpreting the differences in microbial carbon and nitrogen use efficiencies estimated by 18O labeling and ecoenzyme stoichiometry |
URI | https://dx.doi.org/10.1016/j.geoderma.2024.116856 https://doaj.org/article/da50c20042354bf4bc3c954649116c4e |
Volume | 444 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQXNoDKv0Q28LKh17TXW8mTnzcItBCJXopErfIdiY0CLIoLIftoaf-8M44zmo5ceCWWB4r8UxmnqOZN0J8xbpAPmYkDrM8AashMVNrE6wUojdoqiokyF7qxRVcXGfXO-JkqIXhtMro-3ufHrx1HJnE3Zw8NA3X-Cqdc4SGPtuKK9ghZyv_9neT5qHyaaRmVDrh2VtVwrekI244FviHZkDeQxfcyHorQAUe_604tRV7zt6J_Qga5bx_rgOxg-178XZ-00XiDPwg_m2yBykWSUJ1cmh9Qo5ANq28bwLlEi3jbeeWrbRtJel77pZkQvLpESUGNgnkbr2Pksk3CMxiJd1aquKnJGsJpetBjs6s2P5Z36Mk7Nj431zDv-rWH8XV2emvk0USOywkPs30KqmZ3p0AlC4olHFvBKic0eCMQ8jS2k6dqQ0SyrAqz5EuMlA-TcGbtK6txfST2G2XLR4KWWlNSCAtZiQF2mKBgXywYHYb5bUaiWzY1tJH-nHugnFXDnlmt-WgjpLVUfbqGInJRu6hJ-B4UeI7a20zmwm0w8CyuymjBZUVva2fhaygDFwNzqfeZKCBnL_2gCNhBp2Xz-yRlmpeeIDPr5D9It7wXZ8bdCR2V90THhPsWblxsOux2Juf_1hcjsPPg_9iXAR9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbSdGgzBH2iTvrg0I6qTYuixKFD-gicJk2XBMjGktQpUdDIgewgcIZO_Uf9g72jKMOdMhTZDFlHSHenuyPw8fsYewtVAbTNSBxkeSKtkokeWZtAKQC8Bl2WASB7qCbH8utJdrLG_vRnYQhWGWt_V9NDtY5XhtGbw8u6pjO-QuXUoWWHtorIyn1YXOO-bfZh7zMG-d14vPvl6NMkidICiU8zNU8q4jXHyUEVWMNJFECWTivptAOZpZUdOV1pwPZqRZ4D_sik8GkqvU6rylpIcd177D7eW5BswvtfS1yJyEeRC1KohB5v5VjyOSYFKZwFwqOxxHKlClLOXumIQThgpTGuNLvdR2wzTql8p3PEY7YGzRO2sXPaRqYOeMp-L-GK2Pw4jpG811rBysPrhl_UgeMJl_G2ddOG26bkWEDaKeYsv5oBh0BfASQPPOPE9oHTM5TcLbgovnNMz3BWPtjhJhmam8UFcBxWa39GpAHzdvGMHd-J35-z9WbawAvGS6Vw9ED_o5VUFgoIbIcF0ekIr8SAZb1bjY985yS78dP0wLZz04fDUDhMF44BGy7tLjvGj1stPlLUlncTY3e4MG1PTUxZU-Lb-nGAIWXSVdL51OtMKondRnkJA6b7mJt_PgBcqr7lAbb-w_YNezA5-nZgDvYO97fZQ_qnAya9ZOvz9gpe4cw1d69DjnP2464_qr997T4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+the+differences+in+microbial+carbon+and+nitrogen+use+efficiencies+estimated+by+18O+labeling+and+ecoenzyme+stoichiometry&rft.jtitle=Geoderma&rft.au=Sun%2C+Lifei&rft.au=Qu%2C+Lingrui&rft.au=Moorhead%2C+Daryl+L.&rft.au=Cui%2C+Yongxing&rft.date=2024-04-01&rft.issn=0016-7061&rft.volume=444&rft.spage=116856&rft_id=info:doi/10.1016%2Fj.geoderma.2024.116856&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2024_116856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |