A New Integer Order Approximation Table for Fractional Order Derivative Operators
There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractiona...
Saved in:
Published in | IFAC-PapersOnLine Vol. 50; no. 1; pp. 9736 - 9741 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2405-8963 2405-8963 |
DOI | 10.1016/j.ifacol.2017.08.2177 |
Cover
Abstract | There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (sa) where α ϵ R and 0 < α < 1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup’s and Matsuda’s methods. |
---|---|
AbstractList | There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (sa) where α ϵ R and 0 < α < 1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup’s and Matsuda’s methods. |
Author | Tan, Nusret Yüce, Ali Deniz, Furkan N. |
Author_xml | – sequence: 1 givenname: Ali surname: Yüce fullname: Yüce, Ali email: ali.yuce@inonu.edu.tr – sequence: 2 givenname: Furkan N. surname: Deniz fullname: Deniz, Furkan N. email: furkan.deniz@inonu.edu.tr – sequence: 3 givenname: Nusret surname: Tan fullname: Tan, Nusret email: nusret.tan@inonu.edu.tr |
BookMark | eNqFkN1Kw0AQhRepYK19BCEvkLg_-dnFCynVaqFYhHq9bDazsiVmwyRUfXsT2wvxxpuZYThnmPNdkkkTGiDkmtGEUZbf7BPvjA11wikrEioTzorijEx5SrNYqlxMfs0XZN51e0opV3laKDklL4voGT6iddPDG2C0xWqoi7bF8OnfTe9DE-1MWUPkAkYrNHZcmfokvAf0h0F1gGjbApo-YHdFzp2pO5if-oy8rh52y6d4s31cLxeb2Ios72NQKbgMjDOlSk1qKedVpUpBLTiRF5xzwSwrU1U5SE3mpMitYdII6mymZCFmJDvetRi6DsHpFoeX8Uszqkc0eq-PaPSIRlOpRzSD7_aPz_r-J2mPxtf_uu-ObhiiHTyg7qyHxkLlEWyvq-D_ufANQVmFhg |
CitedBy_id | crossref_primary_10_24012_dumf_860298 crossref_primary_10_1016_j_arcontrol_2020_03_003 crossref_primary_10_1016_j_jestch_2022_101167 crossref_primary_10_1109_ACCESS_2021_3069444 crossref_primary_10_1177_0142331220977660 crossref_primary_10_1007_s11831_022_09824_6 crossref_primary_10_1002_cta_3554 crossref_primary_10_1109_ACCESS_2021_3055117 crossref_primary_10_1016_j_arcontrol_2019_03_008 crossref_primary_10_2478_amcs_2019_0023 crossref_primary_10_1007_s13369_024_09250_9 crossref_primary_10_3390_machines13010061 |
Cites_doi | 10.2514/3.21139 10.1007/978-1-84996-335-0 10.1016/j.sigpro.2010.06.022 10.1109/TCT.1964.1082270 10.1155/2015/917382 10.1049/iet-cta.2014.0354 10.1109/ACC.2009.5160719 10.1137/1.9780898718621 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ifacol.2017.08.2177 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 9741 |
ExternalDocumentID | 10_1016_j_ifacol_2017_08_2177 S240589631732846X |
GroupedDBID | 0R~ 0SF 457 AAJQP AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c356t-e94ef5eafab94a4c022dd9b30cef36722231c1b49dfe4a5f836ca18a30fc59873 |
ISSN | 2405-8963 |
IngestDate | Thu Apr 24 23:00:22 EDT 2025 Tue Jul 01 02:06:04 EDT 2025 Sat Feb 22 15:41:37 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | Oustaloup’s approximation method Inverse Fourier transform method Fractional order system Matsuda’s approximation method Laplace transform Least-square fitting Optimization |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c356t-e94ef5eafab94a4c022dd9b30cef36722231c1b49dfe4a5f836ca18a30fc59873 |
OpenAccessLink | https://doi.org/10.1016/j.ifacol.2017.08.2177 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_ifacol_2017_08_2177 crossref_citationtrail_10_1016_j_ifacol_2017_08_2177 elsevier_sciencedirect_doi_10_1016_j_ifacol_2017_08_2177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Carlson, Halijak (bib0002) 1964; 11 Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer: London; Proposed York. Tan, N., Atherton, D.P., Yüce, A. (2015). Step and Impulse Responses of Fractional Order Control Systems with Time Delay. International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 1-6, 2015. International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 70-74. Matsuda, Fujii (bib0006) 1993; 16 Vinagre, Podlubny, Herńandez, Feliu (bib0011) 2000; 3 Xue, D., Chen, Y.Q. and Atherton, D.P. (2007). Linear Feedback Control - Analysis and Design with Matlab, SIAM Press, ISBN: 978-0-898716-38-2. (348 pages) Chapter-8: Fractional-order Controller - An Introduction. Yüce, A. and Tan, N. (2015). Analytical Inverse Laplace Transform for Fractional Order Derivative (1/s Chen, Y.Q., Petráš, I. and Xue, D. (2009). Fractional order control - A tutorial. 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 1397-1411. Oustaloup, Levron, Mathieu, Nanot (bib0008) 2000; 47 Das, S. (2008). Functional Fractional Calculus for System Identification and Control, Springer-Verlag Berlin Heidelberg, Proposed York. Atherton, Tan, Yüce (bib0001) 2015; 9 Krishna (bib0005) 2011; 91 Poularikas, A.D. (1999). Special Functions, CRC Press LLC, Boca Raton. Matsuda (10.1016/j.ifacol.2017.08.2177_bib0006) 1993; 16 10.1016/j.ifacol.2017.08.2177_bib0007 Vinagre (10.1016/j.ifacol.2017.08.2177_bib0011) 2000; 3 10.1016/j.ifacol.2017.08.2177_bib0009 10.1016/j.ifacol.2017.08.2177_bib0010 10.1016/j.ifacol.2017.08.2177_bib0013 10.1016/j.ifacol.2017.08.2177_bib0012 10.1016/j.ifacol.2017.08.2177_bib0004 Krishna (10.1016/j.ifacol.2017.08.2177_bib0005) 2011; 91 Atherton (10.1016/j.ifacol.2017.08.2177_bib0001) 2015; 9 10.1016/j.ifacol.2017.08.2177_bib0003 Carlson (10.1016/j.ifacol.2017.08.2177_bib0002) 1964; 11 Oustaloup (10.1016/j.ifacol.2017.08.2177_bib0008) 2000; 47 |
References_xml | – reference: Xue, D., Chen, Y.Q. and Atherton, D.P. (2007). Linear Feedback Control - Analysis and Design with Matlab, SIAM Press, ISBN: 978-0-898716-38-2. (348 pages) Chapter-8: Fractional-order Controller - An Introduction. – volume: 9 start-page: 817 year: 2015 end-page: 830 ident: bib0001 article-title: Methods for computing the time response of fractional-order systems publication-title: IET Control Theory and Applications – volume: 11 start-page: 210 year: 1964 end-page: 213 ident: bib0002 article-title: Approximation of fractional capacitors (1/s) publication-title: IEEE Trans. on Circuit Theory – reference: Yüce, A. and Tan, N. (2015). Analytical Inverse Laplace Transform for Fractional Order Derivative (1/s – volume: 3 start-page: 231 year: 2000 end-page: 248 ident: bib0011 article-title: Some approximations of fractional order operators used in control theory and applications publication-title: Fractional Calculus and Applied Analysis – volume: 16 start-page: 1146 year: 1993 end-page: 1153 ident: bib0006 article-title: H∞–optimized wave-absorbing control: analytical and experimental results publication-title: Journal of Guidance, Control and Dynamics – reference: Tan, N., Atherton, D.P., Yüce, A. (2015). Step and Impulse Responses of Fractional Order Control Systems with Time Delay. International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 1-6, 2015. – volume: 47 start-page: 25 year: 2000 end-page: 39 ident: bib0008 article-title: Frequency band complex noninteger differentiator: characterization and synthesis publication-title: IEEE Trans. on Circuit and Systems – I, Fundamental Theory and Application – reference: Das, S. (2008). Functional Fractional Calculus for System Identification and Control, Springer-Verlag Berlin Heidelberg, Proposed York. – reference: Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer: London; Proposed York. – volume: 91 start-page: 386 year: 2011 end-page: 426 ident: bib0005 article-title: Studies on fractional order differentiators and integrators: a survey publication-title: Signal Processing – reference: ). International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 70-74. – reference: Poularikas, A.D. (1999). Special Functions, CRC Press LLC, Boca Raton. – reference: Chen, Y.Q., Petráš, I. and Xue, D. (2009). Fractional order control - A tutorial. 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 1397-1411. – volume: 16 start-page: 1146 issue: 6 year: 1993 ident: 10.1016/j.ifacol.2017.08.2177_bib0006 article-title: H∞–optimized wave-absorbing control: analytical and experimental results publication-title: Journal of Guidance, Control and Dynamics doi: 10.2514/3.21139 – ident: 10.1016/j.ifacol.2017.08.2177_bib0007 doi: 10.1007/978-1-84996-335-0 – volume: 47 start-page: 25 issue: 1 year: 2000 ident: 10.1016/j.ifacol.2017.08.2177_bib0008 article-title: Frequency band complex noninteger differentiator: characterization and synthesis publication-title: IEEE Trans. on Circuit and Systems – I, Fundamental Theory and Application – volume: 91 start-page: 386 issue: 3 year: 2011 ident: 10.1016/j.ifacol.2017.08.2177_bib0005 article-title: Studies on fractional order differentiators and integrators: a survey publication-title: Signal Processing doi: 10.1016/j.sigpro.2010.06.022 – volume: 11 start-page: 210 issue: 2 year: 1964 ident: 10.1016/j.ifacol.2017.08.2177_bib0002 article-title: Approximation of fractional capacitors (1/s)1/n by a regular Proposedton process publication-title: IEEE Trans. on Circuit Theory doi: 10.1109/TCT.1964.1082270 – ident: 10.1016/j.ifacol.2017.08.2177_bib0013 doi: 10.1155/2015/917382 – volume: 9 start-page: 817 issue: 7 year: 2015 ident: 10.1016/j.ifacol.2017.08.2177_bib0001 article-title: Methods for computing the time response of fractional-order systems publication-title: IET Control Theory and Applications doi: 10.1049/iet-cta.2014.0354 – ident: 10.1016/j.ifacol.2017.08.2177_bib0010 – ident: 10.1016/j.ifacol.2017.08.2177_bib0003 doi: 10.1109/ACC.2009.5160719 – volume: 3 start-page: 231 issue: 3 year: 2000 ident: 10.1016/j.ifacol.2017.08.2177_bib0011 article-title: Some approximations of fractional order operators used in control theory and applications publication-title: Fractional Calculus and Applied Analysis – ident: 10.1016/j.ifacol.2017.08.2177_bib0009 – ident: 10.1016/j.ifacol.2017.08.2177_bib0004 – ident: 10.1016/j.ifacol.2017.08.2177_bib0012 doi: 10.1137/1.9780898718621 |
SSID | ssj0002964798 |
Score | 1.8360157 |
Snippet | There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 9736 |
SubjectTerms | Fractional order system Inverse Fourier transform method Laplace transform Least-square fitting Matsuda’s approximation method Optimization Oustaloup’s approximation method |
Title | A New Integer Order Approximation Table for Fractional Order Derivative Operators |
URI | https://dx.doi.org/10.1016/j.ifacol.2017.08.2177 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIAoUOQDN-Ql2TixfQwLq_LqUrGVllNw_JC2rdJqm60Qv56xnVeliEcvUeSNs9bMl_Hn8cwYoVcsBRMXaUFSqSWhsyghohSGWJg9aWJVaf2hfV-OssMT-nGdrieTH4OopV1dTtWv0byS22gV2kCvLkv2PzTbvRQa4B70C1fQMFz_Sce5D090Tj2Xu7t0VTQdrdxe_NyEjMTXK58Z5UIJF9uQwgAqCQ--gxFeh7Lfy0vjd9uvhlT1wyKfk68SfrpaVp8H2-_f3eb623nwvufnm44Lm2rj3dGL3fYMzMbRtHcLhKyuHczH9dDPELMuJrVxfrUJMH20Edgo4AMp4aKxUWakrTGyobrsDTAFiylC6kE7-8LyJh617MHJcDrdWFfO28XkMVd7FVZUrJ_KugDDb24QbgyxK0ZEs_UddHfGmN_I_3TMOy-c23Rm_sDkbtR9mteb0X8bJzADUrJ6gO43qwmcB2g8RBNTPULHOQZY4AYW2Gsb34AF9rDAAAvcw6J5sIcF7mDxGJ0s3q_mh6Q5OYOoJM1qYgQ1NjXSylJQSRUQNa1FmUTK2CRjjhPGKi6p0NZQmVqeZErGXCaRVangLHmC9qqLyjxFOMtEpDnVzFpOFZ2VmZaJMfDlC8m0VfuItuIoVFNW3p1ucl608YOnRZBi4aRYRLxwUtxH067bZair8rcOvJV10ZDDQPoKQMifuz67fdfn6F7_LbxAe_V2Zw6AhdblSw-k31DchmI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Integer+Order+Approximation+Table+for+Fractional+Order+Derivative+Operators&rft.jtitle=IFAC-PapersOnLine&rft.au=Y%C3%BCce%2C+Ali&rft.au=Deniz%2C+Furkan+N.&rft.au=Tan%2C+Nusret&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=50&rft.issue=1&rft.spage=9736&rft.epage=9741&rft_id=info:doi/10.1016%2Fj.ifacol.2017.08.2177&rft.externalDocID=S240589631732846X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |