A New Integer Order Approximation Table for Fractional Order Derivative Operators

There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractiona...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 50; no. 1; pp. 9736 - 9741
Main Authors Yüce, Ali, Deniz, Furkan N., Tan, Nusret
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2017.08.2177

Cover

Abstract There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (sa) where α ϵ R and 0 < α < 1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup’s and Matsuda’s methods.
AbstractList There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order differential equation. However, computing analytical time responses such as unit impulse and step responses is still a difficult problem in fractional order systems. Therefore, advanced integer order approximation table which gives satisfying results is very important for simulation and realization. In this paper, an integer order approximation table is presented for fractional order derivative operators (sa) where α ϵ R and 0 < α < 1 using exact time response functions computed with inverse Laplace transform solution technique. Thus, the time responses computed using the given table are almost the same with exact solution. The results are also compared with some well-known integer order approximation methods such as Oustaloup and Matsuda. It has been shown in numerical examples that the proposed method is very successful in comparison to Oustaloup’s and Matsuda’s methods.
Author Tan, Nusret
Yüce, Ali
Deniz, Furkan N.
Author_xml – sequence: 1
  givenname: Ali
  surname: Yüce
  fullname: Yüce, Ali
  email: ali.yuce@inonu.edu.tr
– sequence: 2
  givenname: Furkan N.
  surname: Deniz
  fullname: Deniz, Furkan N.
  email: furkan.deniz@inonu.edu.tr
– sequence: 3
  givenname: Nusret
  surname: Tan
  fullname: Tan, Nusret
  email: nusret.tan@inonu.edu.tr
BookMark eNqFkN1Kw0AQhRepYK19BCEvkLg_-dnFCynVaqFYhHq9bDazsiVmwyRUfXsT2wvxxpuZYThnmPNdkkkTGiDkmtGEUZbf7BPvjA11wikrEioTzorijEx5SrNYqlxMfs0XZN51e0opV3laKDklL4voGT6iddPDG2C0xWqoi7bF8OnfTe9DE-1MWUPkAkYrNHZcmfokvAf0h0F1gGjbApo-YHdFzp2pO5if-oy8rh52y6d4s31cLxeb2Ios72NQKbgMjDOlSk1qKedVpUpBLTiRF5xzwSwrU1U5SE3mpMitYdII6mymZCFmJDvetRi6DsHpFoeX8Uszqkc0eq-PaPSIRlOpRzSD7_aPz_r-J2mPxtf_uu-ObhiiHTyg7qyHxkLlEWyvq-D_ufANQVmFhg
CitedBy_id crossref_primary_10_24012_dumf_860298
crossref_primary_10_1016_j_arcontrol_2020_03_003
crossref_primary_10_1016_j_jestch_2022_101167
crossref_primary_10_1109_ACCESS_2021_3069444
crossref_primary_10_1177_0142331220977660
crossref_primary_10_1007_s11831_022_09824_6
crossref_primary_10_1002_cta_3554
crossref_primary_10_1109_ACCESS_2021_3055117
crossref_primary_10_1016_j_arcontrol_2019_03_008
crossref_primary_10_2478_amcs_2019_0023
crossref_primary_10_1007_s13369_024_09250_9
crossref_primary_10_3390_machines13010061
Cites_doi 10.2514/3.21139
10.1007/978-1-84996-335-0
10.1016/j.sigpro.2010.06.022
10.1109/TCT.1964.1082270
10.1155/2015/917382
10.1049/iet-cta.2014.0354
10.1109/ACC.2009.5160719
10.1137/1.9780898718621
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.ifacol.2017.08.2177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 9741
ExternalDocumentID 10_1016_j_ifacol_2017_08_2177
S240589631732846X
GroupedDBID 0R~
0SF
457
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c356t-e94ef5eafab94a4c022dd9b30cef36722231c1b49dfe4a5f836ca18a30fc59873
ISSN 2405-8963
IngestDate Thu Apr 24 23:00:22 EDT 2025
Tue Jul 01 02:06:04 EDT 2025
Sat Feb 22 15:41:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Oustaloup’s approximation method
Inverse Fourier transform method
Fractional order system
Matsuda’s approximation method
Laplace transform
Least-square fitting
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-e94ef5eafab94a4c022dd9b30cef36722231c1b49dfe4a5f836ca18a30fc59873
OpenAccessLink https://doi.org/10.1016/j.ifacol.2017.08.2177
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_ifacol_2017_08_2177
crossref_citationtrail_10_1016_j_ifacol_2017_08_2177
elsevier_sciencedirect_doi_10_1016_j_ifacol_2017_08_2177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle IFAC-PapersOnLine
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Carlson, Halijak (bib0002) 1964; 11
Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer: London; Proposed York.
Tan, N., Atherton, D.P., Yüce, A. (2015). Step and Impulse Responses of Fractional Order Control Systems with Time Delay. International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 1-6, 2015.
International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 70-74.
Matsuda, Fujii (bib0006) 1993; 16
Vinagre, Podlubny, Herńandez, Feliu (bib0011) 2000; 3
Xue, D., Chen, Y.Q. and Atherton, D.P. (2007). Linear Feedback Control - Analysis and Design with Matlab, SIAM Press, ISBN: 978-0-898716-38-2. (348 pages) Chapter-8: Fractional-order Controller - An Introduction.
Yüce, A. and Tan, N. (2015). Analytical Inverse Laplace Transform for Fractional Order Derivative (1/s
Chen, Y.Q., Petráš, I. and Xue, D. (2009). Fractional order control - A tutorial. 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 1397-1411.
Oustaloup, Levron, Mathieu, Nanot (bib0008) 2000; 47
Das, S. (2008). Functional Fractional Calculus for System Identification and Control, Springer-Verlag Berlin Heidelberg, Proposed York.
Atherton, Tan, Yüce (bib0001) 2015; 9
Krishna (bib0005) 2011; 91
Poularikas, A.D. (1999). Special Functions, CRC Press LLC, Boca Raton.
Matsuda (10.1016/j.ifacol.2017.08.2177_bib0006) 1993; 16
10.1016/j.ifacol.2017.08.2177_bib0007
Vinagre (10.1016/j.ifacol.2017.08.2177_bib0011) 2000; 3
10.1016/j.ifacol.2017.08.2177_bib0009
10.1016/j.ifacol.2017.08.2177_bib0010
10.1016/j.ifacol.2017.08.2177_bib0013
10.1016/j.ifacol.2017.08.2177_bib0012
10.1016/j.ifacol.2017.08.2177_bib0004
Krishna (10.1016/j.ifacol.2017.08.2177_bib0005) 2011; 91
Atherton (10.1016/j.ifacol.2017.08.2177_bib0001) 2015; 9
10.1016/j.ifacol.2017.08.2177_bib0003
Carlson (10.1016/j.ifacol.2017.08.2177_bib0002) 1964; 11
Oustaloup (10.1016/j.ifacol.2017.08.2177_bib0008) 2000; 47
References_xml – reference: Xue, D., Chen, Y.Q. and Atherton, D.P. (2007). Linear Feedback Control - Analysis and Design with Matlab, SIAM Press, ISBN: 978-0-898716-38-2. (348 pages) Chapter-8: Fractional-order Controller - An Introduction.
– volume: 9
  start-page: 817
  year: 2015
  end-page: 830
  ident: bib0001
  article-title: Methods for computing the time response of fractional-order systems
  publication-title: IET Control Theory and Applications
– volume: 11
  start-page: 210
  year: 1964
  end-page: 213
  ident: bib0002
  article-title: Approximation of fractional capacitors (1/s)
  publication-title: IEEE Trans. on Circuit Theory
– reference: Yüce, A. and Tan, N. (2015). Analytical Inverse Laplace Transform for Fractional Order Derivative (1/s
– volume: 3
  start-page: 231
  year: 2000
  end-page: 248
  ident: bib0011
  article-title: Some approximations of fractional order operators used in control theory and applications
  publication-title: Fractional Calculus and Applied Analysis
– volume: 16
  start-page: 1146
  year: 1993
  end-page: 1153
  ident: bib0006
  article-title: H∞–optimized wave-absorbing control: analytical and experimental results
  publication-title: Journal of Guidance, Control and Dynamics
– reference: Tan, N., Atherton, D.P., Yüce, A. (2015). Step and Impulse Responses of Fractional Order Control Systems with Time Delay. International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 1-6, 2015.
– volume: 47
  start-page: 25
  year: 2000
  end-page: 39
  ident: bib0008
  article-title: Frequency band complex noninteger differentiator: characterization and synthesis
  publication-title: IEEE Trans. on Circuit and Systems – I, Fundamental Theory and Application
– reference: Das, S. (2008). Functional Fractional Calculus for System Identification and Control, Springer-Verlag Berlin Heidelberg, Proposed York.
– reference: Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Controls: Fundamentals and Applications, Springer: London; Proposed York.
– volume: 91
  start-page: 386
  year: 2011
  end-page: 426
  ident: bib0005
  article-title: Studies on fractional order differentiators and integrators: a survey
  publication-title: Signal Processing
– reference: ). International Symposium on Fractional Signals and Systems 2015 (FSS 2015), Cluj-Napoca, Romania, 70-74.
– reference: Poularikas, A.D. (1999). Special Functions, CRC Press LLC, Boca Raton.
– reference: Chen, Y.Q., Petráš, I. and Xue, D. (2009). Fractional order control - A tutorial. 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 1397-1411.
– volume: 16
  start-page: 1146
  issue: 6
  year: 1993
  ident: 10.1016/j.ifacol.2017.08.2177_bib0006
  article-title: H∞–optimized wave-absorbing control: analytical and experimental results
  publication-title: Journal of Guidance, Control and Dynamics
  doi: 10.2514/3.21139
– ident: 10.1016/j.ifacol.2017.08.2177_bib0007
  doi: 10.1007/978-1-84996-335-0
– volume: 47
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.ifacol.2017.08.2177_bib0008
  article-title: Frequency band complex noninteger differentiator: characterization and synthesis
  publication-title: IEEE Trans. on Circuit and Systems – I, Fundamental Theory and Application
– volume: 91
  start-page: 386
  issue: 3
  year: 2011
  ident: 10.1016/j.ifacol.2017.08.2177_bib0005
  article-title: Studies on fractional order differentiators and integrators: a survey
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2010.06.022
– volume: 11
  start-page: 210
  issue: 2
  year: 1964
  ident: 10.1016/j.ifacol.2017.08.2177_bib0002
  article-title: Approximation of fractional capacitors (1/s)1/n by a regular Proposedton process
  publication-title: IEEE Trans. on Circuit Theory
  doi: 10.1109/TCT.1964.1082270
– ident: 10.1016/j.ifacol.2017.08.2177_bib0013
  doi: 10.1155/2015/917382
– volume: 9
  start-page: 817
  issue: 7
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.2177_bib0001
  article-title: Methods for computing the time response of fractional-order systems
  publication-title: IET Control Theory and Applications
  doi: 10.1049/iet-cta.2014.0354
– ident: 10.1016/j.ifacol.2017.08.2177_bib0010
– ident: 10.1016/j.ifacol.2017.08.2177_bib0003
  doi: 10.1109/ACC.2009.5160719
– volume: 3
  start-page: 231
  issue: 3
  year: 2000
  ident: 10.1016/j.ifacol.2017.08.2177_bib0011
  article-title: Some approximations of fractional order operators used in control theory and applications
  publication-title: Fractional Calculus and Applied Analysis
– ident: 10.1016/j.ifacol.2017.08.2177_bib0009
– ident: 10.1016/j.ifacol.2017.08.2177_bib0004
– ident: 10.1016/j.ifacol.2017.08.2177_bib0012
  doi: 10.1137/1.9780898718621
SSID ssj0002964798
Score 1.8360157
Snippet There is considerable interest in the study of fractional order calculus in recent years because real world can be modelled better by fractional order...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9736
SubjectTerms Fractional order system
Inverse Fourier transform method
Laplace transform
Least-square fitting
Matsuda’s approximation method
Optimization
Oustaloup’s approximation method
Title A New Integer Order Approximation Table for Fractional Order Derivative Operators
URI https://dx.doi.org/10.1016/j.ifacol.2017.08.2177
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIAoUOQDN-Ql2TixfQwLq_LqUrGVllNw_JC2rdJqm60Qv56xnVeliEcvUeSNs9bMl_Hn8cwYoVcsBRMXaUFSqSWhsyghohSGWJg9aWJVaf2hfV-OssMT-nGdrieTH4OopV1dTtWv0byS22gV2kCvLkv2PzTbvRQa4B70C1fQMFz_Sce5D090Tj2Xu7t0VTQdrdxe_NyEjMTXK58Z5UIJF9uQwgAqCQ--gxFeh7Lfy0vjd9uvhlT1wyKfk68SfrpaVp8H2-_f3eb623nwvufnm44Lm2rj3dGL3fYMzMbRtHcLhKyuHczH9dDPELMuJrVxfrUJMH20Edgo4AMp4aKxUWakrTGyobrsDTAFiylC6kE7-8LyJh617MHJcDrdWFfO28XkMVd7FVZUrJ_KugDDb24QbgyxK0ZEs_UddHfGmN_I_3TMOy-c23Rm_sDkbtR9mteb0X8bJzADUrJ6gO43qwmcB2g8RBNTPULHOQZY4AYW2Gsb34AF9rDAAAvcw6J5sIcF7mDxGJ0s3q_mh6Q5OYOoJM1qYgQ1NjXSylJQSRUQNa1FmUTK2CRjjhPGKi6p0NZQmVqeZErGXCaRVangLHmC9qqLyjxFOMtEpDnVzFpOFZ2VmZaJMfDlC8m0VfuItuIoVFNW3p1ucl608YOnRZBi4aRYRLxwUtxH067bZair8rcOvJV10ZDDQPoKQMifuz67fdfn6F7_LbxAe_V2Zw6AhdblSw-k31DchmI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Integer+Order+Approximation+Table+for+Fractional+Order+Derivative+Operators&rft.jtitle=IFAC-PapersOnLine&rft.au=Y%C3%BCce%2C+Ali&rft.au=Deniz%2C+Furkan+N.&rft.au=Tan%2C+Nusret&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=50&rft.issue=1&rft.spage=9736&rft.epage=9741&rft_id=info:doi/10.1016%2Fj.ifacol.2017.08.2177&rft.externalDocID=S240589631732846X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon