Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous RuIr borides
Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-...
Saved in:
Published in | Journal of applied electrochemistry Vol. 51; no. 7; pp. 1101 - 1108 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuO
x
and electrolytic stability matching that of IrO
x
.
Graphic abstract |
---|---|
AbstractList | Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuOx and electrolytic stability matching that of IrOx.Graphic abstract Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuO x and electrolytic stability matching that of IrO x . Graphic abstract |
Author | Snyder, Joshua Intikhab, Saad Barsoum, Michel W. Natu, Varun Chatterjee, Swarnendu Sokol, Maxim Li, Yawei |
Author_xml | – sequence: 1 givenname: Saad surname: Intikhab fullname: Intikhab, Saad organization: Department of Chemical and Biological Engineering, Drexel University – sequence: 2 givenname: Maxim surname: Sokol fullname: Sokol, Maxim organization: Department of Materials Science and Engineering, Drexel University – sequence: 3 givenname: Varun surname: Natu fullname: Natu, Varun organization: Department of Materials Science and Engineering, Drexel University – sequence: 4 givenname: Swarnendu surname: Chatterjee fullname: Chatterjee, Swarnendu organization: Department of Chemical and Biological Engineering, Drexel University – sequence: 5 givenname: Yawei surname: Li fullname: Li, Yawei organization: Department of Chemical and Biological Engineering, Drexel University – sequence: 6 givenname: Michel W. surname: Barsoum fullname: Barsoum, Michel W. organization: Department of Materials Science and Engineering, Drexel University – sequence: 7 givenname: Joshua orcidid: 0000-0003-3162-4126 surname: Snyder fullname: Snyder, Joshua email: jds43@drexel.edu organization: Department of Chemical and Biological Engineering, Drexel University |
BookMark | eNp9kN9LwzAQx4NMcJv-Az4VfNGH6iVtmvRRxtTBYDgUfAsxvY6OLplJK9v-ertNEHwYHNzBfT_34zsgPessEnJN4Z4CiIdAQQLEwGgMlHMe785In3LBYikT2SN92LdkTj8uyCCEJQDkLEv75HVco2m8M7rR9bapTOQ22wXaCL9d3TaVs5FHbQ7F7Ww8v4u6YlVtsIistm7tvGtDNG8nPvp0viowXJLzUtcBr37zkLw_jd9GL_F09jwZPU5jk_CsiVEIDmWZJEWey7zANM0MQm64LIUxPGOSZgK0REZNCmWRJroLSkvKMTcokiG5Oc5de_fVYmjU0rXedisV44lgeTeRdSp5VBnvQvBYKlM1ev9O43VVKwpqb6A6Gqg6l9TBQLXrUPYPXftqpf32NJQcodCJ7QL931UnqB8q2YX8 |
CitedBy_id | crossref_primary_10_1039_D2TA04296G crossref_primary_10_1002_smll_202410407 crossref_primary_10_1002_adma_202210565 crossref_primary_10_1016_j_cej_2024_150043 |
Cites_doi | 10.1002/anie.201406455 10.1038/s41467-017-01734-7 10.1149/1.2940319 10.1016/S1359-6462(03)00471-8 10.1021/acscatal.9b00330 10.1149/1.1784820 10.1038/35068529 10.1016/j.ijhydene.2017.08.063 10.1039/C7TA05126C 10.1021/ja3019498 10.1149/2.F04181if 10.1016/j.jcat.2018.07.030 10.1002/cphc.201700126 10.1126/science.aaf5050 10.1016/j.susc.2005.07.040 10.1016/j.electacta.2012.03.041 10.1021/cs3003098 10.1016/j.jelechem.2006.11.008 10.1016/j.rser.2014.11.093 10.1038/nmat2878 10.1021/ic50074a029 10.1039/C6CS00328A 10.1021/nl5028205 10.1016/j.jcat.2020.11.038 10.1021/nl500377g 10.1016/j.jcat.2019.01.037 10.1021/acs.jpcc.5b11868 10.1016/j.ijhydene.2011.05.139 10.1002/celc.201402262 10.1016/j.actamat.2019.11.018 10.1002/anie.201608601 10.1002/adma.201703798 10.1088/0957-4484/26/8/085602 10.1021/jp025868l 10.1016/j.enconman.2018.03.088 10.1021/jz501061n 10.1093/ce/zkz033 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10800-021-01555-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-8838 |
EndPage | 1108 |
ExternalDocumentID | 10_1007_s10800_021_01555_z |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1904571 funderid: http://dx.doi.org/10.13039/501100008982 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 XOL YLTOR YQT Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c356t-e7750ff33d9989de446ce09c58f7cc56281670a8e21c40fd43a43a11f15e9ce73 |
IEDL.DBID | U2A |
ISSN | 0021-891X |
IngestDate | Fri Jul 25 11:04:10 EDT 2025 Tue Jul 01 00:44:18 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Fri Feb 21 02:49:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | PEM electrolysis Nanoporous metals Oxygen evolution reaction Dealloying |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-e7750ff33d9989de446ce09c58f7cc56281670a8e21c40fd43a43a11f15e9ce73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3162-4126 |
PQID | 2537294462 |
PQPubID | 2043600 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2537294462 crossref_citationtrail_10_1007_s10800_021_01555_z crossref_primary_10_1007_s10800_021_01555_z springer_journals_10_1007_s10800_021_01555_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of applied electrochemistry |
PublicationTitleAbbrev | J Appl Electrochem |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Snyder, Fujita, Chen, Erlebacher (CR22) 2010; 9 Kang, Snyder, Chi, Li, More, Markovic, Stamenkovic (CR28) 2014; 14 Frydendal, Paoli, Knudsen, Wickman, Malacrida, Stephens, Chorkendorff (CR10) 2014; 1 Reier, Oezaslan, Strasser (CR11) 2012; 2 Chatterjee, Griego, Hart, Li, Taheri, Keith, Snyder (CR25) 2019; 9 Rossmeisl, Qu, Zhu, Kroes, Nørskov (CR13) 2007; 607 Feng, Lv, Zhang, Li, Wang, Yang, Wang, Yang, Zhou, Lin, Wang, Guo (CR21) 2017; 29 Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (CR1) 2019; 371 Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR23) 2001; 410 Rogers, Shannon, Sleight, Gillson (CR14) 1969; 8 Li, Polakovic, Curtis, Shumlas, Chatterjee, Intikhab, Chareev, Volkova, Vasiliev, Karapetrov, Snyder (CR2) 2018; 366 Snyder, McCue, Livi, Erlebacher (CR26) 2012; 134 Erlebacher, Sieradzki (CR31) 2003; 49 Pourbaix (CR38) 1974 Audichon, Napporn, Canaff, Morais, Comminges, Kokoh (CR15) 2016; 120 Pivovar, Rustagi, Satyapal (CR7) 2018; 27 Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (CR9) 2014; 5 Mayousse, Maillard, Fouda-Onana, Sicardy, Buillet (CR19) 2011; 36 Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (CR8) 2014; 53 Creczynski, Hultman (CR34) 2017; 18 Suen, Hung, Quan, Zhang, Xu, Chen (CR18) 2017; 46 Sharma, Bhattarai, Alla, Demchenko, Stine (CR37) 2015; 26 Abdalla, Hossain, Nisfindy, Azad, Dawood, Azad (CR4) 2018; 165 Giesen, Beltramo, Dieluweit, Muller, Ibach, Schmickler (CR35) 2005; 595 Sinigaglia, Lewiski, Martins, Siluk (CR6) 2017; 42 Sharma, Ghoshal (CR3) 2015; 43 Chatterjee, Intikhab, Profitt, Li, Natu, Gawas, Snyder (CR29) 2021; 393 Sun, Wang, Tay, Li, Huang, Zhang (CR36) 2002; 106 Spöri, Kwan, Bonakdarpour, Wilkinson, Strasser (CR20) 2017; 56 Owe, Tsypkin, Wallwork, Haverkamp, Sunde (CR17) 2012; 70 Li, Li, Ge, Liu, Xing (CR16) 2017; 5 Snyder, Livi, Erlebacher (CR24) 2008; 155 Li, Allen, Stager, Ku (CR5) 2020; 4 Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov, Jaramillo (CR32) 2016; 353 Erlebacher (CR30) 2004; 151 Kim, Lopes, Park, Lee, Lim, Lee, Back, Jung, Danilovic, Stamenkovic, Erlebacher, Snyder, Markovic (CR12) 2017; 8 Li, Chen, McCue, Snyder, Crozier, Erlebacher, Sieradzki (CR33) 2014; 14 Chatterjee, Anikin, Ghoshal, Hart, Li, Intikhab, Chareev, Volkova, Vasiliev, Taheri, Koratkar, Karapetrov, Snyder (CR27) 2020; 184 Y Li (1555_CR2) 2018; 366 LC Seitz (1555_CR32) 2016; 353 G Creczynski (1555_CR34) 2017; 18 J Erlebacher (1555_CR31) 2003; 49 A Abdalla (1555_CR4) 2018; 165 R Frydendal (1555_CR10) 2014; 1 YT Kim (1555_CR12) 2017; 8 J Snyder (1555_CR24) 2008; 155 S Intikhab (1555_CR1) 2019; 371 N Danilovic (1555_CR9) 2014; 5 N-T Suen (1555_CR18) 2017; 46 Y Kang (1555_CR28) 2014; 14 M Pourbaix (1555_CR38) 1974 J Rossmeisl (1555_CR13) 2007; 607 T Sinigaglia (1555_CR6) 2017; 42 S Chatterjee (1555_CR29) 2021; 393 X Li (1555_CR33) 2014; 14 X Li (1555_CR5) 2020; 4 CQ Sun (1555_CR36) 2002; 106 S Sharma (1555_CR3) 2015; 43 T Audichon (1555_CR15) 2016; 120 C Spöri (1555_CR20) 2017; 56 N Danilovic (1555_CR8) 2014; 53 DB Rogers (1555_CR14) 1969; 8 A Sharma (1555_CR37) 2015; 26 J Feng (1555_CR21) 2017; 29 L Owe (1555_CR17) 2012; 70 G Li (1555_CR16) 2017; 5 S Chatterjee (1555_CR25) 2019; 9 T Reier (1555_CR11) 2012; 2 B Pivovar (1555_CR7) 2018; 27 E Mayousse (1555_CR19) 2011; 36 M Giesen (1555_CR35) 2005; 595 S Chatterjee (1555_CR27) 2020; 184 J Erlebacher (1555_CR23) 2001; 410 J Erlebacher (1555_CR30) 2004; 151 J Snyder (1555_CR22) 2010; 9 J Snyder (1555_CR26) 2012; 134 |
References_xml | – volume: 53 start-page: 14016 year: 2014 end-page: 14021 ident: CR8 article-title: Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments publication-title: Angew Chem Int Ed doi: 10.1002/anie.201406455 – volume: 8 start-page: 1449 year: 2017 ident: CR12 article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts publication-title: Nat Commun doi: 10.1038/s41467-017-01734-7 – volume: 155 start-page: C464 year: 2008 end-page: C473 ident: CR24 article-title: Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides publication-title: J Electrochem Soc doi: 10.1149/1.2940319 – volume: 49 start-page: 991 year: 2003 end-page: 996 ident: CR31 article-title: Pattern formation during dealloying publication-title: Scr Mater doi: 10.1016/S1359-6462(03)00471-8 – volume: 9 start-page: 5290 year: 2019 end-page: 5301 ident: CR25 article-title: Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO to formate publication-title: ACS Catal doi: 10.1021/acscatal.9b00330 – volume: 151 start-page: C614 year: 2004 end-page: C626 ident: CR30 article-title: An atomistic description of dealloying publication-title: J Electrochem Soc doi: 10.1149/1.1784820 – volume: 410 start-page: 450 year: 2001 end-page: 453 ident: CR23 article-title: Evolution of nanoporosity in dealloying publication-title: Nature doi: 10.1038/35068529 – volume: 42 start-page: 24597 year: 2017 end-page: 24611 ident: CR6 article-title: Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2017.08.063 – volume: 5 start-page: 17221 year: 2017 end-page: 17229 ident: CR16 article-title: Discontinuously covered IrO -RuO @Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure publication-title: J Mater Chem A doi: 10.1039/C7TA05126C – volume: 134 start-page: 8633 year: 2012 end-page: 8645 ident: CR26 article-title: Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction publication-title: J Am Chem Soc doi: 10.1021/ja3019498 – volume: 27 start-page: 47 year: 2018 end-page: 53 ident: CR7 article-title: Hydrogen at scale (H @scale): key to a clean, economic, and sustainable energy system publication-title: Electrochem Soc Interface doi: 10.1149/2.F04181if – volume: 366 start-page: 50 year: 2018 end-page: 60 ident: CR2 article-title: Tuning the activity/stability balance of anion doped CoSxSe2−xdichalcogenides publication-title: J Catal doi: 10.1016/j.jcat.2018.07.030 – volume: 18 start-page: 1507 year: 2017 end-page: 1512 ident: CR34 article-title: C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material’s bonding assignment by photoelectron spectroscopy publication-title: ChemPhysChem doi: 10.1002/cphc.201700126 – volume: 353 start-page: 1011 year: 2016 end-page: 1014 ident: CR32 article-title: A highly active and stable IrO /SrIrO catalyst for the oxygen evolution reaction publication-title: Science doi: 10.1126/science.aaf5050 – volume: 595 start-page: 127 year: 2005 end-page: 137 ident: CR35 article-title: The thermodynamics of electrochemical annealing publication-title: Surf Sci doi: 10.1016/j.susc.2005.07.040 – volume: 70 start-page: 158 year: 2012 end-page: 164 ident: CR17 article-title: Iridium-ruthenium single phase mixed oxides for oxygen evolution: composition dependence of electrocatalytic activity publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.041 – volume: 2 start-page: 1765 year: 2012 end-page: 1772 ident: CR11 article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials publication-title: ACS Catal doi: 10.1021/cs3003098 – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: CR13 article-title: Electrolysis of water on oxide surfaces publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2006.11.008 – volume: 43 start-page: 1151 year: 2015 end-page: 1158 ident: CR3 article-title: Hydrogen the future transportation fuel: from production to applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.11.093 – volume: 9 start-page: 904 year: 2010 end-page: 907 ident: CR22 article-title: Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts publication-title: Nat Mater doi: 10.1038/nmat2878 – volume: 8 start-page: 841 year: 1969 end-page: 849 ident: CR14 article-title: Crystal chemistry of metal dioxides with rutile-related structures publication-title: Inorg Chem doi: 10.1021/ic50074a029 – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: CR18 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem Soc Rev doi: 10.1039/C6CS00328A – volume: 14 start-page: 6361 year: 2014 end-page: 6367 ident: CR28 article-title: Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts publication-title: Nano Lett doi: 10.1021/nl5028205 – volume: 393 start-page: 303 year: 2021 end-page: 312 ident: CR29 article-title: Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions publication-title: J Catal doi: 10.1016/j.jcat.2020.11.038 – volume: 14 start-page: 2569 year: 2014 end-page: 2577 ident: CR33 article-title: Dealloying of noble-metal alloy nanoparticles publication-title: Nano Lett doi: 10.1021/nl500377g – volume: 371 start-page: 325 year: 2019 end-page: 332 ident: CR1 article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of Mo x C MXenes publication-title: J Catal doi: 10.1016/j.jcat.2019.01.037 – volume: 120 start-page: 2562 year: 2016 end-page: 2573 ident: CR15 article-title: IrO coated on RuO as efficient and stable electroactive nanocatalysts for electrochemical water splitting publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b11868 – volume: 36 start-page: 10474 year: 2011 end-page: 10481 ident: CR19 article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2011.05.139 – volume: 1 start-page: 2075 year: 2014 end-page: 2081 ident: CR10 article-title: Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses publication-title: ChemElectroChem doi: 10.1002/celc.201402262 – volume: 184 start-page: 79 year: 2020 end-page: 85 ident: CR27 article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides publication-title: Acta Mater doi: 10.1016/j.actamat.2019.11.018 – volume: 56 start-page: 5994 year: 2017 end-page: 6021 ident: CR20 article-title: The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation publication-title: Angew Chem Int Ed doi: 10.1002/anie.201608601 – volume: 29 start-page: 1703798 year: 2017 ident: CR21 article-title: Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis publication-title: Adv Mater doi: 10.1002/adma.201703798 – volume: 26 start-page: 085602 year: 2015 ident: CR37 article-title: Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps publication-title: Nanotechnology doi: 10.1088/0957-4484/26/8/085602 – volume: 106 start-page: 10701 year: 2002 end-page: 10705 ident: CR36 article-title: Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom publication-title: J Phys Chem B doi: 10.1021/jp025868l – year: 1974 ident: CR38 publication-title: Atlas of electrochemical equilibria in aqueous solutions – volume: 165 start-page: 602 year: 2018 end-page: 627 ident: CR4 article-title: Hydrogen production, storage, transportation and key challenges with applications: a review publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.088 – volume: 5 start-page: 2474 year: 2014 end-page: 2478 ident: CR9 article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments publication-title: J Phys Chem Lett doi: 10.1021/jz501061n – volume: 4 start-page: 26 year: 2020 end-page: 47 ident: CR5 article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks publication-title: Clean Energy doi: 10.1093/ce/zkz033 – volume: 184 start-page: 79 year: 2020 ident: 1555_CR27 publication-title: Acta Mater doi: 10.1016/j.actamat.2019.11.018 – volume: 36 start-page: 10474 year: 2011 ident: 1555_CR19 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2011.05.139 – volume: 27 start-page: 47 year: 2018 ident: 1555_CR7 publication-title: Electrochem Soc Interface doi: 10.1149/2.F04181if – volume: 410 start-page: 450 year: 2001 ident: 1555_CR23 publication-title: Nature doi: 10.1038/35068529 – volume: 5 start-page: 17221 year: 2017 ident: 1555_CR16 publication-title: J Mater Chem A doi: 10.1039/C7TA05126C – volume: 151 start-page: C614 year: 2004 ident: 1555_CR30 publication-title: J Electrochem Soc doi: 10.1149/1.1784820 – volume: 70 start-page: 158 year: 2012 ident: 1555_CR17 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.041 – volume: 14 start-page: 2569 year: 2014 ident: 1555_CR33 publication-title: Nano Lett doi: 10.1021/nl500377g – volume: 42 start-page: 24597 year: 2017 ident: 1555_CR6 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2017.08.063 – volume: 106 start-page: 10701 year: 2002 ident: 1555_CR36 publication-title: J Phys Chem B doi: 10.1021/jp025868l – volume: 1 start-page: 2075 year: 2014 ident: 1555_CR10 publication-title: ChemElectroChem doi: 10.1002/celc.201402262 – volume: 14 start-page: 6361 year: 2014 ident: 1555_CR28 publication-title: Nano Lett doi: 10.1021/nl5028205 – volume: 366 start-page: 50 year: 2018 ident: 1555_CR2 publication-title: J Catal doi: 10.1016/j.jcat.2018.07.030 – volume: 9 start-page: 904 year: 2010 ident: 1555_CR22 publication-title: Nat Mater doi: 10.1038/nmat2878 – volume: 49 start-page: 991 year: 2003 ident: 1555_CR31 publication-title: Scr Mater doi: 10.1016/S1359-6462(03)00471-8 – volume: 2 start-page: 1765 year: 2012 ident: 1555_CR11 publication-title: ACS Catal doi: 10.1021/cs3003098 – volume: 56 start-page: 5994 year: 2017 ident: 1555_CR20 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201608601 – volume: 134 start-page: 8633 year: 2012 ident: 1555_CR26 publication-title: J Am Chem Soc doi: 10.1021/ja3019498 – volume: 371 start-page: 325 year: 2019 ident: 1555_CR1 publication-title: J Catal doi: 10.1016/j.jcat.2019.01.037 – volume: 393 start-page: 303 year: 2021 ident: 1555_CR29 publication-title: J Catal doi: 10.1016/j.jcat.2020.11.038 – volume: 353 start-page: 1011 year: 2016 ident: 1555_CR32 publication-title: Science doi: 10.1126/science.aaf5050 – volume: 29 start-page: 1703798 year: 2017 ident: 1555_CR21 publication-title: Adv Mater doi: 10.1002/adma.201703798 – volume: 43 start-page: 1151 year: 2015 ident: 1555_CR3 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.11.093 – volume: 53 start-page: 14016 year: 2014 ident: 1555_CR8 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201406455 – volume-title: Atlas of electrochemical equilibria in aqueous solutions year: 1974 ident: 1555_CR38 – volume: 165 start-page: 602 year: 2018 ident: 1555_CR4 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.03.088 – volume: 595 start-page: 127 year: 2005 ident: 1555_CR35 publication-title: Surf Sci doi: 10.1016/j.susc.2005.07.040 – volume: 607 start-page: 83 year: 2007 ident: 1555_CR13 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2006.11.008 – volume: 8 start-page: 841 year: 1969 ident: 1555_CR14 publication-title: Inorg Chem doi: 10.1021/ic50074a029 – volume: 9 start-page: 5290 year: 2019 ident: 1555_CR25 publication-title: ACS Catal doi: 10.1021/acscatal.9b00330 – volume: 26 start-page: 085602 year: 2015 ident: 1555_CR37 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/8/085602 – volume: 18 start-page: 1507 year: 2017 ident: 1555_CR34 publication-title: ChemPhysChem doi: 10.1002/cphc.201700126 – volume: 5 start-page: 2474 year: 2014 ident: 1555_CR9 publication-title: J Phys Chem Lett doi: 10.1021/jz501061n – volume: 4 start-page: 26 year: 2020 ident: 1555_CR5 publication-title: Clean Energy doi: 10.1093/ce/zkz033 – volume: 155 start-page: C464 year: 2008 ident: 1555_CR24 publication-title: J Electrochem Soc doi: 10.1149/1.2940319 – volume: 46 start-page: 337 year: 2017 ident: 1555_CR18 publication-title: Chem Soc Rev doi: 10.1039/C6CS00328A – volume: 8 start-page: 1449 year: 2017 ident: 1555_CR12 publication-title: Nat Commun doi: 10.1038/s41467-017-01734-7 – volume: 120 start-page: 2562 year: 2016 ident: 1555_CR15 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b11868 |
SSID | ssj0009264 |
Score | 2.347388 |
Snippet | Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1101 |
SubjectTerms | Borides Chemistry Chemistry and Materials Science Electrocatalysts Electrochemistry Electrolysis High aspect ratio Hydrogen production Industrial Chemistry/Chemical Engineering Matching Oxygen evolution reactions Physical Chemistry Short Communication Stability Water splitting |
Title | Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous RuIr borides |
URI | https://link.springer.com/article/10.1007/s10800-021-01555-z https://www.proquest.com/docview/2537294462 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4idOp-TBB0UDa5qk6ePUzS9UFAfzqaRpAoK2sg_Z9tebdK1TUUEotNAk0Mul97tc7ncAe1QbYa2SwUQkHNPA5zjmYYyJNFJwLiXNaxFc3_DzNr3ssE6RFNYrT7uXIcn8T_0p2U24LGji3F_GGB7PwhxzvrvV4jZpTKl2CS-4lz0sQq9TpMr8PMZXczTFmN_Corm1aS3DUgETUWMyryswo9NVmD8pq7OtwuInIsE1uGtOqtnkmzEj2wdlw5FVDaTfCtVCFhzmKQxo_7Z5f4Dsw8vTUCcolWlmMXg26KH7wUUXuVJZie6tQ7vVfDg5x0WxBKx8xvtYB9b2G-P7iXWgwkRbN0_peqiYMIFSFuUIjwd1KTTxFK2bhPrSXp5nPKZDpQN_AypplupNQJLQmGsjOVWaJqGSXMjYLmzGhZ-oOKiCV8osUgWTuCto8RxNOZCdnCMr5yiXczSuwuFHn9cJj8afrWvlVETFmupFhLkQo_0uUoWjcnqmr38fbet_zbdhgeQa4s7k1qDS7w70jkUe_XgX5hrHp8ctdz97vGru5or3Dlpm0kU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50PqgPolNxOjUPPigaWNMkTR_HmEzdJoqDvZU0TUDQVvZDtv31pl3rpqgg9KHQJNC7S-9L7-47gDOqjbBeyWAiIo6p53Iccj_ERBopOJeSZr0IOl3e6tHbPuvnRWHDItu9CElmX-qlYjeRVkGT9PjLGMOzVVizYECkiVw9Ul9Q7RKecy87WPhOPy-V-XmNr-5ogTG_hUUzb3O9DVs5TET1uV53YEXHZVhvFN3ZyrC5RCS4Cw_NeTeb7GfM1M5ByWRqTQPp99y0kAWHWQkDOr9vPl4ge_P6PNERimWcWAyejIfocXwzQGmrrEgP96B33XxqtHDeLAErl_ER1p71_ca4bmQPUH6k7TFP6ZqvmDCeUhblCId7NSk0cRStmYi60l6OYxymfaU9dx9KcRLrA0CS0JBrIzlVmka-klzI0G5sxoUbqdCrgFPILFA5k3ja0OIlWHAgp3IOrJyDTM7BrAKXn3Pe5jwaf46uFqoI8j01DAhLQ4z2vUgFrgr1LB7_vtrh_4afwnrrqdMO2jfduyPYIJm1pPm5VSiNBmN9bFHIKDzJjO4DPB3SMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88BU8fRPdOXD_z4INyF9ykSZo-iu6id976wS3sW0nzAYJ2l_0Q9a836ba3q3iC0IdCk0BnJp3fdDK_Adhn1knvlRym0gjM4kjgTCQZpsopKYRSrOhF8KctzjrsV5d3Z6r4i9PuVUpyUtMQWJry0VHfuKOZwjcZKqJpCIU55_j5Cyz4zzEJdt2hx1PaXSpKHmaCZUK6ZdnM-2u8dk1TvPkmRVp4ntYqrJSQER1PdLwGczavwdeTqlNbDZZnSAW_wXVz0tmm-DHz5Oeg3uOTNxNkH0ozQx4oFuUM6OCyeXOI_M397aM1KFd5z-Px3niIbsbnAxTaZhk7_A6dVvPvyRkuGydgHXExwjb2OMC5KDI-mEqM9SGfto1Ec-lirT3ikUTEDSUtJZo1nGGR8hchjnCbaBtH6zCf93K7AUhRlgnrlGDaMpNoJaTK_CbnQkZGZ3EdSCWzVJes4qG5xV065UMOck69nNNCzulzHX78m9OfcGp8OHq7UkVa7q9hSnlIN_r3onX4Waln-vj_q21-bvgeLF6dttKL8_bvLViihbGEo7rbMD8ajO2OBySjbLewuReOP9Zu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+oxygen+evolution+reaction+%28OER%29+on+mixed+nanoporous+RuIr+borides&rft.jtitle=Journal+of+applied+electrochemistry&rft.au=Saad%2C+Intikhab&rft.au=Sokol+Maxim&rft.au=Natu+Varun&rft.au=Chatterjee+Swarnendu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0021-891X&rft.eissn=1572-8838&rft.volume=51&rft.issue=7&rft.spage=1101&rft.epage=1108&rft_id=info:doi/10.1007%2Fs10800-021-01555-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-891X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-891X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-891X&client=summon |