Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous RuIr borides

Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied electrochemistry Vol. 51; no. 7; pp. 1101 - 1108
Main Authors Intikhab, Saad, Sokol, Maxim, Natu, Varun, Chatterjee, Swarnendu, Li, Yawei, Barsoum, Michel W., Snyder, Joshua
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuO x and electrolytic stability matching that of IrO x . Graphic abstract
AbstractList Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuOx and electrolytic stability matching that of IrOx.Graphic abstract
Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that exhibit an optimal balance between activity and stability. Complicating the development of electrocatalytic materials, particularly for oxygen-evolving anodes in acidic polymer electrolyte membrane electrolyzers, is an inverse relationship between activity and stability. Here the development of a nanostructured oxygen evolution reaction (OER) electrocatalyst for low-pH water splitting is demonstrated. Dealloying of mixed RuIr borides is used to form a high aspect ratio electrocatalytic material that exhibits low OER overpotentials matching that of RuO x and electrolytic stability matching that of IrO x . Graphic abstract
Author Snyder, Joshua
Intikhab, Saad
Barsoum, Michel W.
Natu, Varun
Chatterjee, Swarnendu
Sokol, Maxim
Li, Yawei
Author_xml – sequence: 1
  givenname: Saad
  surname: Intikhab
  fullname: Intikhab, Saad
  organization: Department of Chemical and Biological Engineering, Drexel University
– sequence: 2
  givenname: Maxim
  surname: Sokol
  fullname: Sokol, Maxim
  organization: Department of Materials Science and Engineering, Drexel University
– sequence: 3
  givenname: Varun
  surname: Natu
  fullname: Natu, Varun
  organization: Department of Materials Science and Engineering, Drexel University
– sequence: 4
  givenname: Swarnendu
  surname: Chatterjee
  fullname: Chatterjee, Swarnendu
  organization: Department of Chemical and Biological Engineering, Drexel University
– sequence: 5
  givenname: Yawei
  surname: Li
  fullname: Li, Yawei
  organization: Department of Chemical and Biological Engineering, Drexel University
– sequence: 6
  givenname: Michel W.
  surname: Barsoum
  fullname: Barsoum, Michel W.
  organization: Department of Materials Science and Engineering, Drexel University
– sequence: 7
  givenname: Joshua
  orcidid: 0000-0003-3162-4126
  surname: Snyder
  fullname: Snyder, Joshua
  email: jds43@drexel.edu
  organization: Department of Chemical and Biological Engineering, Drexel University
BookMark eNp9kN9LwzAQx4NMcJv-Az4VfNGH6iVtmvRRxtTBYDgUfAsxvY6OLplJK9v-ertNEHwYHNzBfT_34zsgPessEnJN4Z4CiIdAQQLEwGgMlHMe785In3LBYikT2SN92LdkTj8uyCCEJQDkLEv75HVco2m8M7rR9bapTOQ22wXaCL9d3TaVs5FHbQ7F7Ww8v4u6YlVtsIistm7tvGtDNG8nPvp0viowXJLzUtcBr37zkLw_jd9GL_F09jwZPU5jk_CsiVEIDmWZJEWey7zANM0MQm64LIUxPGOSZgK0REZNCmWRJroLSkvKMTcokiG5Oc5de_fVYmjU0rXedisV44lgeTeRdSp5VBnvQvBYKlM1ev9O43VVKwpqb6A6Gqg6l9TBQLXrUPYPXftqpf32NJQcodCJ7QL931UnqB8q2YX8
CitedBy_id crossref_primary_10_1039_D2TA04296G
crossref_primary_10_1002_smll_202410407
crossref_primary_10_1002_adma_202210565
crossref_primary_10_1016_j_cej_2024_150043
Cites_doi 10.1002/anie.201406455
10.1038/s41467-017-01734-7
10.1149/1.2940319
10.1016/S1359-6462(03)00471-8
10.1021/acscatal.9b00330
10.1149/1.1784820
10.1038/35068529
10.1016/j.ijhydene.2017.08.063
10.1039/C7TA05126C
10.1021/ja3019498
10.1149/2.F04181if
10.1016/j.jcat.2018.07.030
10.1002/cphc.201700126
10.1126/science.aaf5050
10.1016/j.susc.2005.07.040
10.1016/j.electacta.2012.03.041
10.1021/cs3003098
10.1016/j.jelechem.2006.11.008
10.1016/j.rser.2014.11.093
10.1038/nmat2878
10.1021/ic50074a029
10.1039/C6CS00328A
10.1021/nl5028205
10.1016/j.jcat.2020.11.038
10.1021/nl500377g
10.1016/j.jcat.2019.01.037
10.1021/acs.jpcc.5b11868
10.1016/j.ijhydene.2011.05.139
10.1002/celc.201402262
10.1016/j.actamat.2019.11.018
10.1002/anie.201608601
10.1002/adma.201703798
10.1088/0957-4484/26/8/085602
10.1021/jp025868l
10.1016/j.enconman.2018.03.088
10.1021/jz501061n
10.1093/ce/zkz033
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10800-021-01555-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-8838
EndPage 1108
ExternalDocumentID 10_1007_s10800_021_01555_z
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1904571
  funderid: http://dx.doi.org/10.13039/501100008982
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
XOL
YLTOR
YQT
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c356t-e7750ff33d9989de446ce09c58f7cc56281670a8e21c40fd43a43a11f15e9ce73
IEDL.DBID U2A
ISSN 0021-891X
IngestDate Fri Jul 25 11:04:10 EDT 2025
Tue Jul 01 00:44:18 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Fri Feb 21 02:49:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords PEM electrolysis
Nanoporous metals
Oxygen evolution reaction
Dealloying
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-e7750ff33d9989de446ce09c58f7cc56281670a8e21c40fd43a43a11f15e9ce73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3162-4126
PQID 2537294462
PQPubID 2043600
PageCount 8
ParticipantIDs proquest_journals_2537294462
crossref_citationtrail_10_1007_s10800_021_01555_z
crossref_primary_10_1007_s10800_021_01555_z
springer_journals_10_1007_s10800_021_01555_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied electrochemistry
PublicationTitleAbbrev J Appl Electrochem
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Snyder, Fujita, Chen, Erlebacher (CR22) 2010; 9
Kang, Snyder, Chi, Li, More, Markovic, Stamenkovic (CR28) 2014; 14
Frydendal, Paoli, Knudsen, Wickman, Malacrida, Stephens, Chorkendorff (CR10) 2014; 1
Reier, Oezaslan, Strasser (CR11) 2012; 2
Chatterjee, Griego, Hart, Li, Taheri, Keith, Snyder (CR25) 2019; 9
Rossmeisl, Qu, Zhu, Kroes, Nørskov (CR13) 2007; 607
Feng, Lv, Zhang, Li, Wang, Yang, Wang, Yang, Zhou, Lin, Wang, Guo (CR21) 2017; 29
Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (CR1) 2019; 371
Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR23) 2001; 410
Rogers, Shannon, Sleight, Gillson (CR14) 1969; 8
Li, Polakovic, Curtis, Shumlas, Chatterjee, Intikhab, Chareev, Volkova, Vasiliev, Karapetrov, Snyder (CR2) 2018; 366
Snyder, McCue, Livi, Erlebacher (CR26) 2012; 134
Erlebacher, Sieradzki (CR31) 2003; 49
Pourbaix (CR38) 1974
Audichon, Napporn, Canaff, Morais, Comminges, Kokoh (CR15) 2016; 120
Pivovar, Rustagi, Satyapal (CR7) 2018; 27
Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (CR9) 2014; 5
Mayousse, Maillard, Fouda-Onana, Sicardy, Buillet (CR19) 2011; 36
Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (CR8) 2014; 53
Creczynski, Hultman (CR34) 2017; 18
Suen, Hung, Quan, Zhang, Xu, Chen (CR18) 2017; 46
Sharma, Bhattarai, Alla, Demchenko, Stine (CR37) 2015; 26
Abdalla, Hossain, Nisfindy, Azad, Dawood, Azad (CR4) 2018; 165
Giesen, Beltramo, Dieluweit, Muller, Ibach, Schmickler (CR35) 2005; 595
Sinigaglia, Lewiski, Martins, Siluk (CR6) 2017; 42
Sharma, Ghoshal (CR3) 2015; 43
Chatterjee, Intikhab, Profitt, Li, Natu, Gawas, Snyder (CR29) 2021; 393
Sun, Wang, Tay, Li, Huang, Zhang (CR36) 2002; 106
Spöri, Kwan, Bonakdarpour, Wilkinson, Strasser (CR20) 2017; 56
Owe, Tsypkin, Wallwork, Haverkamp, Sunde (CR17) 2012; 70
Li, Li, Ge, Liu, Xing (CR16) 2017; 5
Snyder, Livi, Erlebacher (CR24) 2008; 155
Li, Allen, Stager, Ku (CR5) 2020; 4
Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov, Jaramillo (CR32) 2016; 353
Erlebacher (CR30) 2004; 151
Kim, Lopes, Park, Lee, Lim, Lee, Back, Jung, Danilovic, Stamenkovic, Erlebacher, Snyder, Markovic (CR12) 2017; 8
Li, Chen, McCue, Snyder, Crozier, Erlebacher, Sieradzki (CR33) 2014; 14
Chatterjee, Anikin, Ghoshal, Hart, Li, Intikhab, Chareev, Volkova, Vasiliev, Taheri, Koratkar, Karapetrov, Snyder (CR27) 2020; 184
Y Li (1555_CR2) 2018; 366
LC Seitz (1555_CR32) 2016; 353
G Creczynski (1555_CR34) 2017; 18
J Erlebacher (1555_CR31) 2003; 49
A Abdalla (1555_CR4) 2018; 165
R Frydendal (1555_CR10) 2014; 1
YT Kim (1555_CR12) 2017; 8
J Snyder (1555_CR24) 2008; 155
S Intikhab (1555_CR1) 2019; 371
N Danilovic (1555_CR9) 2014; 5
N-T Suen (1555_CR18) 2017; 46
Y Kang (1555_CR28) 2014; 14
M Pourbaix (1555_CR38) 1974
J Rossmeisl (1555_CR13) 2007; 607
T Sinigaglia (1555_CR6) 2017; 42
S Chatterjee (1555_CR29) 2021; 393
X Li (1555_CR33) 2014; 14
X Li (1555_CR5) 2020; 4
CQ Sun (1555_CR36) 2002; 106
S Sharma (1555_CR3) 2015; 43
T Audichon (1555_CR15) 2016; 120
C Spöri (1555_CR20) 2017; 56
N Danilovic (1555_CR8) 2014; 53
DB Rogers (1555_CR14) 1969; 8
A Sharma (1555_CR37) 2015; 26
J Feng (1555_CR21) 2017; 29
L Owe (1555_CR17) 2012; 70
G Li (1555_CR16) 2017; 5
S Chatterjee (1555_CR25) 2019; 9
T Reier (1555_CR11) 2012; 2
B Pivovar (1555_CR7) 2018; 27
E Mayousse (1555_CR19) 2011; 36
M Giesen (1555_CR35) 2005; 595
S Chatterjee (1555_CR27) 2020; 184
J Erlebacher (1555_CR23) 2001; 410
J Erlebacher (1555_CR30) 2004; 151
J Snyder (1555_CR22) 2010; 9
J Snyder (1555_CR26) 2012; 134
References_xml – volume: 53
  start-page: 14016
  year: 2014
  end-page: 14021
  ident: CR8
  article-title: Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201406455
– volume: 8
  start-page: 1449
  year: 2017
  ident: CR12
  article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01734-7
– volume: 155
  start-page: C464
  year: 2008
  end-page: C473
  ident: CR24
  article-title: Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2940319
– volume: 49
  start-page: 991
  year: 2003
  end-page: 996
  ident: CR31
  article-title: Pattern formation during dealloying
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00471-8
– volume: 9
  start-page: 5290
  year: 2019
  end-page: 5301
  ident: CR25
  article-title: Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO to formate
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00330
– volume: 151
  start-page: C614
  year: 2004
  end-page: C626
  ident: CR30
  article-title: An atomistic description of dealloying
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1784820
– volume: 410
  start-page: 450
  year: 2001
  end-page: 453
  ident: CR23
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 42
  start-page: 24597
  year: 2017
  end-page: 24611
  ident: CR6
  article-title: Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2017.08.063
– volume: 5
  start-page: 17221
  year: 2017
  end-page: 17229
  ident: CR16
  article-title: Discontinuously covered IrO -RuO @Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA05126C
– volume: 134
  start-page: 8633
  year: 2012
  end-page: 8645
  ident: CR26
  article-title: Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3019498
– volume: 27
  start-page: 47
  year: 2018
  end-page: 53
  ident: CR7
  article-title: Hydrogen at scale (H @scale): key to a clean, economic, and sustainable energy system
  publication-title: Electrochem Soc Interface
  doi: 10.1149/2.F04181if
– volume: 366
  start-page: 50
  year: 2018
  end-page: 60
  ident: CR2
  article-title: Tuning the activity/stability balance of anion doped CoSxSe2−xdichalcogenides
  publication-title: J Catal
  doi: 10.1016/j.jcat.2018.07.030
– volume: 18
  start-page: 1507
  year: 2017
  end-page: 1512
  ident: CR34
  article-title: C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material’s bonding assignment by photoelectron spectroscopy
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201700126
– volume: 353
  start-page: 1011
  year: 2016
  end-page: 1014
  ident: CR32
  article-title: A highly active and stable IrO /SrIrO catalyst for the oxygen evolution reaction
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 595
  start-page: 127
  year: 2005
  end-page: 137
  ident: CR35
  article-title: The thermodynamics of electrochemical annealing
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2005.07.040
– volume: 70
  start-page: 158
  year: 2012
  end-page: 164
  ident: CR17
  article-title: Iridium-ruthenium single phase mixed oxides for oxygen evolution: composition dependence of electrocatalytic activity
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.041
– volume: 2
  start-page: 1765
  year: 2012
  end-page: 1772
  ident: CR11
  article-title: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials
  publication-title: ACS Catal
  doi: 10.1021/cs3003098
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: CR13
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 43
  start-page: 1151
  year: 2015
  end-page: 1158
  ident: CR3
  article-title: Hydrogen the future transportation fuel: from production to applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.11.093
– volume: 9
  start-page: 904
  year: 2010
  end-page: 907
  ident: CR22
  article-title: Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts
  publication-title: Nat Mater
  doi: 10.1038/nmat2878
– volume: 8
  start-page: 841
  year: 1969
  end-page: 849
  ident: CR14
  article-title: Crystal chemistry of metal dioxides with rutile-related structures
  publication-title: Inorg Chem
  doi: 10.1021/ic50074a029
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: CR18
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00328A
– volume: 14
  start-page: 6361
  year: 2014
  end-page: 6367
  ident: CR28
  article-title: Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts
  publication-title: Nano Lett
  doi: 10.1021/nl5028205
– volume: 393
  start-page: 303
  year: 2021
  end-page: 312
  ident: CR29
  article-title: Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions
  publication-title: J Catal
  doi: 10.1016/j.jcat.2020.11.038
– volume: 14
  start-page: 2569
  year: 2014
  end-page: 2577
  ident: CR33
  article-title: Dealloying of noble-metal alloy nanoparticles
  publication-title: Nano Lett
  doi: 10.1021/nl500377g
– volume: 371
  start-page: 325
  year: 2019
  end-page: 332
  ident: CR1
  article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of Mo x C MXenes
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.01.037
– volume: 120
  start-page: 2562
  year: 2016
  end-page: 2573
  ident: CR15
  article-title: IrO coated on RuO as efficient and stable electroactive nanocatalysts for electrochemical water splitting
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b11868
– volume: 36
  start-page: 10474
  year: 2011
  end-page: 10481
  ident: CR19
  article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2011.05.139
– volume: 1
  start-page: 2075
  year: 2014
  end-page: 2081
  ident: CR10
  article-title: Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402262
– volume: 184
  start-page: 79
  year: 2020
  end-page: 85
  ident: CR27
  article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.11.018
– volume: 56
  start-page: 5994
  year: 2017
  end-page: 6021
  ident: CR20
  article-title: The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201608601
– volume: 29
  start-page: 1703798
  year: 2017
  ident: CR21
  article-title: Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis
  publication-title: Adv Mater
  doi: 10.1002/adma.201703798
– volume: 26
  start-page: 085602
  year: 2015
  ident: CR37
  article-title: Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/8/085602
– volume: 106
  start-page: 10701
  year: 2002
  end-page: 10705
  ident: CR36
  article-title: Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom
  publication-title: J Phys Chem B
  doi: 10.1021/jp025868l
– year: 1974
  ident: CR38
  publication-title: Atlas of electrochemical equilibria in aqueous solutions
– volume: 165
  start-page: 602
  year: 2018
  end-page: 627
  ident: CR4
  article-title: Hydrogen production, storage, transportation and key challenges with applications: a review
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.088
– volume: 5
  start-page: 2474
  year: 2014
  end-page: 2478
  ident: CR9
  article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz501061n
– volume: 4
  start-page: 26
  year: 2020
  end-page: 47
  ident: CR5
  article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks
  publication-title: Clean Energy
  doi: 10.1093/ce/zkz033
– volume: 184
  start-page: 79
  year: 2020
  ident: 1555_CR27
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.11.018
– volume: 36
  start-page: 10474
  year: 2011
  ident: 1555_CR19
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2011.05.139
– volume: 27
  start-page: 47
  year: 2018
  ident: 1555_CR7
  publication-title: Electrochem Soc Interface
  doi: 10.1149/2.F04181if
– volume: 410
  start-page: 450
  year: 2001
  ident: 1555_CR23
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 5
  start-page: 17221
  year: 2017
  ident: 1555_CR16
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA05126C
– volume: 151
  start-page: C614
  year: 2004
  ident: 1555_CR30
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1784820
– volume: 70
  start-page: 158
  year: 2012
  ident: 1555_CR17
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.041
– volume: 14
  start-page: 2569
  year: 2014
  ident: 1555_CR33
  publication-title: Nano Lett
  doi: 10.1021/nl500377g
– volume: 42
  start-page: 24597
  year: 2017
  ident: 1555_CR6
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2017.08.063
– volume: 106
  start-page: 10701
  year: 2002
  ident: 1555_CR36
  publication-title: J Phys Chem B
  doi: 10.1021/jp025868l
– volume: 1
  start-page: 2075
  year: 2014
  ident: 1555_CR10
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402262
– volume: 14
  start-page: 6361
  year: 2014
  ident: 1555_CR28
  publication-title: Nano Lett
  doi: 10.1021/nl5028205
– volume: 366
  start-page: 50
  year: 2018
  ident: 1555_CR2
  publication-title: J Catal
  doi: 10.1016/j.jcat.2018.07.030
– volume: 9
  start-page: 904
  year: 2010
  ident: 1555_CR22
  publication-title: Nat Mater
  doi: 10.1038/nmat2878
– volume: 49
  start-page: 991
  year: 2003
  ident: 1555_CR31
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00471-8
– volume: 2
  start-page: 1765
  year: 2012
  ident: 1555_CR11
  publication-title: ACS Catal
  doi: 10.1021/cs3003098
– volume: 56
  start-page: 5994
  year: 2017
  ident: 1555_CR20
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201608601
– volume: 134
  start-page: 8633
  year: 2012
  ident: 1555_CR26
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3019498
– volume: 371
  start-page: 325
  year: 2019
  ident: 1555_CR1
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.01.037
– volume: 393
  start-page: 303
  year: 2021
  ident: 1555_CR29
  publication-title: J Catal
  doi: 10.1016/j.jcat.2020.11.038
– volume: 353
  start-page: 1011
  year: 2016
  ident: 1555_CR32
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 29
  start-page: 1703798
  year: 2017
  ident: 1555_CR21
  publication-title: Adv Mater
  doi: 10.1002/adma.201703798
– volume: 43
  start-page: 1151
  year: 2015
  ident: 1555_CR3
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.11.093
– volume: 53
  start-page: 14016
  year: 2014
  ident: 1555_CR8
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201406455
– volume-title: Atlas of electrochemical equilibria in aqueous solutions
  year: 1974
  ident: 1555_CR38
– volume: 165
  start-page: 602
  year: 2018
  ident: 1555_CR4
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.03.088
– volume: 595
  start-page: 127
  year: 2005
  ident: 1555_CR35
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2005.07.040
– volume: 607
  start-page: 83
  year: 2007
  ident: 1555_CR13
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 8
  start-page: 841
  year: 1969
  ident: 1555_CR14
  publication-title: Inorg Chem
  doi: 10.1021/ic50074a029
– volume: 9
  start-page: 5290
  year: 2019
  ident: 1555_CR25
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00330
– volume: 26
  start-page: 085602
  year: 2015
  ident: 1555_CR37
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/8/085602
– volume: 18
  start-page: 1507
  year: 2017
  ident: 1555_CR34
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201700126
– volume: 5
  start-page: 2474
  year: 2014
  ident: 1555_CR9
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz501061n
– volume: 4
  start-page: 26
  year: 2020
  ident: 1555_CR5
  publication-title: Clean Energy
  doi: 10.1093/ce/zkz033
– volume: 155
  start-page: C464
  year: 2008
  ident: 1555_CR24
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2940319
– volume: 46
  start-page: 337
  year: 2017
  ident: 1555_CR18
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00328A
– volume: 8
  start-page: 1449
  year: 2017
  ident: 1555_CR12
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01734-7
– volume: 120
  start-page: 2562
  year: 2016
  ident: 1555_CR15
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b11868
SSID ssj0009264
Score 2.347388
Snippet Efficient water splitting for commercial electrolysis devices is predicated on the development of materials, specifically for the catalytic electrodes, that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1101
SubjectTerms Borides
Chemistry
Chemistry and Materials Science
Electrocatalysts
Electrochemistry
Electrolysis
High aspect ratio
Hydrogen production
Industrial Chemistry/Chemical Engineering
Matching
Oxygen evolution reactions
Physical Chemistry
Short Communication
Stability
Water splitting
Title Electrocatalytic oxygen evolution reaction (OER) on mixed nanoporous RuIr borides
URI https://link.springer.com/article/10.1007/s10800-021-01555-z
https://www.proquest.com/docview/2537294462
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4idOp-TBB0UDa5qk6ePUzS9UFAfzqaRpAoK2sg_Z9tebdK1TUUEotNAk0Mul97tc7ncAe1QbYa2SwUQkHNPA5zjmYYyJNFJwLiXNaxFc3_DzNr3ssE6RFNYrT7uXIcn8T_0p2U24LGji3F_GGB7PwhxzvrvV4jZpTKl2CS-4lz0sQq9TpMr8PMZXczTFmN_Corm1aS3DUgETUWMyryswo9NVmD8pq7OtwuInIsE1uGtOqtnkmzEj2wdlw5FVDaTfCtVCFhzmKQxo_7Z5f4Dsw8vTUCcolWlmMXg26KH7wUUXuVJZie6tQ7vVfDg5x0WxBKx8xvtYB9b2G-P7iXWgwkRbN0_peqiYMIFSFuUIjwd1KTTxFK2bhPrSXp5nPKZDpQN_AypplupNQJLQmGsjOVWaJqGSXMjYLmzGhZ-oOKiCV8osUgWTuCto8RxNOZCdnCMr5yiXczSuwuFHn9cJj8afrWvlVETFmupFhLkQo_0uUoWjcnqmr38fbet_zbdhgeQa4s7k1qDS7w70jkUe_XgX5hrHp8ctdz97vGru5or3Dlpm0kU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50PqgPolNxOjUPPigaWNMkTR_HmEzdJoqDvZU0TUDQVvZDtv31pl3rpqgg9KHQJNC7S-9L7-47gDOqjbBeyWAiIo6p53Iccj_ERBopOJeSZr0IOl3e6tHbPuvnRWHDItu9CElmX-qlYjeRVkGT9PjLGMOzVVizYECkiVw9Ul9Q7RKecy87WPhOPy-V-XmNr-5ogTG_hUUzb3O9DVs5TET1uV53YEXHZVhvFN3ZyrC5RCS4Cw_NeTeb7GfM1M5ByWRqTQPp99y0kAWHWQkDOr9vPl4ge_P6PNERimWcWAyejIfocXwzQGmrrEgP96B33XxqtHDeLAErl_ER1p71_ca4bmQPUH6k7TFP6ZqvmDCeUhblCId7NSk0cRStmYi60l6OYxymfaU9dx9KcRLrA0CS0JBrIzlVmka-klzI0G5sxoUbqdCrgFPILFA5k3ja0OIlWHAgp3IOrJyDTM7BrAKXn3Pe5jwaf46uFqoI8j01DAhLQ4z2vUgFrgr1LB7_vtrh_4afwnrrqdMO2jfduyPYIJm1pPm5VSiNBmN9bFHIKDzJjO4DPB3SMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88BU8fRPdOXD_z4INyF9ykSZo-iu6id976wS3sW0nzAYJ2l_0Q9a836ba3q3iC0IdCk0BnJp3fdDK_Adhn1knvlRym0gjM4kjgTCQZpsopKYRSrOhF8KctzjrsV5d3Z6r4i9PuVUpyUtMQWJry0VHfuKOZwjcZKqJpCIU55_j5Cyz4zzEJdt2hx1PaXSpKHmaCZUK6ZdnM-2u8dk1TvPkmRVp4ntYqrJSQER1PdLwGczavwdeTqlNbDZZnSAW_wXVz0tmm-DHz5Oeg3uOTNxNkH0ozQx4oFuUM6OCyeXOI_M397aM1KFd5z-Px3niIbsbnAxTaZhk7_A6dVvPvyRkuGydgHXExwjb2OMC5KDI-mEqM9SGfto1Ec-lirT3ikUTEDSUtJZo1nGGR8hchjnCbaBtH6zCf93K7AUhRlgnrlGDaMpNoJaTK_CbnQkZGZ3EdSCWzVJes4qG5xV065UMOck69nNNCzulzHX78m9OfcGp8OHq7UkVa7q9hSnlIN_r3onX4Waln-vj_q21-bvgeLF6dttKL8_bvLViihbGEo7rbMD8ajO2OBySjbLewuReOP9Zu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+oxygen+evolution+reaction+%28OER%29+on+mixed+nanoporous+RuIr+borides&rft.jtitle=Journal+of+applied+electrochemistry&rft.au=Saad%2C+Intikhab&rft.au=Sokol+Maxim&rft.au=Natu+Varun&rft.au=Chatterjee+Swarnendu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0021-891X&rft.eissn=1572-8838&rft.volume=51&rft.issue=7&rft.spage=1101&rft.epage=1108&rft_id=info:doi/10.1007%2Fs10800-021-01555-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-891X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-891X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-891X&client=summon