A di/dt Feedback-Based Active Gate Driver for Smart Switching and Fast Overcurrent Protection of IGBT Modules
This paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition. Specifically, during normal switching transients, a di/dt feedback controlled current source and current sink is introduced together with a push-pu...
Saved in:
Published in | IEEE transactions on power electronics Vol. 29; no. 7; pp. 3720 - 3732 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition. Specifically, during normal switching transients, a di/dt feedback controlled current source and current sink is introduced together with a push-pull buffer for dynamic gate current control. Compared to a conventional gate drive strategy, the proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Under overcurrent condition, it provides a fast protection function for IGBT modules based on the evaluation of fault current level through the di/dt feedback signal. Moreover, the AGD features flexible protection modes, which overcomes the interruption of converter operation in the event of momentary short circuits. A step-down converter is built to evaluate the performance of the proposed driving schemes under various conditions, considering variation of turn-on/off gate resistance, current levels, and short-circuit fault types. Experimental results and detailed analysis are presented to verify the feasibility of the proposed approach. |
---|---|
AbstractList | This paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition. Specifically, during normal switching transients, a di/dt feedback controlled current source and current sink is introduced together with a push-pull buffer for dynamic gate current control. Compared to a conventional gate drive strategy, the proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Under overcurrent condition, it provides a fast protection function for IGBT modules based on the evaluation of fault current level through the di/dt feedback signal. Moreover, the AGD features flexible protection modes, which overcomes the interruption of converter operation in the event of momentary short circuits. A step-down converter is built to evaluate the performance of the proposed driving schemes under various conditions, considering variation of turn-on/off gate resistance, current levels, and short-circuit fault types. Experimental results and detailed analysis are presented to verify the feasibility of the proposed approach. This paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition. Specifically, during normal switching transients, a di/dt feedback controlled current source and current sink is introduced together with a push-pull buffer for dynamic gate current control. Compared to a conventional gate drive strategy, the proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Under overcurrent condition, it provides a fast protection function for IGBT modules based on the evaluation of fault current level through the di/dt feedback signal. Moreover, the AGD features flexible protection modes, which overcomes the interruption of converter operation in the event of momentary short circuits. A step-down converter is built to evaluate the performance of the proposed driving schemes under various conditions, considering variation of turn-on/off gate resistance, current levels, and short-circuit fault types. Experimental results and detailed analysis are presented to verify the feasibility of the proposed approach. [PUBLICATION ABSTRACT] |
Author | Fei Wang Blalock, Benjamin J. Xiaojie Shi Tolbert, Leon M. Zhiqiang Wang |
Author_xml | – sequence: 1 surname: Zhiqiang Wang fullname: Zhiqiang Wang email: ee.zqwang@gmail.com organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA – sequence: 2 surname: Xiaojie Shi fullname: Xiaojie Shi email: xshi5@utk.edu organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA – sequence: 3 givenname: Leon M. surname: Tolbert fullname: Tolbert, Leon M. email: tolbert@utk.edu organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA – sequence: 4 surname: Fei Wang fullname: Fei Wang email: fred.wang@utk.edu organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA – sequence: 5 givenname: Benjamin J. surname: Blalock fullname: Blalock, Benjamin J. email: bblalock@eecs.utk.edu organization: Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28603439$$DView record in Pascal Francis |
BookMark | eNpdkU9rGzEQxUVJoU7aD1B6EZRCL-uMVlqtdHT-2A24JBD3vGilUbvpepVK2pZ--8rY5NDTDMzvPYb3zsnZFCYk5D2DJWOgL3cPt9tlDYwv67pVrRavyIJpwSpg0J6RBSjVVEpr_oacp_QEwEQDbEH2K-qGS5fpGtH1xv6srkxCR1c2D7-RbkxGehPLGqkPkT7uTcz08c-Q7Y9h-k7N5OjapEzvC2HnGHHK9CGGjEUfJho8vdtc7ejX4OYR01vy2psx4bvTvCDf1re76y_V9n5zd73aVpY3MlfYSmPa3rWW6d6w2itEDVIL4blXBhyvG657xsEyL6XV3nDplAevUZi-4Rfk89H3OYZfM6bc7YdkcRzNhGFOHWtq0I1o5QH9-B_6FOY4le8KBTWIEqIoFDtSNoaUIvruOQ4li78dg-5QQHcooDsU0J0KKJpPJ2eTrBl9NJMd0ouwVhK44LpwH47cgIgvZ9kopovdP8KPjy4 |
CODEN | ITPEE8 |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114864 crossref_primary_10_1016_j_microrel_2021_114225 crossref_primary_10_1109_ACCESS_2023_3294995 crossref_primary_10_1109_TIA_2018_2835812 crossref_primary_10_1109_JESTPE_2016_2563220 crossref_primary_10_1109_TIA_2016_2618785 crossref_primary_10_1109_JESTPE_2022_3216277 crossref_primary_10_1088_1742_6596_2492_1_012014 crossref_primary_10_1016_j_microrel_2015_12_022 crossref_primary_10_1109_TPEL_2014_2373390 crossref_primary_10_1587_elex_15_20180293 crossref_primary_10_1049_pel2_12236 crossref_primary_10_30939_ijastech__819912 crossref_primary_10_3390_electronics13030609 crossref_primary_10_1109_ACCESS_2020_2994368 crossref_primary_10_1109_JESTPE_2019_2937855 crossref_primary_10_6113_JPE_2016_16_4_1298 crossref_primary_10_3390_en10030311 crossref_primary_10_1088_1757_899X_782_2_022085 crossref_primary_10_1109_ACCESS_2023_3243832 crossref_primary_10_1016_j_rser_2016_08_006 crossref_primary_10_3390_en11051182 crossref_primary_10_1109_TPEL_2020_2980680 crossref_primary_10_1631_FITEE_1500111 crossref_primary_10_35848_1347_4065_abd29f crossref_primary_10_1109_TPEL_2016_2517679 crossref_primary_10_1109_TPEL_2020_3009202 crossref_primary_10_1109_TPEL_2023_3316260 crossref_primary_10_1109_JESTPE_2021_3082716 crossref_primary_10_1109_TPEL_2021_3137181 crossref_primary_10_1109_TIA_2018_2878764 crossref_primary_10_1109_JESTPE_2023_3247378 crossref_primary_10_1109_JESTPE_2022_3144995 crossref_primary_10_1109_TPEL_2019_2918148 crossref_primary_10_1109_TIE_2017_2711512 crossref_primary_10_1109_TIE_2021_3102387 crossref_primary_10_1109_ACCESS_2020_2984542 crossref_primary_10_1109_TIE_2016_2613983 crossref_primary_10_3390_en14217397 crossref_primary_10_1109_ACCESS_2024_3365689 crossref_primary_10_1109_TPEL_2021_3132456 crossref_primary_10_1109_TPEL_2020_3015924 crossref_primary_10_1109_TPEL_2022_3201018 crossref_primary_10_1109_TIA_2017_2674601 crossref_primary_10_1109_JESTPE_2020_3008344 crossref_primary_10_1002_eej_23429 crossref_primary_10_1109_TCSII_2020_3035241 crossref_primary_10_1109_TPEL_2019_2922112 crossref_primary_10_1002_2050_7038_12564 crossref_primary_10_1109_TDMR_2020_3018717 crossref_primary_10_1109_TPEL_2014_2342377 crossref_primary_10_1038_s41699_019_0106_6 crossref_primary_10_1109_TPEL_2017_2716370 crossref_primary_10_1541_ieejias_143_35 crossref_primary_10_1109_TPEL_2016_2587340 crossref_primary_10_1109_TPEL_2020_2982324 crossref_primary_10_1049_pel2_12280 crossref_primary_10_1109_JESTPE_2018_2888879 crossref_primary_10_1109_TPEL_2021_3112337 crossref_primary_10_1109_TIE_2021_3065599 crossref_primary_10_1109_TPEL_2017_2688474 crossref_primary_10_1109_TPEL_2023_3259521 crossref_primary_10_1109_JESTPE_2020_2986097 crossref_primary_10_1109_TPEL_2015_2462717 crossref_primary_10_35848_1347_4065_abbdc7 crossref_primary_10_1109_TPEL_2016_2631447 crossref_primary_10_1109_TIE_2020_2967733 crossref_primary_10_1109_TPEL_2016_2616583 crossref_primary_10_3390_en15031078 crossref_primary_10_3390_electronics8020144 crossref_primary_10_1109_TIE_2017_2674629 crossref_primary_10_1109_JESTPE_2023_3287576 crossref_primary_10_1109_ACCESS_2024_3401406 crossref_primary_10_1109_TIA_2016_2608940 crossref_primary_10_3390_en14248308 crossref_primary_10_1109_TPEL_2017_2747587 crossref_primary_10_1109_TIA_2021_3124864 crossref_primary_10_1109_TPEL_2024_3383666 crossref_primary_10_1109_TPEL_2018_2876400 crossref_primary_10_1016_j_solener_2023_111831 crossref_primary_10_1109_TPS_2020_3040104 crossref_primary_10_1109_TPEL_2016_2557341 crossref_primary_10_1109_TPEL_2021_3103851 crossref_primary_10_1109_TPEL_2024_3372254 crossref_primary_10_3390_en14123589 crossref_primary_10_1109_TPEL_2019_2947268 crossref_primary_10_1109_TPEL_2020_2993947 crossref_primary_10_1109_JESTPE_2021_3055145 crossref_primary_10_3390_en12234546 crossref_primary_10_1109_TIE_2017_2652372 crossref_primary_10_1109_TPEL_2022_3194113 crossref_primary_10_3390_electronics10020106 crossref_primary_10_1109_TIE_2014_2364154 crossref_primary_10_1109_TPEL_2017_2712705 crossref_primary_10_1109_TPEL_2020_2994351 crossref_primary_10_1049_pel2_12255 crossref_primary_10_1109_ACCESS_2023_3302924 crossref_primary_10_1109_TPEL_2016_2633658 crossref_primary_10_1109_TIA_2017_2780175 crossref_primary_10_1109_TIE_2020_3001853 crossref_primary_10_1002_2050_7038_12112 crossref_primary_10_3103_S073527272206005X crossref_primary_10_1109_ACCESS_2023_3259460 crossref_primary_10_1049_iet_pel_2019_0672 crossref_primary_10_1109_TEC_2020_3036041 crossref_primary_10_1109_TPEL_2014_2332811 crossref_primary_10_1109_TPEL_2014_2361905 crossref_primary_10_1016_j_microrel_2017_12_008 crossref_primary_10_1049_pel2_12248 crossref_primary_10_1109_JSSC_2020_3005791 crossref_primary_10_1109_TPEL_2023_3279674 crossref_primary_10_1109_TPEL_2017_2655496 crossref_primary_10_1587_transele_2021ECP5030 |
Cites_doi | 10.1109/TPEL.2005.861115 10.1109/TPEL.2012.2207463 10.1109/63.602559 10.1109/28.753644 10.1109/ICIEA.2006.257365 10.1109/TPEL.2012.2217398 10.1109/APEC.2009.4802956 10.1109/APEC.2011.5744820 10.1109/TIA.2009.2027535 10.1109/ICPE.2007.4692507 10.1109/APEC.1994.316360 10.1109/28.370271 10.1109/ECCE.2011.6064172 10.1109/TPEL.2007.876895 10.1109/IPEMC.2012.6259033 10.1109/PESC.2007.4342295 10.1109/TIE.2010.2098355 10.1109/63.388004 10.1109/TPEL.2007.915621 10.1109/ECCE.2012.6342173 10.1109/28.793372 10.1109/ISPSD.1996.509503 10.1109/TPEL.2011.2162531 10.1109/TPEL.2012.2215885 10.1109/TPEL.2009.2031805 10.1109/APEC.2009.4802837 10.1109/PESC.2007.4342127 10.1109/EPE.2005.219326 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M F28 |
DOI | 10.1109/TPEL.2013.2278794 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online Pascal-Francis CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0107 |
EndPage | 3732 |
ExternalDocumentID | 3230311661 10_1109_TPEL_2013_2278794 28603439 6581901 |
Genre | orig-research Feature |
GrantInformation_xml | – fundername: II-VI Foundation – fundername: Oak Ridge National Laboratory – fundername: CURENT Industry Partnership Program – fundername: Engineering Research Center Program of the National Science Foundation – fundername: Department of Energy under the National Science Foundation grantid: EEC-1041877 |
GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS RXW TAE TAF TN5 VH1 VJK XFK 08R ABPTK IPNFZ IQODW PQEST AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M F28 |
ID | FETCH-LOGICAL-c356t-e76aa7bd7c19ba12f8ee906944f3f8a0d32539b130c1f66c9fa36d8f0f9e4ab53 |
IEDL.DBID | RIE |
ISSN | 0885-8993 |
IngestDate | Sat Aug 17 00:39:28 EDT 2024 Thu Oct 10 18:23:16 EDT 2024 Fri Aug 23 02:13:09 EDT 2024 Fri Nov 25 01:03:29 EST 2022 Wed Jun 26 19:28:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Gate current Performance evaluation Electric stress Feedback regulation Driver Push pull connection Feedback Switching time Miller plateau Delay time Intelligent system IGBT modules Controlled current source Active gate driver (AGD) Insulated gate bipolar transistor Power electronics Buffer system Fault currents Current control short circuit Switching transients Switching loss Switching overcurrent Comparative study On off effect Overcurrent protection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-e76aa7bd7c19ba12f8ee906944f3f8a0d32539b130c1f66c9fa36d8f0f9e4ab53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1502049414 |
PQPubID | 37080 |
PageCount | 13 |
ParticipantIDs | ieee_primary_6581901 proquest_journals_1502049414 proquest_miscellaneous_1520954765 crossref_primary_10_1109_TPEL_2013_2278794 pascalfrancis_primary_28603439 |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on power electronics |
PublicationTitleAbbrev | TPEL |
PublicationYear | 2014 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref30 ref11 ref10 (ref12) 0 ref2 lu (ref24) 2009; 45 ref17 ref16 ref18 gao (ref19) 2012 ref23 ref26 ref25 weber (ref1) 2012 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1109/TPEL.2005.861115 – ident: ref11 doi: 10.1109/TPEL.2012.2207463 – start-page: 2287 year: 2012 ident: ref19 article-title: Self-adaptive multi-stage IGBT driving method in medium voltage wind generation system publication-title: Proc IEEE Power Electron Motion Control Conf contributor: fullname: gao – ident: ref8 doi: 10.1109/63.602559 – ident: ref25 doi: 10.1109/28.753644 – ident: ref5 doi: 10.1109/ICIEA.2006.257365 – ident: ref26 doi: 10.1109/TPEL.2012.2217398 – ident: ref27 doi: 10.1109/APEC.2009.4802956 – ident: ref22 doi: 10.1109/APEC.2011.5744820 – year: 0 ident: ref12 – volume: 45 start-page: 1770 year: 2009 ident: ref24 article-title: A literature review of IGBT fault diagnostic and protection methods for power inverters publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2009.2027535 contributor: fullname: lu – ident: ref3 doi: 10.1109/ICPE.2007.4692507 – ident: ref6 doi: 10.1109/APEC.1994.316360 – ident: ref21 doi: 10.1109/28.370271 – ident: ref13 doi: 10.1109/ECCE.2011.6064172 – ident: ref14 doi: 10.1109/TPEL.2007.876895 – ident: ref2 doi: 10.1109/IPEMC.2012.6259033 – ident: ref30 doi: 10.1109/PESC.2007.4342295 – ident: ref28 doi: 10.1109/TIE.2010.2098355 – year: 2012 ident: ref1 article-title: How eliminating flying lead IGBT driver interconnect improves performance and reliability publication-title: IEEE Appl Power Electron Conf Expo contributor: fullname: weber – ident: ref7 doi: 10.1109/63.388004 – ident: ref9 doi: 10.1109/TPEL.2007.915621 – ident: ref18 doi: 10.1109/ECCE.2012.6342173 – ident: ref4 doi: 10.1109/28.793372 – ident: ref23 doi: 10.1109/ISPSD.1996.509503 – ident: ref17 doi: 10.1109/TPEL.2011.2162531 – ident: ref15 doi: 10.1109/TPEL.2012.2215885 – ident: ref10 doi: 10.1109/TPEL.2009.2031805 – ident: ref16 doi: 10.1109/APEC.2009.4802837 – ident: ref29 doi: 10.1109/PESC.2007.4342127 – ident: ref31 doi: 10.1109/EPE.2005.219326 |
SSID | ssj0014501 |
Score | 2.5829973 |
Snippet | This paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition.... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3720 |
SubjectTerms | Active gate driver (AGD) Analysis Applied sciences Capacitance Circuit properties Circuits Control systems Control theory Convertors Electric currents Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electrical machines Electronic circuits Electronics Exact sciences and technology Experiments Faults Feedback Gates IGBT modules Inductance Insulated gate bipolar transistors Logic gates Miller plateau Modules Other multijunction devices. Power transistors. Thyristors Overcurrent overcurrent protection Regulation and control Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors short circuit Signal convertors Switches Switching Switching loss Transient analysis |
Title | A di/dt Feedback-Based Active Gate Driver for Smart Switching and Fast Overcurrent Protection of IGBT Modules |
URI | https://ieeexplore.ieee.org/document/6581901 https://www.proquest.com/docview/1502049414 https://search.proquest.com/docview/1520954765 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAAlIJYKJWROCG8G8eOYx-30KUgFip1K_UW-SlVbRPUTYTEr2fsZCP6OHCLZCtxZmx_Y8_MNwi9dyrSqllLnBSCcMEMkdRyorSlTmVBuMRTsPwhjs_4t_PifAt9HHNhvPcp-MxP42Py5bvGdvGqbAZoGfFrG22XSvW5WqPHgBep1DEsmoLAGYINHkyaqdnq5Oh7DOJi05j3WSp-C4NSUZUYEqnXIJXQl7O4tzMnuFk8RcvNQPsok8tp15qp_XOHw_F__-QZejLYnXjeT5RdtOXr5-jxP2yEe-h6jt3FzLV4AYhmtL0khwBxDs_TlojjPRv-fBPjODBYuvj0GmYdPv190aZwTKxrhxd63eKf0MP2tE_4pKeBAOXjJuCvXw5XeNm47sqvX6CzxdHq0zEZqjEQywrREl8KrUvjSkuV0TQP0nsV02Z5YEHqzLG8YMoAJloahLAqaCacDFlQnmtTsJdop25q_wphaqU2NrhM2ZxLCyYay0sASp8Hap1UE_Rho5_qV0-6UaXDSqaqqMwqKrMalDlBe1G-Y8dBtBN0cEujY3suRcbADJug_Y2Kq2Hdriswj_PImEPhte_GZlhx0Y2ia990sU8OdikvRfH64U-_QY9ggLwP6t1HO-1N59-C6dKagzRn_wJT6eqg |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAO5aNUbCnFSJwQ2U1ix7GPW-iyhd1SqVupt8jxh1SVJqibCIlfz9jJRhQ4cItkK3E8tt-zZ-YZ4K2RXlZN68gIziPGaRmJRLNIKp0YGTtugk7B8pTPL9jny-xyC94PuTDW2hB8Zsf-MfjyTa1bf1Q2QbT0-HUP7iOvFrzL1hp8BiwLlx3jtMki3EXQ3oeZxHKyOjte-DAuOvaZn7lkd1AoXKvigyLVGvvFdRda_LU2B8CZPYblpqldnMn1uG3Ksf75h4rj__7LE9jpmSeZdkPlKWzZ6hk8-k2PcBdupsRcTUxDZohppdLX0RGCnCHTsCgSf9JGPt76SA6CXJec3-C4I-c_rpoQkElUZchMrRvyFWvoTviJnHVCEGh-Ujty8uloRZa1ab_Z9XO4mB2vPsyj_j6GSNOMN5HNuVJ5aXKdyFIlqRPWSp84yxx1QsWGphmVJaKiThznWjpFuREudtIyVWZ0D7arurIvgCRaqFI7E0udMqGRpNE0R6i0qUu0EXIE7zb2Kb53shtF2K7EsvDGLLwxi96YI9j1_TtU7Lt2BId3LDqUp4LHFInYCA42Ji76mbsukCCnXjMnwde-GYpxznlHiqps3fo6KTJTlvNs_9-ffg0P5qvlolicnH55CQ-xsawL8T2A7ea2ta-QyDTlYRi_vwC7ku3r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+di%2Fdt+Feedback-Based+Active+Gate+Driver+for+Smart+Switching+and+Fast+Overcurrent+Protection+of+IGBT+Modules&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Wang%2C+Zhiqiang&rft.au=Shi%2C+Xiaojie&rft.au=Tolbert%2C+Leon+M.&rft.au=Wang%2C+Fei&rft.date=2014-07-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=29&rft.issue=7&rft.spage=3720&rft.epage=3732&rft_id=info:doi/10.1109%2FTPEL.2013.2278794&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2013_2278794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |