Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams
Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any proce...
Saved in:
Published in | Additive manufacturing Vol. 23; pp. 443 - 456 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any process change/anomaly in a timely and accurate manner for potential corrective operations. Real-time thermal image streams captured from AM processes are regarded as most informative signatures of the process stability. Existing state-of-the-art studies on thermal image streams focus merely on in situ sensing, feature extraction, and their relationship with process setup parameters and material properties. The objective of this paper is to develop a statistical process control (SPC) approach to detect process changes as soon as it occurs based on predefined distribution of the monitoring statistics. There are two major challenges: 1) complex spatial interdependence exists in the thermal images and current engineering knowledge is not sufficient to describe all the variability, and 2) the thermal images suffer from a large data volume, a low signal-to-noise ratio, and an ill structure with missing data. To tackle these challenges, multilinear principal component analysis (MPCA) approach is used to extract low dimensional features and residuals. Subsequently, an online dual control charting system is proposed by leveraging multivariate T2 and Q control charts to detect changes in extracted low dimensional features and residuals, respectively. A real-world case study of thin wall fabrication using a Laser Engineered Net Shaping (LENS) process is used to illustrate the effectiveness of the proposed approach, and the accuracy of process anomaly detection is validated based on X-ray computed tomography information collected from the final build offline. |
---|---|
AbstractList | Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any process change/anomaly in a timely and accurate manner for potential corrective operations. Real-time thermal image streams captured from AM processes are regarded as most informative signatures of the process stability. Existing state-of-the-art studies on thermal image streams focus merely on in situ sensing, feature extraction, and their relationship with process setup parameters and material properties. The objective of this paper is to develop a statistical process control (SPC) approach to detect process changes as soon as it occurs based on predefined distribution of the monitoring statistics. There are two major challenges: 1) complex spatial interdependence exists in the thermal images and current engineering knowledge is not sufficient to describe all the variability, and 2) the thermal images suffer from a large data volume, a low signal-to-noise ratio, and an ill structure with missing data. To tackle these challenges, multilinear principal component analysis (MPCA) approach is used to extract low dimensional features and residuals. Subsequently, an online dual control charting system is proposed by leveraging multivariate T2 and Q control charts to detect changes in extracted low dimensional features and residuals, respectively. A real-world case study of thin wall fabrication using a Laser Engineered Net Shaping (LENS) process is used to illustrate the effectiveness of the proposed approach, and the accuracy of process anomaly detection is validated based on X-ray computed tomography information collected from the final build offline. |
Author | Doude, Haley R. Tschopp, Mark A. Tian, Wenmeng Bian, Linkan Khanzadeh, Mojtaba Yadollahi, Aref |
Author_xml | – sequence: 1 givenname: Mojtaba surname: Khanzadeh fullname: Khanzadeh, Mojtaba organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States – sequence: 2 givenname: Wenmeng surname: Tian fullname: Tian, Wenmeng organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States – sequence: 3 givenname: Aref surname: Yadollahi fullname: Yadollahi, Aref organization: Center for Advanced Vehicular Systems (CAVS), Mississippi State University, MS 39762, United States – sequence: 4 givenname: Haley R. surname: Doude fullname: Doude, Haley R. organization: Center for Advanced Vehicular Systems (CAVS), Mississippi State University, MS 39762, United States – sequence: 5 givenname: Mark A. surname: Tschopp fullname: Tschopp, Mark A. organization: U.S. Army Research Laboratory, Chicago, IL 60615, United States – sequence: 6 givenname: Linkan surname: Bian fullname: Bian, Linkan email: bian@ise.msstate.edu organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States |
BookMark | eNqFkM9OwzAMxiM0JAbsCbj0BVqSJu2yAwc0_kqTuMA58hJnZGqbkaSTeHvabScOIFm2D_59tr9LMul8h4TcMFowyurbbQHGtFCUlMmCDsHEGZmWJRP5XDI6OfWypuKCzGLcUkpZxecLWU7J10MPTbYLXmOMWes7l3xw3SbzNmsxQZOvIaLJhhUuuT1mLXS9BZ36w1Qfx5ywiz5kBrVvdz4Og74bBdInhnaQdy1sMIspILTxmpxbaCLOTvWKfDw9vi9f8tXb8-vyfpVrXtUpx1IYy2sGnIrKMC4l1Mgtp1CV1aKSFituGWC1rsXcgpSa15abUliGQpTIr8jiqKuDjzGgVdolGE9LAVyjGFWjfWqrDvap0T5Fh2BiYPkvdheGJ8L3P9TdkcLhrb3DoKJ22Gk0LqBOynj3J_8DwhWPKw |
CitedBy_id | crossref_primary_10_1115_1_4043898 crossref_primary_10_1016_j_addma_2019_05_030 crossref_primary_10_1007_s00170_022_10618_0 crossref_primary_10_1007_s10845_021_01879_9 crossref_primary_10_1080_17452759_2024_2356080 crossref_primary_10_1007_s00170_024_13893_1 crossref_primary_10_1080_24725854_2020_1849876 crossref_primary_10_1115_1_4054805 crossref_primary_10_47459_cndcgs_2020_39 crossref_primary_10_1080_00224065_2019_1642815 crossref_primary_10_1080_24725854_2019_1704465 crossref_primary_10_1080_17452759_2023_2189599 crossref_primary_10_1007_s10845_021_01818_8 crossref_primary_10_1088_1361_6501_ac6569 crossref_primary_10_1007_s10845_023_02279_x crossref_primary_10_1080_17452759_2022_2028380 crossref_primary_10_1109_TASE_2023_3309927 crossref_primary_10_1007_s10845_024_02396_1 crossref_primary_10_1115_1_4050546 crossref_primary_10_1080_0951192X_2021_1901316 crossref_primary_10_1080_24725579_2022_2141929 crossref_primary_10_1007_s10845_021_01761_8 crossref_primary_10_1007_s40964_024_00816_5 crossref_primary_10_1007_s11665_025_10757_x crossref_primary_10_1016_j_promfg_2021_06_065 crossref_primary_10_1115_1_4056488 crossref_primary_10_1016_j_procs_2023_01_103 crossref_primary_10_1002_qre_3223 crossref_primary_10_1080_10426914_2021_1906891 crossref_primary_10_1080_10589759_2024_2382927 crossref_primary_10_1115_1_4067210 crossref_primary_10_1016_j_procir_2021_09_044 crossref_primary_10_1080_24725854_2020_1851824 crossref_primary_10_1007_s00170_024_13377_2 crossref_primary_10_1016_j_optlastec_2020_106194 crossref_primary_10_7735_ksmte_2021_30_1_92 crossref_primary_10_1109_ACCESS_2021_3074703 crossref_primary_10_1214_23_AOAS1845 crossref_primary_10_1016_j_procs_2025_02_238 crossref_primary_10_1016_j_mechatronics_2019_102281 crossref_primary_10_1002_nav_22228 |
Cites_doi | 10.1108/RPJ-12-2014-0177 10.1016/j.phpro.2014.08.100 10.1137/S0895479896305696 10.1115/1.4028540 10.1016/j.actamat.2010.02.004 10.1016/j.jallcom.2013.08.183 10.1016/j.jmsy.2018.04.001 10.1016/j.phpro.2014.08.097 10.1007/s10845-013-0762-x 10.1080/00401706.1995.10485888 10.1137/S0895479898346995 10.1115/1.4034715 10.1016/j.optlaseng.2006.01.009 10.1115/1.4000882 10.1007/s00170-014-6214-8 10.1088/0022-3727/37/14/003 10.1016/j.rcim.2017.07.001 10.1016/j.matdes.2016.01.099 10.1109/JSAC.2017.2699338 10.1016/j.optlaseng.2011.06.016 10.1016/S0924-0136(00)00528-8 10.1080/00207543.2016.1223378 10.1108/RPJ-11-2015-0161 10.1109/TCST.2010.2093901 10.1007/s11740-009-0197-6 10.1108/EUM0000000004031 10.1016/j.phpro.2010.08.078 10.1155/2014/217584 10.1002/9781118061800.ch12 10.1063/1.2209807 10.1109/TASE.2014.2327029 10.1016/j.jmatprotec.2015.12.024 10.1093/biomet/ass019 10.1088/1361-6501/aa5c4f 10.1186/s40192-016-0045-4 10.1109/TNN.2007.901277 10.1108/13552540610707013 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2018.08.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
EndPage | 456 |
ExternalDocumentID | 10_1016_j_addma_2018_08_014 S221486041830277X |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c356t-e24df361a3045d1388a6e3f30a525958fe53f1ae5b647fa88c36f3d24f1e442e3 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Tue Jul 01 01:46:57 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Fri Feb 23 02:48:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process monitoring Tensor Additive manufacturing Dual control chart MPCA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-e24df361a3045d1388a6e3f30a525958fe53f1ae5b647fa88c36f3d24f1e442e3 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1016_j_addma_2018_08_014 crossref_primary_10_1016_j_addma_2018_08_014 elsevier_sciencedirect_doi_10_1016_j_addma_2018_08_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Van Gestel (bib0135) 2015 Pinkerton, Li (bib0050) 2004; 37 Nomikos, MacGregor (bib0285) 1995; 37 Johnson, Wichern (bib0290) 2014 Lu, Plataniotis, Venetsanopoulos (bib0105) 2008; 19 Marshall, Thompson, Shamsaei (bib0295) 2016; 7 Kruth, Mercelis, Van Vaerenbergh, Craeghs (bib0170) 2007 Kruth, Duflou, Mercelis, Van Vaerenbergh, Craeghs, De Keuster (bib0175) 2007; 1 Grasso, Colosimo (bib0010) 2017; 28 Khanzadeh, Chowdhury, Bian, Tschopp (bib0215) 2017 Craig, Wakeman, Grylls, Bullen (bib0190) 2011 Khanzadeh, Chowdhury, Marufuzzaman, Tschopp, Bian (bib0240) 2018; 47 Yan, Paynabar, Shi (bib0280) 2015; 12 Thompson, Bian, Shamsaei, Yadollahi (bib0025) 2015; 8 Craeghs, Clijsters, Yasa, Bechmann, Berumen, Kruth (bib0125) 2011; 49 Tang, Sparks, Ruan, Landers, Liou (bib0080) 2009 Rodriguez, Mireles, Terrazas, Espalin, Perez, Wicker (bib0130) 2015; 5 Kanko, Sibley, Fraser (bib0150) 2016; 231 Reutzel, Nassar (bib0165) 2015; 21 Mani, Feng, Lane, Donmez, Moylan, Fesperman (bib0035) 2015 Krauss, Eschey, Zaeh (bib0220) 2012 Qi, Mazumder, Ki (bib0055) 2006; 100 Kleszczynski, zur Jacobsmühlen, Reinarz, Sehrt, Witt, Merhof (bib0200) 2014 Mani, Lane, Donmez, Feng, Moylan (bib0205) 2017; 55 Emelogu, Marufuzzaman, Thompson, Shamsaei, Bian (bib0005) 2016; 11 Hung, Wu, Tu, Huang (bib0265) 2012; 99 Tapia, Elwany (bib0015) 2014; 136 Khanzadeh, Bian, Shamsaei, Thompson (bib0230) 2016 Picasso, Hoadley (bib0075) 1994; 4 Shamsaei, Yadollahi, Bian, Thompson (bib0020) 2015; 8 De Lathauwer, De Moor, Vandewalle (bib0255) 2000; 21 Kim, Peng (bib0070) 2000; 104 Tang, Landers (bib0065) 2010; 132 Shen, Chen, Tao, Jia (bib0100) 2017 Achanta, Arvanitopoulos Darginis, Süsstrunk (bib0095) 2017 Yadroitsev, Krakhmalev, Yadroitsava (bib0140) 2014; 583 Craeghs, Bechmann, Berumen, Kruth (bib0120) 2010; 5 Bi, Gasser, Wissenbach, Drenker, Poprawe (bib0185) 2006; 44 Zhou, Fang, Yang, Li, Chen, Blum (bib0250) 2017 Horn, Johnson (bib0270) 1985 Grasso, Demir, Previtali, Colosimo (bib0085) 2018; 49 Mercelis, Kruth (bib0040) 2006; 12 Grasso, Laguzza, Semeraro, Colosimo (bib0090) 2017; 139 Neef, Seyda, Herzog, Emmelmann, Schönleber, Kogel-Hollacher (bib0155) 2014; 56 Nassar, Keist, Reutzel, Spurgeon (bib0195) 2015; 6 Schilp, Seidel, Krauss, Weirather (bib0225) 2014; 6 Chen, Huang, Hung, Tu (bib0245) 2014; 52 De Lathauwer, De Moor, Vandewalle (bib0260) 2000; 21 Thijs, Verhaeghe, Craeghs, Van Humbeeck, Kruth (bib0110) 2010; 58 G. I. Allen, Regularized tensor factorizations and higher-order principal components analysis arXiv preprint arXiv:1202.2476, 2012. Chandrasekhar, Vasudevan, Bhaduri, Jayakumar (bib0060) 2015; 26 Khanzadeh, Chowdhury, Tschopp, Doude, Marufuzzaman, Bian (bib0235) 2018 Lane, Moylan, Whitenton, Ma (bib0145) 2016; 22 Krauss, Zeugner, Zaeh (bib0180) 2014; 56 Everton, Hirsch, Stravroulakis, Leach, Clare (bib0030) 2016; 95 Zäh, Lutzmann (bib0045) 2010; 4 Spears, Gold (bib0210) 2016; 5 Clijsters, Craeghs, Buls, Kempen, Kruth (bib0115) 2014; 75 Song, Mazumder (bib0160) 2011; 19 Chandrasekhar (10.1016/j.addma.2018.08.014_bib0060) 2015; 26 Kleszczynski (10.1016/j.addma.2018.08.014_bib0200) 2014 10.1016/j.addma.2018.08.014_bib0275 Song (10.1016/j.addma.2018.08.014_bib0160) 2011; 19 Mani (10.1016/j.addma.2018.08.014_bib0205) 2017; 55 Qi (10.1016/j.addma.2018.08.014_bib0055) 2006; 100 Neef (10.1016/j.addma.2018.08.014_bib0155) 2014; 56 Grasso (10.1016/j.addma.2018.08.014_bib0010) 2017; 28 Pinkerton (10.1016/j.addma.2018.08.014_bib0050) 2004; 37 Johnson (10.1016/j.addma.2018.08.014_bib0290) 2014 Horn (10.1016/j.addma.2018.08.014_bib0270) 1985 Marshall (10.1016/j.addma.2018.08.014_bib0295) 2016; 7 Van Gestel (10.1016/j.addma.2018.08.014_bib0135) 2015 Chen (10.1016/j.addma.2018.08.014_bib0245) 2014; 52 Craig (10.1016/j.addma.2018.08.014_bib0190) 2011 Khanzadeh (10.1016/j.addma.2018.08.014_bib0230) 2016 Achanta (10.1016/j.addma.2018.08.014_bib0095) 2017 Kim (10.1016/j.addma.2018.08.014_bib0070) 2000; 104 De Lathauwer (10.1016/j.addma.2018.08.014_bib0255) 2000; 21 Grasso (10.1016/j.addma.2018.08.014_bib0090) 2017; 139 Yadroitsev (10.1016/j.addma.2018.08.014_bib0140) 2014; 583 Zäh (10.1016/j.addma.2018.08.014_bib0045) 2010; 4 Spears (10.1016/j.addma.2018.08.014_bib0210) 2016; 5 Nomikos (10.1016/j.addma.2018.08.014_bib0285) 1995; 37 Craeghs (10.1016/j.addma.2018.08.014_bib0120) 2010; 5 Picasso (10.1016/j.addma.2018.08.014_bib0075) 1994; 4 Tapia (10.1016/j.addma.2018.08.014_bib0015) 2014; 136 Bi (10.1016/j.addma.2018.08.014_bib0185) 2006; 44 Rodriguez (10.1016/j.addma.2018.08.014_bib0130) 2015; 5 Hung (10.1016/j.addma.2018.08.014_bib0265) 2012; 99 Krauss (10.1016/j.addma.2018.08.014_bib0220) 2012 Grasso (10.1016/j.addma.2018.08.014_bib0085) 2018; 49 Khanzadeh (10.1016/j.addma.2018.08.014_bib0215) 2017 Clijsters (10.1016/j.addma.2018.08.014_bib0115) 2014; 75 Schilp (10.1016/j.addma.2018.08.014_bib0225) 2014; 6 Yan (10.1016/j.addma.2018.08.014_bib0280) 2015; 12 Tang (10.1016/j.addma.2018.08.014_bib0065) 2010; 132 Kruth (10.1016/j.addma.2018.08.014_bib0175) 2007; 1 Khanzadeh (10.1016/j.addma.2018.08.014_bib0235) 2018 Khanzadeh (10.1016/j.addma.2018.08.014_bib0240) 2018; 47 Kruth (10.1016/j.addma.2018.08.014_bib0170) 2007 De Lathauwer (10.1016/j.addma.2018.08.014_bib0260) 2000; 21 Tang (10.1016/j.addma.2018.08.014_bib0080) 2009 Zhou (10.1016/j.addma.2018.08.014_bib0250) 2017 Nassar (10.1016/j.addma.2018.08.014_bib0195) 2015; 6 Krauss (10.1016/j.addma.2018.08.014_bib0180) 2014; 56 Shen (10.1016/j.addma.2018.08.014_bib0100) 2017 Lu (10.1016/j.addma.2018.08.014_bib0105) 2008; 19 Thijs (10.1016/j.addma.2018.08.014_bib0110) 2010; 58 Shamsaei (10.1016/j.addma.2018.08.014_bib0020) 2015; 8 Everton (10.1016/j.addma.2018.08.014_bib0030) 2016; 95 Thompson (10.1016/j.addma.2018.08.014_bib0025) 2015; 8 Craeghs (10.1016/j.addma.2018.08.014_bib0125) 2011; 49 Mercelis (10.1016/j.addma.2018.08.014_bib0040) 2006; 12 Mani (10.1016/j.addma.2018.08.014_bib0035) 2015 Reutzel (10.1016/j.addma.2018.08.014_bib0165) 2015; 21 Emelogu (10.1016/j.addma.2018.08.014_bib0005) 2016; 11 Kanko (10.1016/j.addma.2018.08.014_bib0150) 2016; 231 Lane (10.1016/j.addma.2018.08.014_bib0145) 2016; 22 |
References_xml | – volume: 21 start-page: 1253 year: 2000 end-page: 1278 ident: bib0255 article-title: A multilinear singular value decomposition publication-title: Siam J. Matrix Anal. Appl. – volume: 231 start-page: 488 year: 2016 end-page: 500 ident: bib0150 article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging publication-title: J. Mater. Process. Technol. – volume: 21 start-page: 159 year: 2015 end-page: 167 ident: bib0165 article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing publication-title: Rapid Prototyp. J. – year: 2012 ident: bib0220 article-title: Thermography for monitoring the selective laser melting process publication-title: Solid Freeform Fabrication Symposium – start-page: 1487 year: 2016 end-page: 1494 ident: bib0230 article-title: Porosity detection of laser based additive manufacturing using melt pool morphology clustering publication-title: Solid Freeform Fabrication Austin,TX – year: 1985 ident: bib0270 article-title: Matrix Analysis – volume: 132 start-page: 011010 year: 2010 ident: bib0065 article-title: Melt pool temperature control for laser metal deposition processes—part I: online temperature control publication-title: J. Manuf. Sci. Eng. – volume: 56 start-page: 64 year: 2014 end-page: 71 ident: bib0180 article-title: Layerwise monitoring of the selective laser melting process by thermography publication-title: Phys. Procedia – year: 2014 ident: bib0200 article-title: Improving process stability of laser beam melting systems publication-title: Fraunhofer Direct Digital Manufacturing Conference – volume: 52 start-page: 24 year: 2014 end-page: 43 ident: bib0245 article-title: An introduction to multilinear principal component analysis publication-title: J. Chin. Stat. Assoc. – year: 2009 ident: bib0080 article-title: Online Melt Pool Temperature Control for Laser Metal Deposition Processes – volume: 139 start-page: 051001 year: 2017 ident: bib0090 article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis publication-title: J. Manuf. Sci. Eng. – volume: 583 start-page: 404 year: 2014 end-page: 409 ident: bib0140 article-title: Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution publication-title: J. Alloys – volume: 37 start-page: 1885 year: 2004 ident: bib0050 article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: J. Phys. D Appl. Phys. – start-page: 103 year: 2011 end-page: 110 ident: bib0190 article-title: On-line imaging pyrometer for laser deposition processing publication-title: Sensors, Sampling, Simul. Process Control – volume: 99 start-page: 569 year: 2012 end-page: 583 ident: bib0265 article-title: On multilinear principal component analysis of order-two tensors publication-title: Biometrika – volume: 19 start-page: 1349 year: 2011 end-page: 1356 ident: bib0160 article-title: Feedback control of melt pool temperature during laser cladding process publication-title: Ieee Trans. Control. Syst. Technol. – volume: 8 start-page: 12 year: 2015 end-page: 35 ident: bib0020 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control publication-title: Addit. Manuf. – year: 2017 ident: bib0100 article-title: Convolutional Neural Pyramid for Image Processing – volume: 1 start-page: 23 year: 2007 end-page: 37 ident: bib0175 article-title: On-line monitoring and process control in selective laser melting and laser cutting publication-title: Proceedings of the 5th Lane Conference, Laser Assisted Net Shape Engineering – volume: 100 start-page: 024903 year: 2006 ident: bib0055 article-title: Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition publication-title: J. Appl. Phys. – volume: 104 start-page: 284 year: 2000 end-page: 293 ident: bib0070 article-title: Melt pool shape and dilution of laser cladding with wire feeding publication-title: J. Mater. Process. Technol. – year: 2015 ident: bib0035 article-title: Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes – volume: 49 start-page: 1440 year: 2011 end-page: 1446 ident: bib0125 article-title: Determination of geometrical factors in Layerwise Laser melting using optical process monitoring publication-title: Opt. Lasers Eng. – volume: 6 start-page: 217584 year: 2014 ident: bib0225 article-title: Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling publication-title: Adv. Mech. Eng. – year: 2015 ident: bib0135 article-title: Study of Physical Phenomena of Selective Laser Melting Towards Increased Productivity PhD Dissertation – volume: 49 start-page: 229 year: 2018 end-page: 239 ident: bib0085 article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume publication-title: Robot. Comput. Manuf. – volume: 37 start-page: 41 year: 1995 end-page: 59 ident: bib0285 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics – volume: 19 start-page: 18 year: 2008 end-page: 39 ident: bib0105 article-title: MPCA: multilinear principal component analysis of tensor objects publication-title: IEEE Trans. Neural Netw. – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: bib0110 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Mater. – volume: 4 start-page: 61 year: 1994 end-page: 83 ident: bib0075 article-title: Finite element simulation of laser surface treatments including convection in the melt pool publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 4 start-page: 15 year: 2010 end-page: 23 ident: bib0045 article-title: Modelling and simulation of electron beam melting publication-title: Prod. Eng. – volume: 11 start-page: 97 year: 2016 end-page: 113 ident: bib0005 article-title: Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis publication-title: Addit. Manuf. – volume: 28 year: 2017 ident: bib0010 article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. – start-page: 1 year: 2018 end-page: 19 ident: bib0235 article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes publication-title: IISE Trans. – year: 2014 ident: bib0290 article-title: Applied Multivariate Statistical Analysis – volume: 5 start-page: 505 year: 2010 end-page: 514 ident: bib0120 article-title: Feedback control of Layerwise Laser melting using optical sensors publication-title: Phys. Procedia – year: 2017 ident: bib0215 article-title: A methodology for predicting porosity from thermal imaging of melt pools in additive manufacturing thin wall sections publication-title: ASME 2017 12th International Manufacturing Science and Engineering Conference – volume: 47 start-page: 69 year: 2018 end-page: 82 ident: bib0240 article-title: Porosity prediction: supervised-learning of thermal history for direct laser deposition publication-title: J. Manuf. Syst. – volume: 22 start-page: 778 year: 2016 end-page: 787 ident: bib0145 article-title: Thermographic measurements of the commercial laser powder bed fusion process at NIST publication-title: Rapid Prototyp. J. – volume: 5 start-page: 2 year: 2016 ident: bib0210 article-title: In-process sensing in selective laser melting (SLM) additive manufacturing publication-title: Integr. Mater. Manuf. Innov. – volume: 5 start-page: 31 year: 2015 end-page: 39 ident: bib0130 article-title: Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography publication-title: Addit. Manuf. – volume: 8 start-page: 36 year: 2015 end-page: 62 ident: bib0025 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. – start-page: 521 year: 2007 end-page: 527 ident: bib0170 article-title: Feedback control of selective laser melting publication-title: Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping – volume: 44 start-page: 1348 year: 2006 end-page: 1359 ident: bib0185 article-title: Identification and qualification of temperature signal for monitoring and control in laser cladding publication-title: Opt. Lasers Eng. – volume: 136 start-page: 060801 year: 2014 ident: bib0015 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 56 start-page: 82 year: 2014 end-page: 89 ident: bib0155 article-title: Low coherence interferometry in selective laser melting publication-title: Phys. Procedia – volume: 26 start-page: 59 year: 2015 end-page: 71 ident: bib0060 article-title: Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool publication-title: J. Intell. Manuf. – volume: 7 start-page: 697 year: 2016 end-page: 703 ident: bib0295 publication-title: Data Indicating Temperature Response of Ti–6Al–4V Thin-Walled Structure During Its Additive Manufacture via Laser Engineered Net Shaping – volume: 55 start-page: 1400 year: 2017 end-page: 1418 ident: bib0205 article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes publication-title: Int. J. Prod. Res. – volume: 6 start-page: 39 year: 2015 end-page: 52 ident: bib0195 article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V publication-title: Addit. Manuf. – reference: G. I. Allen, Regularized tensor factorizations and higher-order principal components analysis arXiv preprint arXiv:1202.2476, 2012. – volume: 12 start-page: 216 year: 2015 end-page: 227 ident: bib0280 article-title: Image-based process monitoring using low-rank tensor decompositio publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: bib0040 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – year: 2017 ident: bib0250 article-title: Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems publication-title: IEEE J. Sel. Areas Commun. – volume: 95 start-page: 431 year: 2016 end-page: 445 ident: bib0030 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. – volume: 21 start-page: 1324 year: 2000 end-page: 1342 ident: bib0260 article-title: On the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensors publication-title: Siam J. Matrix Anal. Appl. – volume: 75 start-page: 1089 year: 2014 end-page: 1101 ident: bib0115 article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system publication-title: Int. J. Adv. Manuf. Technol. – year: 2017 ident: bib0095 article-title: Extreme image completion publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 21 start-page: 159 issue: no. 2 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0165 article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2014-0177 – volume: 56 start-page: 82 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0155 article-title: Low coherence interferometry in selective laser melting publication-title: Phys. Procedia doi: 10.1016/j.phpro.2014.08.100 – start-page: 1 year: 2018 ident: 10.1016/j.addma.2018.08.014_bib0235 article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes publication-title: IISE Trans. – volume: 21 start-page: 1253 issue: no. 4 year: 2000 ident: 10.1016/j.addma.2018.08.014_bib0255 article-title: A multilinear singular value decomposition publication-title: Siam J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 136 start-page: 060801 issue: 6 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0015 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028540 – year: 2012 ident: 10.1016/j.addma.2018.08.014_bib0220 article-title: Thermography for monitoring the selective laser melting process – start-page: 1487 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0230 article-title: Porosity detection of laser based additive manufacturing using melt pool morphology clustering – volume: 58 start-page: 3303 issue: no. 9 year: 2010 ident: 10.1016/j.addma.2018.08.014_bib0110 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.004 – year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0215 article-title: A methodology for predicting porosity from thermal imaging of melt pools in additive manufacturing thin wall sections publication-title: ASME 2017 12th International Manufacturing Science and Engineering Conference – volume: 583 start-page: 404 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0140 article-title: Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution publication-title: J. Alloys doi: 10.1016/j.jallcom.2013.08.183 – volume: 47 start-page: 69 year: 2018 ident: 10.1016/j.addma.2018.08.014_bib0240 article-title: Porosity prediction: supervised-learning of thermal history for direct laser deposition publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.04.001 – volume: 56 start-page: 64 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0180 article-title: Layerwise monitoring of the selective laser melting process by thermography publication-title: Phys. Procedia doi: 10.1016/j.phpro.2014.08.097 – start-page: 521 year: 2007 ident: 10.1016/j.addma.2018.08.014_bib0170 article-title: Feedback control of selective laser melting – volume: 8 start-page: 36 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0025 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. – volume: 6 start-page: 39 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0195 article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V publication-title: Addit. Manuf. – year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0100 – volume: 26 start-page: 59 issue: 1 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0060 article-title: Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0762-x – year: 1985 ident: 10.1016/j.addma.2018.08.014_bib0270 – year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0290 – volume: 37 start-page: 41 issue: 1 year: 1995 ident: 10.1016/j.addma.2018.08.014_bib0285 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 21 start-page: 1324 issue: no. 4 year: 2000 ident: 10.1016/j.addma.2018.08.014_bib0260 article-title: On the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensors publication-title: Siam J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – volume: 7 start-page: 697 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0295 – volume: 139 start-page: 051001 issue: no. 5 year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0090 article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4034715 – volume: 44 start-page: 1348 issue: no. 12 year: 2006 ident: 10.1016/j.addma.2018.08.014_bib0185 article-title: Identification and qualification of temperature signal for monitoring and control in laser cladding publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2006.01.009 – volume: 132 start-page: 011010 issue: 1 year: 2010 ident: 10.1016/j.addma.2018.08.014_bib0065 article-title: Melt pool temperature control for laser metal deposition processes—part I: online temperature control publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4000882 – volume: 75 start-page: 1089 issue: 5-8 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0115 article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6214-8 – volume: 37 start-page: 1885 issue: 14 year: 2004 ident: 10.1016/j.addma.2018.08.014_bib0050 article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/37/14/003 – volume: 49 start-page: 229 year: 2018 ident: 10.1016/j.addma.2018.08.014_bib0085 article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume publication-title: Robot. Comput. Manuf. doi: 10.1016/j.rcim.2017.07.001 – volume: 95 start-page: 431 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0030 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.099 – year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0250 article-title: Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2699338 – year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0135 – volume: 49 start-page: 1440 issue: 12 year: 2011 ident: 10.1016/j.addma.2018.08.014_bib0125 article-title: Determination of geometrical factors in Layerwise Laser melting using optical process monitoring publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2011.06.016 – volume: 104 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.addma.2018.08.014_bib0070 article-title: Melt pool shape and dilution of laser cladding with wire feeding publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(00)00528-8 – volume: 55 start-page: 1400 issue: no. 5 year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0205 article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1223378 – volume: 22 start-page: 778 issue: no. 5 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0145 article-title: Thermographic measurements of the commercial laser powder bed fusion process at NIST publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-11-2015-0161 – volume: 5 start-page: 31 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0130 article-title: Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography publication-title: Addit. Manuf. – volume: 8 start-page: 12 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0020 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control publication-title: Addit. Manuf. – volume: 19 start-page: 1349 issue: no. 6 year: 2011 ident: 10.1016/j.addma.2018.08.014_bib0160 article-title: Feedback control of melt pool temperature during laser cladding process publication-title: Ieee Trans. Control. Syst. Technol. doi: 10.1109/TCST.2010.2093901 – volume: 4 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.addma.2018.08.014_bib0045 article-title: Modelling and simulation of electron beam melting publication-title: Prod. Eng. doi: 10.1007/s11740-009-0197-6 – volume: 4 start-page: 61 issue: 1 year: 1994 ident: 10.1016/j.addma.2018.08.014_bib0075 article-title: Finite element simulation of laser surface treatments including convection in the melt pool publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/EUM0000000004031 – ident: 10.1016/j.addma.2018.08.014_bib0275 – volume: 1 start-page: 23 year: 2007 ident: 10.1016/j.addma.2018.08.014_bib0175 article-title: On-line monitoring and process control in selective laser melting and laser cutting publication-title: Proceedings of the 5th Lane Conference, Laser Assisted Net Shape Engineering – year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0095 article-title: Extreme image completion – volume: 5 start-page: 505 year: 2010 ident: 10.1016/j.addma.2018.08.014_bib0120 article-title: Feedback control of Layerwise Laser melting using optical sensors publication-title: Phys. Procedia doi: 10.1016/j.phpro.2010.08.078 – volume: 6 start-page: 217584 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0225 article-title: Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling publication-title: Adv. Mech. Eng. doi: 10.1155/2014/217584 – start-page: 103 year: 2011 ident: 10.1016/j.addma.2018.08.014_bib0190 article-title: On-line imaging pyrometer for laser deposition processing publication-title: Sensors, Sampling, Simul. Process Control doi: 10.1002/9781118061800.ch12 – year: 2009 ident: 10.1016/j.addma.2018.08.014_bib0080 – volume: 100 start-page: 024903 issue: 2 year: 2006 ident: 10.1016/j.addma.2018.08.014_bib0055 article-title: Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition publication-title: J. Appl. Phys. doi: 10.1063/1.2209807 – volume: 12 start-page: 216 issue: 1 year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0280 article-title: Image-based process monitoring using low-rank tensor decompositio publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2327029 – volume: 231 start-page: 488 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0150 article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.12.024 – year: 2015 ident: 10.1016/j.addma.2018.08.014_bib0035 – volume: 99 start-page: 569 issue: no. 3 year: 2012 ident: 10.1016/j.addma.2018.08.014_bib0265 article-title: On multilinear principal component analysis of order-two tensors publication-title: Biometrika doi: 10.1093/biomet/ass019 – volume: 28 issue: 4 year: 2017 ident: 10.1016/j.addma.2018.08.014_bib0010 article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa5c4f – volume: 5 start-page: 2 issue: no. 1 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0210 article-title: In-process sensing in selective laser melting (SLM) additive manufacturing publication-title: Integr. Mater. Manuf. Innov. doi: 10.1186/s40192-016-0045-4 – volume: 19 start-page: 18 issue: 1 year: 2008 ident: 10.1016/j.addma.2018.08.014_bib0105 article-title: MPCA: multilinear principal component analysis of tensor objects publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.901277 – volume: 12 start-page: 254 issue: no. 5 year: 2006 ident: 10.1016/j.addma.2018.08.014_bib0040 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – volume: 52 start-page: 24 issue: 1 year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0245 article-title: An introduction to multilinear principal component analysis publication-title: J. Chin. Stat. Assoc. – year: 2014 ident: 10.1016/j.addma.2018.08.014_bib0200 article-title: Improving process stability of laser beam melting systems – volume: 11 start-page: 97 year: 2016 ident: 10.1016/j.addma.2018.08.014_bib0005 article-title: Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis publication-title: Addit. Manuf. |
SSID | ssj0001537982 |
Score | 2.4581504 |
Snippet | Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 443 |
SubjectTerms | Additive manufacturing Dual control chart MPCA Process monitoring Tensor |
Title | Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams |
URI | https://dx.doi.org/10.1016/j.addma.2018.08.014 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwYhrHr3SsClUB0QUqdYucxEZFJC2lXfnt-JwEioQ6MCbxWdHFvvuSfPcdQpdBkEJW5UQZkxKeiIAkNrCEMhtypZLAKCgUfhzJ4ZjfT8Skgfp1LQzQKqvYX8Z0H62rM53Km535dNp5CkMKHZQ4BQkrpSZQwc4VrPLrT_rznUUw1fU9o2A8AYNafMjTvNz-9vpDNPJSnpT_naDWks5gD-1WaBH3yhvaRw1THKCdNQ3BQ_R-s3Ij5iXfH-d-i8IVPLM4Nw5aE0hUGQbiEIQ2nOtiBeUMvj4RA-_9BQONfbbAmQGGeUXjggkAHeZu-mnuwg6GuhKdfxyh8eD2uT8kVR8FkjIhl8SEPLNMUg1_RTPKokhLwywLtHAvPyKyRjBLtRGJ5MrqKEqZtCwLuaWG89CwY9QsZoU5QThJZca71jqcp7kDd-U7irVd4WAAtUkLhbXz4rQSGYdeF29xzSZ7jb3HY_B4DB0wKW-hq2-jeamxsXm4rJ9K_GupxC4LbDI8_a_hGdqGo5LDd46ay8XKXDgsskzafrG10Vbv7mE4-gIemN-U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw8csRrHdpIeq0KV0uVCK_UWZbFREUlLaf8fTxYoEuLANc5Y0cSeeU7evAG4s6wYs6qgrlIxFZG0aKQtTRnXtnDdyFIuFgqPxo4_FU8zOatBt6qFQVplGfuLmJ5H6_JKq_Rmazmft55tm2EHJcFQwsp1ZzvQQHUqWYdGpz_wx9-fWiR323nbKDShaFPpD-VML7PFcwki5uVqnkz8nqO28k7vEA5KwEg6xTMdQU1lx7C_JSN4Au8PG3PHsqD8kzTfpThCFpqkyqBrirkqIcgdwuhG0jDbYEVDXqJIkPr-QpDJvliRRCHJvGRy4QQIEFMz_Tw1kYdgaUmYfpzCtPc46fq0bKVAYy6dNVW2SDR3WIg_RhPGPS90FNfcCqU5_0hPK8k1C5WMHOHq0PNi7mie2EIzJYSt-BnUs0WmzoFEsZOIttYG6oXC4LvimKJ1WxokwHTUBLtyXhCXOuPY7uItqAhlr0Hu8QA9HmATTCaacP9ltCxkNv6-3aneSvBjtQQmEfxlePFfw1vY9SejYTDsjweXsIcjBaXvCurr1UZdG2iyjm7KpfcJzs3iRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+process+monitoring+of+metal-based+additive+manufacturing+using+tensor+decomposition+of+thermal+image+streams&rft.jtitle=Additive+manufacturing&rft.au=Khanzadeh%2C+Mojtaba&rft.au=Tian%2C+Wenmeng&rft.au=Yadollahi%2C+Aref&rft.au=Doude%2C+Haley+R.&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=23&rft.spage=443&rft.epage=456&rft_id=info:doi/10.1016%2Fj.addma.2018.08.014&rft.externalDocID=S221486041830277X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |