Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams

Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any proce...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 23; pp. 443 - 456
Main Authors Khanzadeh, Mojtaba, Tian, Wenmeng, Yadollahi, Aref, Doude, Haley R., Tschopp, Mark A., Bian, Linkan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any process change/anomaly in a timely and accurate manner for potential corrective operations. Real-time thermal image streams captured from AM processes are regarded as most informative signatures of the process stability. Existing state-of-the-art studies on thermal image streams focus merely on in situ sensing, feature extraction, and their relationship with process setup parameters and material properties. The objective of this paper is to develop a statistical process control (SPC) approach to detect process changes as soon as it occurs based on predefined distribution of the monitoring statistics. There are two major challenges: 1) complex spatial interdependence exists in the thermal images and current engineering knowledge is not sufficient to describe all the variability, and 2) the thermal images suffer from a large data volume, a low signal-to-noise ratio, and an ill structure with missing data. To tackle these challenges, multilinear principal component analysis (MPCA) approach is used to extract low dimensional features and residuals. Subsequently, an online dual control charting system is proposed by leveraging multivariate T2 and Q control charts to detect changes in extracted low dimensional features and residuals, respectively. A real-world case study of thin wall fabrication using a Laser Engineered Net Shaping (LENS) process is used to illustrate the effectiveness of the proposed approach, and the accuracy of process anomaly detection is validated based on X-ray computed tomography information collected from the final build offline.
AbstractList Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies in the build, which hinders AM’s broader adoption to critical structural component manufacturing. Therefore, it is crucial to detect any process change/anomaly in a timely and accurate manner for potential corrective operations. Real-time thermal image streams captured from AM processes are regarded as most informative signatures of the process stability. Existing state-of-the-art studies on thermal image streams focus merely on in situ sensing, feature extraction, and their relationship with process setup parameters and material properties. The objective of this paper is to develop a statistical process control (SPC) approach to detect process changes as soon as it occurs based on predefined distribution of the monitoring statistics. There are two major challenges: 1) complex spatial interdependence exists in the thermal images and current engineering knowledge is not sufficient to describe all the variability, and 2) the thermal images suffer from a large data volume, a low signal-to-noise ratio, and an ill structure with missing data. To tackle these challenges, multilinear principal component analysis (MPCA) approach is used to extract low dimensional features and residuals. Subsequently, an online dual control charting system is proposed by leveraging multivariate T2 and Q control charts to detect changes in extracted low dimensional features and residuals, respectively. A real-world case study of thin wall fabrication using a Laser Engineered Net Shaping (LENS) process is used to illustrate the effectiveness of the proposed approach, and the accuracy of process anomaly detection is validated based on X-ray computed tomography information collected from the final build offline.
Author Doude, Haley R.
Tschopp, Mark A.
Tian, Wenmeng
Bian, Linkan
Khanzadeh, Mojtaba
Yadollahi, Aref
Author_xml – sequence: 1
  givenname: Mojtaba
  surname: Khanzadeh
  fullname: Khanzadeh, Mojtaba
  organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States
– sequence: 2
  givenname: Wenmeng
  surname: Tian
  fullname: Tian, Wenmeng
  organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States
– sequence: 3
  givenname: Aref
  surname: Yadollahi
  fullname: Yadollahi, Aref
  organization: Center for Advanced Vehicular Systems (CAVS), Mississippi State University, MS 39762, United States
– sequence: 4
  givenname: Haley R.
  surname: Doude
  fullname: Doude, Haley R.
  organization: Center for Advanced Vehicular Systems (CAVS), Mississippi State University, MS 39762, United States
– sequence: 5
  givenname: Mark A.
  surname: Tschopp
  fullname: Tschopp, Mark A.
  organization: U.S. Army Research Laboratory, Chicago, IL 60615, United States
– sequence: 6
  givenname: Linkan
  surname: Bian
  fullname: Bian, Linkan
  email: bian@ise.msstate.edu
  organization: Industrial and Systems Engineering Department, Mississippi State University, Starkville, MS 39759, United States
BookMark eNqFkM9OwzAMxiM0JAbsCbj0BVqSJu2yAwc0_kqTuMA58hJnZGqbkaSTeHvabScOIFm2D_59tr9LMul8h4TcMFowyurbbQHGtFCUlMmCDsHEGZmWJRP5XDI6OfWypuKCzGLcUkpZxecLWU7J10MPTbYLXmOMWes7l3xw3SbzNmsxQZOvIaLJhhUuuT1mLXS9BZ36w1Qfx5ywiz5kBrVvdz4Og74bBdInhnaQdy1sMIspILTxmpxbaCLOTvWKfDw9vi9f8tXb8-vyfpVrXtUpx1IYy2sGnIrKMC4l1Mgtp1CV1aKSFituGWC1rsXcgpSa15abUliGQpTIr8jiqKuDjzGgVdolGE9LAVyjGFWjfWqrDvap0T5Fh2BiYPkvdheGJ8L3P9TdkcLhrb3DoKJ22Gk0LqBOynj3J_8DwhWPKw
CitedBy_id crossref_primary_10_1115_1_4043898
crossref_primary_10_1016_j_addma_2019_05_030
crossref_primary_10_1007_s00170_022_10618_0
crossref_primary_10_1007_s10845_021_01879_9
crossref_primary_10_1080_17452759_2024_2356080
crossref_primary_10_1007_s00170_024_13893_1
crossref_primary_10_1080_24725854_2020_1849876
crossref_primary_10_1115_1_4054805
crossref_primary_10_47459_cndcgs_2020_39
crossref_primary_10_1080_00224065_2019_1642815
crossref_primary_10_1080_24725854_2019_1704465
crossref_primary_10_1080_17452759_2023_2189599
crossref_primary_10_1007_s10845_021_01818_8
crossref_primary_10_1088_1361_6501_ac6569
crossref_primary_10_1007_s10845_023_02279_x
crossref_primary_10_1080_17452759_2022_2028380
crossref_primary_10_1109_TASE_2023_3309927
crossref_primary_10_1007_s10845_024_02396_1
crossref_primary_10_1115_1_4050546
crossref_primary_10_1080_0951192X_2021_1901316
crossref_primary_10_1080_24725579_2022_2141929
crossref_primary_10_1007_s10845_021_01761_8
crossref_primary_10_1007_s40964_024_00816_5
crossref_primary_10_1007_s11665_025_10757_x
crossref_primary_10_1016_j_promfg_2021_06_065
crossref_primary_10_1115_1_4056488
crossref_primary_10_1016_j_procs_2023_01_103
crossref_primary_10_1002_qre_3223
crossref_primary_10_1080_10426914_2021_1906891
crossref_primary_10_1080_10589759_2024_2382927
crossref_primary_10_1115_1_4067210
crossref_primary_10_1016_j_procir_2021_09_044
crossref_primary_10_1080_24725854_2020_1851824
crossref_primary_10_1007_s00170_024_13377_2
crossref_primary_10_1016_j_optlastec_2020_106194
crossref_primary_10_7735_ksmte_2021_30_1_92
crossref_primary_10_1109_ACCESS_2021_3074703
crossref_primary_10_1214_23_AOAS1845
crossref_primary_10_1016_j_procs_2025_02_238
crossref_primary_10_1016_j_mechatronics_2019_102281
crossref_primary_10_1002_nav_22228
Cites_doi 10.1108/RPJ-12-2014-0177
10.1016/j.phpro.2014.08.100
10.1137/S0895479896305696
10.1115/1.4028540
10.1016/j.actamat.2010.02.004
10.1016/j.jallcom.2013.08.183
10.1016/j.jmsy.2018.04.001
10.1016/j.phpro.2014.08.097
10.1007/s10845-013-0762-x
10.1080/00401706.1995.10485888
10.1137/S0895479898346995
10.1115/1.4034715
10.1016/j.optlaseng.2006.01.009
10.1115/1.4000882
10.1007/s00170-014-6214-8
10.1088/0022-3727/37/14/003
10.1016/j.rcim.2017.07.001
10.1016/j.matdes.2016.01.099
10.1109/JSAC.2017.2699338
10.1016/j.optlaseng.2011.06.016
10.1016/S0924-0136(00)00528-8
10.1080/00207543.2016.1223378
10.1108/RPJ-11-2015-0161
10.1109/TCST.2010.2093901
10.1007/s11740-009-0197-6
10.1108/EUM0000000004031
10.1016/j.phpro.2010.08.078
10.1155/2014/217584
10.1002/9781118061800.ch12
10.1063/1.2209807
10.1109/TASE.2014.2327029
10.1016/j.jmatprotec.2015.12.024
10.1093/biomet/ass019
10.1088/1361-6501/aa5c4f
10.1186/s40192-016-0045-4
10.1109/TNN.2007.901277
10.1108/13552540610707013
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2018.08.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
EndPage 456
ExternalDocumentID 10_1016_j_addma_2018_08_014
S221486041830277X
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c356t-e24df361a3045d1388a6e3f30a525958fe53f1ae5b647fa88c36f3d24f1e442e3
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Tue Jul 01 01:46:57 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Fri Feb 23 02:48:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Tensor
Additive manufacturing
Dual control chart
MPCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-e24df361a3045d1388a6e3f30a525958fe53f1ae5b647fa88c36f3d24f1e442e3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_addma_2018_08_014
crossref_primary_10_1016_j_addma_2018_08_014
elsevier_sciencedirect_doi_10_1016_j_addma_2018_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Additive manufacturing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Van Gestel (bib0135) 2015
Pinkerton, Li (bib0050) 2004; 37
Nomikos, MacGregor (bib0285) 1995; 37
Johnson, Wichern (bib0290) 2014
Lu, Plataniotis, Venetsanopoulos (bib0105) 2008; 19
Marshall, Thompson, Shamsaei (bib0295) 2016; 7
Kruth, Mercelis, Van Vaerenbergh, Craeghs (bib0170) 2007
Kruth, Duflou, Mercelis, Van Vaerenbergh, Craeghs, De Keuster (bib0175) 2007; 1
Grasso, Colosimo (bib0010) 2017; 28
Khanzadeh, Chowdhury, Bian, Tschopp (bib0215) 2017
Craig, Wakeman, Grylls, Bullen (bib0190) 2011
Khanzadeh, Chowdhury, Marufuzzaman, Tschopp, Bian (bib0240) 2018; 47
Yan, Paynabar, Shi (bib0280) 2015; 12
Thompson, Bian, Shamsaei, Yadollahi (bib0025) 2015; 8
Craeghs, Clijsters, Yasa, Bechmann, Berumen, Kruth (bib0125) 2011; 49
Tang, Sparks, Ruan, Landers, Liou (bib0080) 2009
Rodriguez, Mireles, Terrazas, Espalin, Perez, Wicker (bib0130) 2015; 5
Kanko, Sibley, Fraser (bib0150) 2016; 231
Reutzel, Nassar (bib0165) 2015; 21
Mani, Feng, Lane, Donmez, Moylan, Fesperman (bib0035) 2015
Krauss, Eschey, Zaeh (bib0220) 2012
Qi, Mazumder, Ki (bib0055) 2006; 100
Kleszczynski, zur Jacobsmühlen, Reinarz, Sehrt, Witt, Merhof (bib0200) 2014
Mani, Lane, Donmez, Feng, Moylan (bib0205) 2017; 55
Emelogu, Marufuzzaman, Thompson, Shamsaei, Bian (bib0005) 2016; 11
Hung, Wu, Tu, Huang (bib0265) 2012; 99
Tapia, Elwany (bib0015) 2014; 136
Khanzadeh, Bian, Shamsaei, Thompson (bib0230) 2016
Picasso, Hoadley (bib0075) 1994; 4
Shamsaei, Yadollahi, Bian, Thompson (bib0020) 2015; 8
De Lathauwer, De Moor, Vandewalle (bib0255) 2000; 21
Kim, Peng (bib0070) 2000; 104
Tang, Landers (bib0065) 2010; 132
Shen, Chen, Tao, Jia (bib0100) 2017
Achanta, Arvanitopoulos Darginis, Süsstrunk (bib0095) 2017
Yadroitsev, Krakhmalev, Yadroitsava (bib0140) 2014; 583
Craeghs, Bechmann, Berumen, Kruth (bib0120) 2010; 5
Bi, Gasser, Wissenbach, Drenker, Poprawe (bib0185) 2006; 44
Zhou, Fang, Yang, Li, Chen, Blum (bib0250) 2017
Horn, Johnson (bib0270) 1985
Grasso, Demir, Previtali, Colosimo (bib0085) 2018; 49
Mercelis, Kruth (bib0040) 2006; 12
Grasso, Laguzza, Semeraro, Colosimo (bib0090) 2017; 139
Neef, Seyda, Herzog, Emmelmann, Schönleber, Kogel-Hollacher (bib0155) 2014; 56
Nassar, Keist, Reutzel, Spurgeon (bib0195) 2015; 6
Schilp, Seidel, Krauss, Weirather (bib0225) 2014; 6
Chen, Huang, Hung, Tu (bib0245) 2014; 52
De Lathauwer, De Moor, Vandewalle (bib0260) 2000; 21
Thijs, Verhaeghe, Craeghs, Van Humbeeck, Kruth (bib0110) 2010; 58
G. I. Allen, Regularized tensor factorizations and higher-order principal components analysis arXiv preprint arXiv:1202.2476, 2012.
Chandrasekhar, Vasudevan, Bhaduri, Jayakumar (bib0060) 2015; 26
Khanzadeh, Chowdhury, Tschopp, Doude, Marufuzzaman, Bian (bib0235) 2018
Lane, Moylan, Whitenton, Ma (bib0145) 2016; 22
Krauss, Zeugner, Zaeh (bib0180) 2014; 56
Everton, Hirsch, Stravroulakis, Leach, Clare (bib0030) 2016; 95
Zäh, Lutzmann (bib0045) 2010; 4
Spears, Gold (bib0210) 2016; 5
Clijsters, Craeghs, Buls, Kempen, Kruth (bib0115) 2014; 75
Song, Mazumder (bib0160) 2011; 19
Chandrasekhar (10.1016/j.addma.2018.08.014_bib0060) 2015; 26
Kleszczynski (10.1016/j.addma.2018.08.014_bib0200) 2014
10.1016/j.addma.2018.08.014_bib0275
Song (10.1016/j.addma.2018.08.014_bib0160) 2011; 19
Mani (10.1016/j.addma.2018.08.014_bib0205) 2017; 55
Qi (10.1016/j.addma.2018.08.014_bib0055) 2006; 100
Neef (10.1016/j.addma.2018.08.014_bib0155) 2014; 56
Grasso (10.1016/j.addma.2018.08.014_bib0010) 2017; 28
Pinkerton (10.1016/j.addma.2018.08.014_bib0050) 2004; 37
Johnson (10.1016/j.addma.2018.08.014_bib0290) 2014
Horn (10.1016/j.addma.2018.08.014_bib0270) 1985
Marshall (10.1016/j.addma.2018.08.014_bib0295) 2016; 7
Van Gestel (10.1016/j.addma.2018.08.014_bib0135) 2015
Chen (10.1016/j.addma.2018.08.014_bib0245) 2014; 52
Craig (10.1016/j.addma.2018.08.014_bib0190) 2011
Khanzadeh (10.1016/j.addma.2018.08.014_bib0230) 2016
Achanta (10.1016/j.addma.2018.08.014_bib0095) 2017
Kim (10.1016/j.addma.2018.08.014_bib0070) 2000; 104
De Lathauwer (10.1016/j.addma.2018.08.014_bib0255) 2000; 21
Grasso (10.1016/j.addma.2018.08.014_bib0090) 2017; 139
Yadroitsev (10.1016/j.addma.2018.08.014_bib0140) 2014; 583
Zäh (10.1016/j.addma.2018.08.014_bib0045) 2010; 4
Spears (10.1016/j.addma.2018.08.014_bib0210) 2016; 5
Nomikos (10.1016/j.addma.2018.08.014_bib0285) 1995; 37
Craeghs (10.1016/j.addma.2018.08.014_bib0120) 2010; 5
Picasso (10.1016/j.addma.2018.08.014_bib0075) 1994; 4
Tapia (10.1016/j.addma.2018.08.014_bib0015) 2014; 136
Bi (10.1016/j.addma.2018.08.014_bib0185) 2006; 44
Rodriguez (10.1016/j.addma.2018.08.014_bib0130) 2015; 5
Hung (10.1016/j.addma.2018.08.014_bib0265) 2012; 99
Krauss (10.1016/j.addma.2018.08.014_bib0220) 2012
Grasso (10.1016/j.addma.2018.08.014_bib0085) 2018; 49
Khanzadeh (10.1016/j.addma.2018.08.014_bib0215) 2017
Clijsters (10.1016/j.addma.2018.08.014_bib0115) 2014; 75
Schilp (10.1016/j.addma.2018.08.014_bib0225) 2014; 6
Yan (10.1016/j.addma.2018.08.014_bib0280) 2015; 12
Tang (10.1016/j.addma.2018.08.014_bib0065) 2010; 132
Kruth (10.1016/j.addma.2018.08.014_bib0175) 2007; 1
Khanzadeh (10.1016/j.addma.2018.08.014_bib0235) 2018
Khanzadeh (10.1016/j.addma.2018.08.014_bib0240) 2018; 47
Kruth (10.1016/j.addma.2018.08.014_bib0170) 2007
De Lathauwer (10.1016/j.addma.2018.08.014_bib0260) 2000; 21
Tang (10.1016/j.addma.2018.08.014_bib0080) 2009
Zhou (10.1016/j.addma.2018.08.014_bib0250) 2017
Nassar (10.1016/j.addma.2018.08.014_bib0195) 2015; 6
Krauss (10.1016/j.addma.2018.08.014_bib0180) 2014; 56
Shen (10.1016/j.addma.2018.08.014_bib0100) 2017
Lu (10.1016/j.addma.2018.08.014_bib0105) 2008; 19
Thijs (10.1016/j.addma.2018.08.014_bib0110) 2010; 58
Shamsaei (10.1016/j.addma.2018.08.014_bib0020) 2015; 8
Everton (10.1016/j.addma.2018.08.014_bib0030) 2016; 95
Thompson (10.1016/j.addma.2018.08.014_bib0025) 2015; 8
Craeghs (10.1016/j.addma.2018.08.014_bib0125) 2011; 49
Mercelis (10.1016/j.addma.2018.08.014_bib0040) 2006; 12
Mani (10.1016/j.addma.2018.08.014_bib0035) 2015
Reutzel (10.1016/j.addma.2018.08.014_bib0165) 2015; 21
Emelogu (10.1016/j.addma.2018.08.014_bib0005) 2016; 11
Kanko (10.1016/j.addma.2018.08.014_bib0150) 2016; 231
Lane (10.1016/j.addma.2018.08.014_bib0145) 2016; 22
References_xml – volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: bib0255
  article-title: A multilinear singular value decomposition
  publication-title: Siam J. Matrix Anal. Appl.
– volume: 231
  start-page: 488
  year: 2016
  end-page: 500
  ident: bib0150
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J. Mater. Process. Technol.
– volume: 21
  start-page: 159
  year: 2015
  end-page: 167
  ident: bib0165
  article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing
  publication-title: Rapid Prototyp. J.
– year: 2012
  ident: bib0220
  article-title: Thermography for monitoring the selective laser melting process
  publication-title: Solid Freeform Fabrication Symposium
– start-page: 1487
  year: 2016
  end-page: 1494
  ident: bib0230
  article-title: Porosity detection of laser based additive manufacturing using melt pool morphology clustering
  publication-title: Solid Freeform Fabrication Austin,TX
– year: 1985
  ident: bib0270
  article-title: Matrix Analysis
– volume: 132
  start-page: 011010
  year: 2010
  ident: bib0065
  article-title: Melt pool temperature control for laser metal deposition processes—part I: online temperature control
  publication-title: J. Manuf. Sci. Eng.
– volume: 56
  start-page: 64
  year: 2014
  end-page: 71
  ident: bib0180
  article-title: Layerwise monitoring of the selective laser melting process by thermography
  publication-title: Phys. Procedia
– year: 2014
  ident: bib0200
  article-title: Improving process stability of laser beam melting systems
  publication-title: Fraunhofer Direct Digital Manufacturing Conference
– volume: 52
  start-page: 24
  year: 2014
  end-page: 43
  ident: bib0245
  article-title: An introduction to multilinear principal component analysis
  publication-title: J. Chin. Stat. Assoc.
– year: 2009
  ident: bib0080
  article-title: Online Melt Pool Temperature Control for Laser Metal Deposition Processes
– volume: 139
  start-page: 051001
  year: 2017
  ident: bib0090
  article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis
  publication-title: J. Manuf. Sci. Eng.
– volume: 583
  start-page: 404
  year: 2014
  end-page: 409
  ident: bib0140
  article-title: Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution
  publication-title: J. Alloys
– volume: 37
  start-page: 1885
  year: 2004
  ident: bib0050
  article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances
  publication-title: J. Phys. D Appl. Phys.
– start-page: 103
  year: 2011
  end-page: 110
  ident: bib0190
  article-title: On-line imaging pyrometer for laser deposition processing
  publication-title: Sensors, Sampling, Simul. Process Control
– volume: 99
  start-page: 569
  year: 2012
  end-page: 583
  ident: bib0265
  article-title: On multilinear principal component analysis of order-two tensors
  publication-title: Biometrika
– volume: 19
  start-page: 1349
  year: 2011
  end-page: 1356
  ident: bib0160
  article-title: Feedback control of melt pool temperature during laser cladding process
  publication-title: Ieee Trans. Control. Syst. Technol.
– volume: 8
  start-page: 12
  year: 2015
  end-page: 35
  ident: bib0020
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
– year: 2017
  ident: bib0100
  article-title: Convolutional Neural Pyramid for Image Processing
– volume: 1
  start-page: 23
  year: 2007
  end-page: 37
  ident: bib0175
  article-title: On-line monitoring and process control in selective laser melting and laser cutting
  publication-title: Proceedings of the 5th Lane Conference, Laser Assisted Net Shape Engineering
– volume: 100
  start-page: 024903
  year: 2006
  ident: bib0055
  article-title: Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition
  publication-title: J. Appl. Phys.
– volume: 104
  start-page: 284
  year: 2000
  end-page: 293
  ident: bib0070
  article-title: Melt pool shape and dilution of laser cladding with wire feeding
  publication-title: J. Mater. Process. Technol.
– year: 2015
  ident: bib0035
  article-title: Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes
– volume: 49
  start-page: 1440
  year: 2011
  end-page: 1446
  ident: bib0125
  article-title: Determination of geometrical factors in Layerwise Laser melting using optical process monitoring
  publication-title: Opt. Lasers Eng.
– volume: 6
  start-page: 217584
  year: 2014
  ident: bib0225
  article-title: Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling
  publication-title: Adv. Mech. Eng.
– year: 2015
  ident: bib0135
  article-title: Study of Physical Phenomena of Selective Laser Melting Towards Increased Productivity PhD Dissertation
– volume: 49
  start-page: 229
  year: 2018
  end-page: 239
  ident: bib0085
  article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume
  publication-title: Robot. Comput. Manuf.
– volume: 37
  start-page: 41
  year: 1995
  end-page: 59
  ident: bib0285
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
– volume: 19
  start-page: 18
  year: 2008
  end-page: 39
  ident: bib0105
  article-title: MPCA: multilinear principal component analysis of tensor objects
  publication-title: IEEE Trans. Neural Netw.
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib0110
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater.
– volume: 4
  start-page: 61
  year: 1994
  end-page: 83
  ident: bib0075
  article-title: Finite element simulation of laser surface treatments including convection in the melt pool
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 4
  start-page: 15
  year: 2010
  end-page: 23
  ident: bib0045
  article-title: Modelling and simulation of electron beam melting
  publication-title: Prod. Eng.
– volume: 11
  start-page: 97
  year: 2016
  end-page: 113
  ident: bib0005
  article-title: Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis
  publication-title: Addit. Manuf.
– volume: 28
  year: 2017
  ident: bib0010
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
– start-page: 1
  year: 2018
  end-page: 19
  ident: bib0235
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
– year: 2014
  ident: bib0290
  article-title: Applied Multivariate Statistical Analysis
– volume: 5
  start-page: 505
  year: 2010
  end-page: 514
  ident: bib0120
  article-title: Feedback control of Layerwise Laser melting using optical sensors
  publication-title: Phys. Procedia
– year: 2017
  ident: bib0215
  article-title: A methodology for predicting porosity from thermal imaging of melt pools in additive manufacturing thin wall sections
  publication-title: ASME 2017 12th International Manufacturing Science and Engineering Conference
– volume: 47
  start-page: 69
  year: 2018
  end-page: 82
  ident: bib0240
  article-title: Porosity prediction: supervised-learning of thermal history for direct laser deposition
  publication-title: J. Manuf. Syst.
– volume: 22
  start-page: 778
  year: 2016
  end-page: 787
  ident: bib0145
  article-title: Thermographic measurements of the commercial laser powder bed fusion process at NIST
  publication-title: Rapid Prototyp. J.
– volume: 5
  start-page: 2
  year: 2016
  ident: bib0210
  article-title: In-process sensing in selective laser melting (SLM) additive manufacturing
  publication-title: Integr. Mater. Manuf. Innov.
– volume: 5
  start-page: 31
  year: 2015
  end-page: 39
  ident: bib0130
  article-title: Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 36
  year: 2015
  end-page: 62
  ident: bib0025
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
– start-page: 521
  year: 2007
  end-page: 527
  ident: bib0170
  article-title: Feedback control of selective laser melting
  publication-title: Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
– volume: 44
  start-page: 1348
  year: 2006
  end-page: 1359
  ident: bib0185
  article-title: Identification and qualification of temperature signal for monitoring and control in laser cladding
  publication-title: Opt. Lasers Eng.
– volume: 136
  start-page: 060801
  year: 2014
  ident: bib0015
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 56
  start-page: 82
  year: 2014
  end-page: 89
  ident: bib0155
  article-title: Low coherence interferometry in selective laser melting
  publication-title: Phys. Procedia
– volume: 26
  start-page: 59
  year: 2015
  end-page: 71
  ident: bib0060
  article-title: Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool
  publication-title: J. Intell. Manuf.
– volume: 7
  start-page: 697
  year: 2016
  end-page: 703
  ident: bib0295
  publication-title: Data Indicating Temperature Response of Ti–6Al–4V Thin-Walled Structure During Its Additive Manufacture via Laser Engineered Net Shaping
– volume: 55
  start-page: 1400
  year: 2017
  end-page: 1418
  ident: bib0205
  article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
  publication-title: Int. J. Prod. Res.
– volume: 6
  start-page: 39
  year: 2015
  end-page: 52
  ident: bib0195
  article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V
  publication-title: Addit. Manuf.
– reference: G. I. Allen, Regularized tensor factorizations and higher-order principal components analysis arXiv preprint arXiv:1202.2476, 2012.
– volume: 12
  start-page: 216
  year: 2015
  end-page: 227
  ident: bib0280
  article-title: Image-based process monitoring using low-rank tensor decompositio
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 12
  start-page: 254
  year: 2006
  end-page: 265
  ident: bib0040
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
– year: 2017
  ident: bib0250
  article-title: Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 95
  start-page: 431
  year: 2016
  end-page: 445
  ident: bib0030
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
– volume: 21
  start-page: 1324
  year: 2000
  end-page: 1342
  ident: bib0260
  article-title: On the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensors
  publication-title: Siam J. Matrix Anal. Appl.
– volume: 75
  start-page: 1089
  year: 2014
  end-page: 1101
  ident: bib0115
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2017
  ident: bib0095
  article-title: Extreme image completion
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 21
  start-page: 159
  issue: no. 2
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0165
  article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2014-0177
– volume: 56
  start-page: 82
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0155
  article-title: Low coherence interferometry in selective laser melting
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2014.08.100
– start-page: 1
  year: 2018
  ident: 10.1016/j.addma.2018.08.014_bib0235
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
– volume: 21
  start-page: 1253
  issue: no. 4
  year: 2000
  ident: 10.1016/j.addma.2018.08.014_bib0255
  article-title: A multilinear singular value decomposition
  publication-title: Siam J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 136
  start-page: 060801
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0015
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028540
– year: 2012
  ident: 10.1016/j.addma.2018.08.014_bib0220
  article-title: Thermography for monitoring the selective laser melting process
– start-page: 1487
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0230
  article-title: Porosity detection of laser based additive manufacturing using melt pool morphology clustering
– volume: 58
  start-page: 3303
  issue: no. 9
  year: 2010
  ident: 10.1016/j.addma.2018.08.014_bib0110
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.004
– year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0215
  article-title: A methodology for predicting porosity from thermal imaging of melt pools in additive manufacturing thin wall sections
  publication-title: ASME 2017 12th International Manufacturing Science and Engineering Conference
– volume: 583
  start-page: 404
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0140
  article-title: Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution
  publication-title: J. Alloys
  doi: 10.1016/j.jallcom.2013.08.183
– volume: 47
  start-page: 69
  year: 2018
  ident: 10.1016/j.addma.2018.08.014_bib0240
  article-title: Porosity prediction: supervised-learning of thermal history for direct laser deposition
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.04.001
– volume: 56
  start-page: 64
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0180
  article-title: Layerwise monitoring of the selective laser melting process by thermography
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2014.08.097
– start-page: 521
  year: 2007
  ident: 10.1016/j.addma.2018.08.014_bib0170
  article-title: Feedback control of selective laser melting
– volume: 8
  start-page: 36
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0025
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
– volume: 6
  start-page: 39
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0195
  article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V
  publication-title: Addit. Manuf.
– year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0100
– volume: 26
  start-page: 59
  issue: 1
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0060
  article-title: Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0762-x
– year: 1985
  ident: 10.1016/j.addma.2018.08.014_bib0270
– year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0290
– volume: 37
  start-page: 41
  issue: 1
  year: 1995
  ident: 10.1016/j.addma.2018.08.014_bib0285
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– volume: 21
  start-page: 1324
  issue: no. 4
  year: 2000
  ident: 10.1016/j.addma.2018.08.014_bib0260
  article-title: On the best rank-1 and rank-(r 1, r 2,…, rn) approximation of higher-order tensors
  publication-title: Siam J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 7
  start-page: 697
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0295
– volume: 139
  start-page: 051001
  issue: no. 5
  year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0090
  article-title: In-process monitoring of selective laser melting: spatial detection of defects via image data analysis
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4034715
– volume: 44
  start-page: 1348
  issue: no. 12
  year: 2006
  ident: 10.1016/j.addma.2018.08.014_bib0185
  article-title: Identification and qualification of temperature signal for monitoring and control in laser cladding
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2006.01.009
– volume: 132
  start-page: 011010
  issue: 1
  year: 2010
  ident: 10.1016/j.addma.2018.08.014_bib0065
  article-title: Melt pool temperature control for laser metal deposition processes—part I: online temperature control
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4000882
– volume: 75
  start-page: 1089
  issue: 5-8
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0115
  article-title: In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6214-8
– volume: 37
  start-page: 1885
  issue: 14
  year: 2004
  ident: 10.1016/j.addma.2018.08.014_bib0050
  article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/37/14/003
– volume: 49
  start-page: 229
  year: 2018
  ident: 10.1016/j.addma.2018.08.014_bib0085
  article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume
  publication-title: Robot. Comput. Manuf.
  doi: 10.1016/j.rcim.2017.07.001
– volume: 95
  start-page: 431
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0030
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.099
– year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0250
  article-title: Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2699338
– year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0135
– volume: 49
  start-page: 1440
  issue: 12
  year: 2011
  ident: 10.1016/j.addma.2018.08.014_bib0125
  article-title: Determination of geometrical factors in Layerwise Laser melting using optical process monitoring
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2011.06.016
– volume: 104
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.addma.2018.08.014_bib0070
  article-title: Melt pool shape and dilution of laser cladding with wire feeding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(00)00528-8
– volume: 55
  start-page: 1400
  issue: no. 5
  year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0205
  article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1223378
– volume: 22
  start-page: 778
  issue: no. 5
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0145
  article-title: Thermographic measurements of the commercial laser powder bed fusion process at NIST
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-11-2015-0161
– volume: 5
  start-page: 31
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0130
  article-title: Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0020
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
– volume: 19
  start-page: 1349
  issue: no. 6
  year: 2011
  ident: 10.1016/j.addma.2018.08.014_bib0160
  article-title: Feedback control of melt pool temperature during laser cladding process
  publication-title: Ieee Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2010.2093901
– volume: 4
  start-page: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.addma.2018.08.014_bib0045
  article-title: Modelling and simulation of electron beam melting
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-009-0197-6
– volume: 4
  start-page: 61
  issue: 1
  year: 1994
  ident: 10.1016/j.addma.2018.08.014_bib0075
  article-title: Finite element simulation of laser surface treatments including convection in the melt pool
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/EUM0000000004031
– ident: 10.1016/j.addma.2018.08.014_bib0275
– volume: 1
  start-page: 23
  year: 2007
  ident: 10.1016/j.addma.2018.08.014_bib0175
  article-title: On-line monitoring and process control in selective laser melting and laser cutting
  publication-title: Proceedings of the 5th Lane Conference, Laser Assisted Net Shape Engineering
– year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0095
  article-title: Extreme image completion
– volume: 5
  start-page: 505
  year: 2010
  ident: 10.1016/j.addma.2018.08.014_bib0120
  article-title: Feedback control of Layerwise Laser melting using optical sensors
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.08.078
– volume: 6
  start-page: 217584
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0225
  article-title: Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling
  publication-title: Adv. Mech. Eng.
  doi: 10.1155/2014/217584
– start-page: 103
  year: 2011
  ident: 10.1016/j.addma.2018.08.014_bib0190
  article-title: On-line imaging pyrometer for laser deposition processing
  publication-title: Sensors, Sampling, Simul. Process Control
  doi: 10.1002/9781118061800.ch12
– year: 2009
  ident: 10.1016/j.addma.2018.08.014_bib0080
– volume: 100
  start-page: 024903
  issue: 2
  year: 2006
  ident: 10.1016/j.addma.2018.08.014_bib0055
  article-title: Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2209807
– volume: 12
  start-page: 216
  issue: 1
  year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0280
  article-title: Image-based process monitoring using low-rank tensor decompositio
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2327029
– volume: 231
  start-page: 488
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0150
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.12.024
– year: 2015
  ident: 10.1016/j.addma.2018.08.014_bib0035
– volume: 99
  start-page: 569
  issue: no. 3
  year: 2012
  ident: 10.1016/j.addma.2018.08.014_bib0265
  article-title: On multilinear principal component analysis of order-two tensors
  publication-title: Biometrika
  doi: 10.1093/biomet/ass019
– volume: 28
  issue: 4
  year: 2017
  ident: 10.1016/j.addma.2018.08.014_bib0010
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa5c4f
– volume: 5
  start-page: 2
  issue: no. 1
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0210
  article-title: In-process sensing in selective laser melting (SLM) additive manufacturing
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1186/s40192-016-0045-4
– volume: 19
  start-page: 18
  issue: 1
  year: 2008
  ident: 10.1016/j.addma.2018.08.014_bib0105
  article-title: MPCA: multilinear principal component analysis of tensor objects
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.901277
– volume: 12
  start-page: 254
  issue: no. 5
  year: 2006
  ident: 10.1016/j.addma.2018.08.014_bib0040
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610707013
– volume: 52
  start-page: 24
  issue: 1
  year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0245
  article-title: An introduction to multilinear principal component analysis
  publication-title: J. Chin. Stat. Assoc.
– year: 2014
  ident: 10.1016/j.addma.2018.08.014_bib0200
  article-title: Improving process stability of laser beam melting systems
– volume: 11
  start-page: 97
  year: 2016
  ident: 10.1016/j.addma.2018.08.014_bib0005
  article-title: Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis
  publication-title: Addit. Manuf.
SSID ssj0001537982
Score 2.4581504
Snippet Additive manufacturing (AM) processes are subject to lower stability compared to their traditional counterparts. The process inconsistency leads to anomalies...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 443
SubjectTerms Additive manufacturing
Dual control chart
MPCA
Process monitoring
Tensor
Title Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams
URI https://dx.doi.org/10.1016/j.addma.2018.08.014
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwYhrHr3SsClUB0QUqdYucxEZFJC2lXfnt-JwEioQ6MCbxWdHFvvuSfPcdQpdBkEJW5UQZkxKeiIAkNrCEMhtypZLAKCgUfhzJ4ZjfT8Skgfp1LQzQKqvYX8Z0H62rM53Km535dNp5CkMKHZQ4BQkrpSZQwc4VrPLrT_rznUUw1fU9o2A8AYNafMjTvNz-9vpDNPJSnpT_naDWks5gD-1WaBH3yhvaRw1THKCdNQ3BQ_R-s3Ij5iXfH-d-i8IVPLM4Nw5aE0hUGQbiEIQ2nOtiBeUMvj4RA-_9BQONfbbAmQGGeUXjggkAHeZu-mnuwg6GuhKdfxyh8eD2uT8kVR8FkjIhl8SEPLNMUg1_RTPKokhLwywLtHAvPyKyRjBLtRGJ5MrqKEqZtCwLuaWG89CwY9QsZoU5QThJZca71jqcp7kDd-U7irVd4WAAtUkLhbXz4rQSGYdeF29xzSZ7jb3HY_B4DB0wKW-hq2-jeamxsXm4rJ9K_GupxC4LbDI8_a_hGdqGo5LDd46ay8XKXDgsskzafrG10Vbv7mE4-gIemN-U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw8csRrHdpIeq0KV0uVCK_UWZbFREUlLaf8fTxYoEuLANc5Y0cSeeU7evAG4s6wYs6qgrlIxFZG0aKQtTRnXtnDdyFIuFgqPxo4_FU8zOatBt6qFQVplGfuLmJ5H6_JKq_Rmazmft55tm2EHJcFQwsp1ZzvQQHUqWYdGpz_wx9-fWiR323nbKDShaFPpD-VML7PFcwki5uVqnkz8nqO28k7vEA5KwEg6xTMdQU1lx7C_JSN4Au8PG3PHsqD8kzTfpThCFpqkyqBrirkqIcgdwuhG0jDbYEVDXqJIkPr-QpDJvliRRCHJvGRy4QQIEFMz_Tw1kYdgaUmYfpzCtPc46fq0bKVAYy6dNVW2SDR3WIg_RhPGPS90FNfcCqU5_0hPK8k1C5WMHOHq0PNi7mie2EIzJYSt-BnUs0WmzoFEsZOIttYG6oXC4LvimKJ1WxokwHTUBLtyXhCXOuPY7uItqAhlr0Hu8QA9HmATTCaacP9ltCxkNv6-3aneSvBjtQQmEfxlePFfw1vY9SejYTDsjweXsIcjBaXvCurr1UZdG2iyjm7KpfcJzs3iRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+process+monitoring+of+metal-based+additive+manufacturing+using+tensor+decomposition+of+thermal+image+streams&rft.jtitle=Additive+manufacturing&rft.au=Khanzadeh%2C+Mojtaba&rft.au=Tian%2C+Wenmeng&rft.au=Yadollahi%2C+Aref&rft.au=Doude%2C+Haley+R.&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=23&rft.spage=443&rft.epage=456&rft_id=info:doi/10.1016%2Fj.addma.2018.08.014&rft.externalDocID=S221486041830277X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon