Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα)

[Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characterist...

Full description

Saved in:
Bibliographic Details
Published inBioorganic & medicinal chemistry letters Vol. 30; no. 4; p. 126907
Main Authors Dragovich, Peter S., Adhikari, Pragya, Blake, Robert A., Blaquiere, Nicole, Chen, Jinhua, Cheng, Yun-Xing, den Besten, Willem, Han, Jinping, Hartman, Steven J., He, Jintang, He, Mingtao, Rei Ingalla, Ellen, Kamath, Amrita V., Kleinheinz, Tracy, Lai, Tommy, Leipold, Douglas D., Li, Chun Sing, Liu, Qi, Lu, Jiawei, Lu, Ying, Meng, Fanwei, Meng, Lingyao, Ng, Carl, Peng, Kaishan, Lewis Phillips, Gail, Pillow, Thomas H., Rowntree, Rebecca K., Sadowsky, Jack D., Sampath, Deepak, Staben, Leanna, Staben, Steven T., Wai, John, Wan, Kunpeng, Wang, Xinxin, Wei, BinQing, Wertz, Ingrid E., Xin, Jianfeng, Xu, Keyang, Yao, Hui, Zang, Richard, Zhang, Donglu, Zhou, Hao, Zhao, Yongxin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
AbstractList Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
[Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
ArticleNumber 126907
Author Hartman, Steven J.
Wan, Kunpeng
Chen, Jinhua
He, Mingtao
Staben, Steven T.
Dragovich, Peter S.
Rei Ingalla, Ellen
Blaquiere, Nicole
Lewis Phillips, Gail
Zhao, Yongxin
Han, Jinping
Peng, Kaishan
Zang, Richard
Sadowsky, Jack D.
Xu, Keyang
Wertz, Ingrid E.
Lu, Ying
Meng, Fanwei
Staben, Leanna
He, Jintang
Wei, BinQing
Xin, Jianfeng
den Besten, Willem
Lu, Jiawei
Kamath, Amrita V.
Rowntree, Rebecca K.
Sampath, Deepak
Adhikari, Pragya
Wai, John
Zhang, Donglu
Wang, Xinxin
Cheng, Yun-Xing
Yao, Hui
Lai, Tommy
Liu, Qi
Ng, Carl
Zhou, Hao
Meng, Lingyao
Blake, Robert A.
Leipold, Douglas D.
Kleinheinz, Tracy
Pillow, Thomas H.
Li, Chun Sing
Author_xml – sequence: 1
  givenname: Peter S.
  surname: Dragovich
  fullname: Dragovich, Peter S.
  email: dragovich.peter@gene.com
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 2
  givenname: Pragya
  surname: Adhikari
  fullname: Adhikari, Pragya
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 3
  givenname: Robert A.
  surname: Blake
  fullname: Blake, Robert A.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 4
  givenname: Nicole
  surname: Blaquiere
  fullname: Blaquiere, Nicole
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 5
  givenname: Jinhua
  surname: Chen
  fullname: Chen, Jinhua
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 6
  givenname: Yun-Xing
  surname: Cheng
  fullname: Cheng, Yun-Xing
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 7
  givenname: Willem
  surname: den Besten
  fullname: den Besten, Willem
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 8
  givenname: Jinping
  surname: Han
  fullname: Han, Jinping
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 9
  givenname: Steven J.
  surname: Hartman
  fullname: Hartman, Steven J.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 10
  givenname: Jintang
  surname: He
  fullname: He, Jintang
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 11
  givenname: Mingtao
  surname: He
  fullname: He, Mingtao
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 12
  givenname: Ellen
  surname: Rei Ingalla
  fullname: Rei Ingalla, Ellen
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 13
  givenname: Amrita V.
  surname: Kamath
  fullname: Kamath, Amrita V.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 14
  givenname: Tracy
  surname: Kleinheinz
  fullname: Kleinheinz, Tracy
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 15
  givenname: Tommy
  surname: Lai
  fullname: Lai, Tommy
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 16
  givenname: Douglas D.
  surname: Leipold
  fullname: Leipold, Douglas D.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 17
  givenname: Chun Sing
  surname: Li
  fullname: Li, Chun Sing
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 18
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 19
  givenname: Jiawei
  surname: Lu
  fullname: Lu, Jiawei
  organization: WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 20
  givenname: Ying
  surname: Lu
  fullname: Lu, Ying
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 21
  givenname: Fanwei
  surname: Meng
  fullname: Meng, Fanwei
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 22
  givenname: Lingyao
  surname: Meng
  fullname: Meng, Lingyao
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 23
  givenname: Carl
  surname: Ng
  fullname: Ng, Carl
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 24
  givenname: Kaishan
  surname: Peng
  fullname: Peng, Kaishan
  organization: WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 25
  givenname: Gail
  surname: Lewis Phillips
  fullname: Lewis Phillips, Gail
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 26
  givenname: Thomas H.
  surname: Pillow
  fullname: Pillow, Thomas H.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 27
  givenname: Rebecca K.
  surname: Rowntree
  fullname: Rowntree, Rebecca K.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 28
  givenname: Jack D.
  surname: Sadowsky
  fullname: Sadowsky, Jack D.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 29
  givenname: Deepak
  surname: Sampath
  fullname: Sampath, Deepak
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 30
  givenname: Leanna
  surname: Staben
  fullname: Staben, Leanna
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 31
  givenname: Steven T.
  surname: Staben
  fullname: Staben, Steven T.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 32
  givenname: John
  surname: Wai
  fullname: Wai, John
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 33
  givenname: Kunpeng
  surname: Wan
  fullname: Wan, Kunpeng
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 34
  givenname: Xinxin
  surname: Wang
  fullname: Wang, Xinxin
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 35
  givenname: BinQing
  surname: Wei
  fullname: Wei, BinQing
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 36
  givenname: Ingrid E.
  surname: Wertz
  fullname: Wertz, Ingrid E.
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 37
  givenname: Jianfeng
  surname: Xin
  fullname: Xin, Jianfeng
  organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
– sequence: 38
  givenname: Keyang
  surname: Xu
  fullname: Xu, Keyang
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 39
  givenname: Hui
  surname: Yao
  fullname: Yao, Hui
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 40
  givenname: Richard
  surname: Zang
  fullname: Zang, Richard
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 41
  givenname: Donglu
  surname: Zhang
  fullname: Zhang, Donglu
  organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
– sequence: 42
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
– sequence: 43
  givenname: Yongxin
  surname: Zhao
  fullname: Zhao, Yongxin
  organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31902710$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqGzEUQEVJaJy0P9BF0TJdjHOl0TwE3YSQPiAQCC10JzTSlS0zM3IlOcGf1R_pN1XGaRddZKWFzrnce87JyRxmJOQdgyUD1l5tlsNkxiUHJpeMtxK6V2TBRCuqWkBzQhYgW6h6KX6ckfOUNgBMgBCvyVnNJPCOwYLY6zn7Idh9NaH1OqOlFkf_iHFPg6Nm7SeM3tBtDBn9XD5XUVuMiT6tvVnTrOMKM8WUY1jhTCMa3OYQqR63a00vbx9-__rwhpw6PSZ8-_xekO-fbr_dfKnu7j9_vbm-q0zdtLmyRhrDHMi-qV3rhkY2bHBykKLX4JzknR1A96xrOBpu0FrprLadBsNakKK-IJfHuWXbn7uyk5p8MjiOesawS4rXdS1523ayoO-f0d1QLlfb6Ccd9-pvmQLwI2BiSCmi-4cwUIf8aqMO-dUhvzrmL1L_n2R81tmHOUftx5fVj0cVS6BHj1El43EuV_rSNCsb_Ev6H1o7og4
CitedBy_id crossref_primary_10_1002_cmdc_202400326
crossref_primary_10_1002_med_21877
crossref_primary_10_1016_j_ejmech_2024_116709
crossref_primary_10_1016_j_pharmthera_2023_108371
crossref_primary_10_1021_acschembio_0c00285
crossref_primary_10_1021_acs_jmedchem_2c02032
crossref_primary_10_1021_acs_jmedchem_0c01845
crossref_primary_10_1186_s13045_020_00924_z
crossref_primary_10_1002_cbic_202100270
crossref_primary_10_1016_j_bioorg_2023_106590
crossref_primary_10_1021_acs_jmedchem_0c01846
crossref_primary_10_1093_abbs_gmaa053
crossref_primary_10_1186_s40824_023_00385_8
crossref_primary_10_1016_j_scib_2024_03_056
crossref_primary_10_1039_D1CS00762A
crossref_primary_10_1016_j_ejmech_2023_115384
crossref_primary_10_1021_acs_jmedchem_4c01521
crossref_primary_10_1093_abt_tbac024
crossref_primary_10_3390_antib12030043
crossref_primary_10_1021_jacs_2c12809
crossref_primary_10_1021_acs_molpharmaceut_1c00018
crossref_primary_10_1016_j_apsb_2024_01_010
crossref_primary_10_1124_pharmrev_121_000499
crossref_primary_10_1021_acs_bioconjchem_3c00366
crossref_primary_10_1021_acs_jmedchem_3c00302
crossref_primary_10_1021_acs_jmedchem_2c00302
crossref_primary_10_3390_biom13081164
crossref_primary_10_3390_pharmaceutics14112523
crossref_primary_10_1002_mco2_290
crossref_primary_10_1016_j_ejmech_2022_114770
crossref_primary_10_1021_acs_bioconjchem_2c00226
crossref_primary_10_1021_acs_jmedchem_2c01791
crossref_primary_10_1039_D2CS00141A
crossref_primary_10_3390_ijms232415582
crossref_primary_10_1002_adhm_202400109
crossref_primary_10_1039_D2CS00387B
crossref_primary_10_1021_acs_bioconjchem_4c00124
crossref_primary_10_1016_j_ejmech_2023_116041
crossref_primary_10_1021_jacs_1c00451
crossref_primary_10_3390_ijms232315440
crossref_primary_10_1016_j_drudis_2022_103387
crossref_primary_10_1021_acs_bioconjchem_3c00535
crossref_primary_10_1021_jacs_3c05159
crossref_primary_10_1038_s41573_023_00652_2
crossref_primary_10_3389_fchem_2021_707317
crossref_primary_10_1007_s40291_022_00586_2
crossref_primary_10_1021_acs_jmedchem_0c01542
crossref_primary_10_3390_ph18030297
crossref_primary_10_1186_s40164_022_00363_1
crossref_primary_10_1007_s13346_024_01754_z
crossref_primary_10_1039_D2CS00148A
crossref_primary_10_3390_molecules28030917
crossref_primary_10_1021_acs_jmedchem_1c00901
crossref_primary_10_1016_j_chembiol_2023_06_020
crossref_primary_10_1016_j_ijbiomac_2024_129864
crossref_primary_10_1016_j_chembiol_2021_04_011
crossref_primary_10_1016_j_ejmech_2023_115447
crossref_primary_10_1016_j_ejmech_2024_116216
crossref_primary_10_1038_s41392_022_00999_9
crossref_primary_10_1080_17460441_2023_2187777
crossref_primary_10_37349_etat_2021_00060
crossref_primary_10_1016_j_copbio_2022_102807
crossref_primary_10_4236_jbm_2023_117002
crossref_primary_10_1007_s12274_024_6974_x
crossref_primary_10_3390_molecules25245956
crossref_primary_10_1080_15476286_2022_2027150
crossref_primary_10_1016_j_ejmech_2022_115082
crossref_primary_10_1039_D4MD00961D
crossref_primary_10_1016_j_heliyon_2022_e09577
crossref_primary_10_1038_s41571_023_00850_2
crossref_primary_10_3389_fcell_2021_678077
crossref_primary_10_1186_s13045_022_01397_y
crossref_primary_10_1186_s12943_024_02024_9
crossref_primary_10_1002_cmdc_202000683
crossref_primary_10_1016_j_apsb_2022_02_022
crossref_primary_10_1021_acsnano_3c03166
crossref_primary_10_1021_acs_chemrev_2c00915
crossref_primary_10_3390_bioengineering10121368
crossref_primary_10_1021_acs_jmedchem_2c00728
crossref_primary_10_1021_acs_jmedchem_3c00079
crossref_primary_10_1038_s42003_024_06238_x
crossref_primary_10_1080_03602532_2023_2262161
crossref_primary_10_3390_pharmaceutics15020411
crossref_primary_10_1016_j_ejmech_2020_112689
Cites_doi 10.1016/j.drudis.2017.05.011
10.1074/jbc.M116.768853
10.1021/acs.jmedchem.7b00168
10.1002/anie.201307628
10.1023/B:BREA.0000025406.31193.e8
10.1021/jm020449y
10.1158/1535-7163.MCT-18-0073
10.1016/j.ddtec.2019.02.005
10.1039/C6SC01831A
10.1093/protein/gzx067
10.1021/acs.bioconjchem.7b00258
10.1016/j.bmcl.2010.02.024
10.1038/nrd.2016.268
10.1002/anie.201611281
10.1016/S0960-894X(98)00609-X
10.1158/1535-7163.MCT-18-0643
10.1021/jacs.5b12547
10.1021/acs.jmedchem.5b00760
10.1021/acs.bioconjchem.8b00252
10.1002/chem.201800859
10.1126/science.aab1433
10.1021/jm5011258
10.1158/1535-7163.MCT-16-0641
10.1021/jm400732v
10.1021/acs.jmedchem.8b00506
10.1073/pnas.63.1.78
10.1016/j.pharmthera.2017.02.027
10.1038/s41421-018-0079-1
10.1038/nrd.2016.211
10.1038/nbt.2108
10.1038/nbt832
10.1021/acs.bioconjchem.7b00791
10.1021/acschembio.7b00485
10.1021/acs.bioconjchem.7b00365
10.1002/anie.201206231
10.1021/acs.jmedchem.8b00686
10.1158/1078-0432.CCR-15-2822
10.1021/acs.jmedchem.6b01816
10.7554/eLife.15828
10.1038/nbt.1480
10.1158/1078-0432.CCR-04-0789
10.1021/acs.bioconjchem.7b00576
10.1038/nchembio.1858
10.1021/acs.bioconjchem.6b00337
10.1073/pnas.1521738113
10.1021/acs.bioconjchem.6b00192
10.1016/j.bmcl.2019.04.030
10.1021/acs.chemrev.7b00077
10.1038/leu.2016.393
10.1021/acschembio.6b01068
10.1021/acs.bioconjchem.8b00312
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bmcl.2019.126907
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Chemistry
EISSN 1464-3405
ExternalDocumentID 31902710
10_1016_j_bmcl_2019_126907
S0960894X19308856
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATCM
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
D0L
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LZ2
M29
M2Z
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSK
SSP
SSU
SSZ
T5K
YK3
ZMT
~02
~G-
.HR
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HEA
HMK
HMO
HMS
HMT
HVGLF
HZ~
R2-
RIG
SAE
SCB
SEW
SOC
SPT
WUQ
XPP
Y6R
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-dc9cc1f09853f6fb5951bf9b948a0ff927db0a81752ec2cedd9fdad7a0c160943
IEDL.DBID .~1
ISSN 0960-894X
1464-3405
IngestDate Thu Jul 10 19:33:38 EDT 2025
Mon Jul 21 05:40:21 EDT 2025
Tue Jul 01 03:35:52 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 23 02:48:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Estrogen receptor
Drug delivery
Chimeric protein degraders
Antibody-drug conjugates
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-dc9cc1f09853f6fb5951bf9b948a0ff927db0a81752ec2cedd9fdad7a0c160943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31902710
PQID 2333926679
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2333926679
pubmed_primary_31902710
crossref_primary_10_1016_j_bmcl_2019_126907
crossref_citationtrail_10_1016_j_bmcl_2019_126907
elsevier_sciencedirect_doi_10_1016_j_bmcl_2019_126907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioorganic & medicinal chemistry letters
PublicationTitleAlternate Bioorg Med Chem Lett
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Flanagan JJ, Qian Y, Gough SM, et al. San Antonio Breast Cancer Symposium, 2017, P4-04-04.
b0195
Beck, Goetsch, Dumontet, Corvaïa, Sau, Alsaab, Kashaw, Tatiparti, Iyer, Chari, Miller, Widdison (b0055) 2017; 16
Remillard, Buckley, Paulk, Bondeson, Smith, Burslem (b0015) 2017; 56
Campos SA, Harling JD, Miah AH, Smith IED. WO 2014/108452.
Sussman, Westendorf, Meyer, Junutula, Raab, Clark, Shen, Xu, Liu (b0130) 2017; 31
Buckley, Gustafson, Van Molle, Galdeano, Gadd, Soares (b0095) 2012; 51
Ohri, Bhakta, O’Donohue, Vollmar, Wei, Ohri (b0140) 2018; 29
(a) For examples of antibody-degrader conjugates described in the patent literature, see: (a) Chuang S-H; Liao C-B; Sun W-T, .et al. WO 2019/140003; (b) Thompson, P. A; Edris, B.; Coburn, C. A.; Baum, P. R. WO 2018/227023; (c) Pillow T, Sadowsky J, Staben L, et al. WO 2017/201449.
Dubowchik, Firestone, Doronina, Toki, Torgov (b0120) 1998; 8
Govindan, Cardillo, Rossi, Kern, Dooney, Zhang (b0170) 1836; 2015
Renault, Fredy, Renard, Sabot (b0125) 2018; 29
Saenz, Fiskus, Qian, Raina, Lu, Qian, Winter, Buckley, Paulk (b0035) 2017; 31
Sadowsky, Pillow, Chen (b0160) 2017; 28
Shultz (b0190) 2019; 62
Johnson, Zuo, Lee, Ali, Ahmad, Shahabuddin, Ahmad, Sheikh, Ahmad (b0085) 2004; 85
Buecheler, Winzer, Tonillo, Weber, Gieseler (b0145) 2017; 28
Dragovich, Blake, Chen (b0105) 2018; 24
Gilbert, Noe (b0005) 2016; 51
Pillow, Adhikari, Blake (b0060) 2020
Zhou, Hu, Xu, Qin, Hu, Zhou (b0040) 2018; 61
Joseph, Darimont, Zhou (b0110) 2016; 5
Burslem, Crews, Neklesa, Winkler, Crews, Ottis, Crews, Lai, Crews (b0010) 2017; 117
Ottis, Toure, Cromm, Ko, Gustafson, Crews (b0025) 2017; 12
The mAb nomenclature follows the EU convention described in: Edelman GM, Cunningham BA, Gall WE, Gotlieb PD, Rutishauser U, Waxdal MJ. Proc Natl Acad USA. 1969;63:78. For a comparison of the EU and the alternate Kabat mAb nomenclature systems, see in Ref. 28a.
Kern, Cancilla, Dooney, Brandish, Palmieri, Antonenko (b0180) 2016; 138
Bessire, Ballard, Charati (b0115) 2016; 27
Jordan (b0070) 2003; 46
For related examples, see: Fan J, Liu K. WO 2018/013559.
Ohoka, Okuhira, Ito, Shibata, Nagai, Morita (b0020) 2017; 292
Burslem, Smith, Lai, Bondeson, Mares, Smith (b0030) 2018; 25
McDonnell, Wardell, Norris, Wang, Liang (b0075) 2015; 58
Pillow, Sadowsky, Zhang, Pillow, Schutten, Yu (b0165) 2017; 8
Zhang, Le, dela Cruz-Chuh (b0150) 2018; 29
b0155
Neumann, Olivas, Anderson, Burke, Hamilton, Pires, Ogitani, Aida, Hagihara (b0175) 2018; 17
Edmondson, Yang, Fallan, Watt, Scott-Stevens, Gaohua (b0050) 2019; 29
Neklesa TK, Snyder LB, Altieri M. et al. 2017, ASCO Genitourinary Cancers Symposium, Abstract #273.
Kester, Donnell, Lou (b0090) 2013; 56
Hamblett, Senter, Chace (b0185) 2004; 10
Shibata (10.1016/j.bmcl.2019.126907_h0045) 2018; 61
Edmondson (10.1016/j.bmcl.2019.126907_h0105) 2019; 29
cr-split#-10.1016/j.bmcl.2019.126907_b0065.1
cr-split#-10.1016/j.bmcl.2019.126907_b0065.2
cr-split#-10.1016/j.bmcl.2019.126907_b0065.3
Beck (10.1016/j.bmcl.2019.126907_h0115) 2017; 16
cr-split#-10.1016/j.bmcl.2019.126907_b0065.4
Burke (10.1016/j.bmcl.2019.126907_h0290) 2018; 17
Sadowsky (10.1016/j.bmcl.2019.126907_b0160) 2017; 28
Lai (10.1016/j.bmcl.2019.126907_h0025) 2017; 16
Brandish (10.1016/j.bmcl.2019.126907_h0305) 2018; 29
cr-split#-10.1016/j.bmcl.2019.126907_b0065.5
Chari (10.1016/j.bmcl.2019.126907_h0125) 2014; 53
Johnson (10.1016/j.bmcl.2019.126907_h0160) 2004; 85
Shultz (10.1016/j.bmcl.2019.126907_b0190) 2019; 62
Qin (10.1016/j.bmcl.2019.126907_h0085) 2018; 61
Kester (10.1016/j.bmcl.2019.126907_b0090) 2013; 56
Winter (10.1016/j.bmcl.2019.126907_h0075) 2015; 348
Pillow (10.1016/j.bmcl.2019.126907_h0265) 2017; 8
Remillard (10.1016/j.bmcl.2019.126907_h0030) 2017; 56
Renault (10.1016/j.bmcl.2019.126907_b0125) 2018; 29
McDonnell (10.1016/j.bmcl.2019.126907_h0145) 2015; 58
Pillow (10.1016/j.bmcl.2019.126907_b0060) 2020
Burslem (10.1016/j.bmcl.2019.126907_h0055) 2018; 25
Ohoka (10.1016/j.bmcl.2019.126907_h0040) 2017; 292
Joseph (10.1016/j.bmcl.2019.126907_b0110) 2016; 5
Saenz (10.1016/j.bmcl.2019.126907_h0065) 2017; 31
Zhang (10.1016/j.bmcl.2019.126907_b0150) 2018; 29
Burslem (10.1016/j.bmcl.2019.126907_h0010) 2017; 117
10.1016/j.bmcl.2019.126907_b0080
10.1016/j.bmcl.2019.126907_h0095
Bondeson (10.1016/j.bmcl.2019.126907_h0060) 2015; 11
Ohri (10.1016/j.bmcl.2019.126907_h0240) 2018; 29
Buckley (10.1016/j.bmcl.2019.126907_h0175) 2012; 51
Ali (10.1016/j.bmcl.2019.126907_h0165) 2010; 20
Kern (10.1016/j.bmcl.2019.126907_h0280) 2016; 27
Sau (10.1016/j.bmcl.2019.126907_h0120) 2017; 22
Govindan (10.1016/j.bmcl.2019.126907_h0275) 1836; 2015
Ogitani (10.1016/j.bmcl.2019.126907_h0295) 2016; 22
Ottis (10.1016/j.bmcl.2019.126907_b0025) 2017; 12
Dubowchik (10.1016/j.bmcl.2019.126907_h0205) 1998; 8
Wang (10.1016/j.bmcl.2019.126907_h0150) 2016; 51
Galdeano (10.1016/j.bmcl.2019.126907_h0180) 2014; 57
Bessire (10.1016/j.bmcl.2019.126907_b0115) 2016; 27
10.1016/j.bmcl.2019.126907_b0135
Bondeson (10.1016/j.bmcl.2019.126907_h0035) 2018; 25
Junutula (10.1016/j.bmcl.2019.126907_h0225) 2008; 26
Raina (10.1016/j.bmcl.2019.126907_h0070) 2016; 113
10.1016/j.bmcl.2019.126907_h0100
Jordan (10.1016/j.bmcl.2019.126907_b0070) 2003; 46
Shen (10.1016/j.bmcl.2019.126907_h0230) 2012; 30
Buecheler (10.1016/j.bmcl.2019.126907_b0145) 2017; 28
Neumann (10.1016/j.bmcl.2019.126907_h0285) 2018; 17
Zhou (10.1016/j.bmcl.2019.126907_h0080) 2018; 61
Vollmar (10.1016/j.bmcl.2019.126907_h0245) 2017; 28
Neklesa (10.1016/j.bmcl.2019.126907_h0015) 2017; 174
10.1016/j.bmcl.2019.126907_b0100
Dragovich (10.1016/j.bmcl.2019.126907_b0105) 2018; 24
Kern (10.1016/j.bmcl.2019.126907_h0300) 2016; 138
Hamblett (10.1016/j.bmcl.2019.126907_b0185) 2004; 10
Sun (10.1016/j.bmcl.2019.126907_h0090) 2019; 5
Pillow (10.1016/j.bmcl.2019.126907_h0270) 2017; 16
Gilbert (10.1016/j.bmcl.2019.126907_b0005) 2016; 51
Sussman (10.1016/j.bmcl.2019.126907_h0220) 2017; 31
Ottis (10.1016/j.bmcl.2019.126907_h0020) 2017; 12
Watt (10.1016/j.bmcl.2019.126907_h0110) 2019; 31
Doronina (10.1016/j.bmcl.2019.126907_h0210) 2003; 21
References_xml – reference: Neklesa TK, Snyder LB, Altieri M. et al. 2017, ASCO Genitourinary Cancers Symposium, Abstract #273.
– volume: 24
  start-page: 4830
  year: 2018
  ident: b0105
  publication-title: Chem Eur J
– volume: 28
  start-page: 2086
  year: 2017
  ident: b0160
  publication-title: Bioconjug Chem
– volume: 31
  start-page: 1951
  year: 2017
  ident: b0035
  publication-title: Leukemia
– volume: 58
  start-page: 4883
  year: 2015
  ident: b0075
  publication-title: J Med Chem
– reference: For related examples, see: Fan J, Liu K. WO 2018/013559.
– volume: 85
  start-page: 151
  year: 2004
  ident: b0085
  publication-title: Breast Cancer Res Treat
– volume: 27
  start-page: 1645
  year: 2016
  ident: b0115
  publication-title: Bioconjug Chem
– volume: 56
  start-page: 5738
  year: 2017
  ident: b0015
  article-title: Cell
  publication-title: Angew Chem Int Ed
– volume: 31
  start-page: 47
  year: 2017
  ident: b0130
  publication-title: Prot Engin Des Sel
– reference: The mAb nomenclature follows the EU convention described in: Edelman GM, Cunningham BA, Gall WE, Gotlieb PD, Rutishauser U, Waxdal MJ. Proc Natl Acad USA. 1969;63:78. For a comparison of the EU and the alternate Kabat mAb nomenclature systems, see in Ref. 28a.
– reference: Flanagan JJ, Qian Y, Gough SM, et al. San Antonio Breast Cancer Symposium, 2017, P4-04-04.
– volume: 56
  start-page: 7788
  year: 2013
  ident: b0090
  publication-title: J Med Chem
– volume: 12
  start-page: 2570
  year: 2017
  ident: b0025
  publication-title: ACS Chem Biol
– ident: b0195
– volume: 17
  start-page: 2633
  year: 2018
  ident: b0175
  publication-title: Mol Cancer Ther
– ident: b0155
– volume: 46
  start-page: 883
  year: 2003
  ident: b0070
  publication-title: J Med Chem
– volume: 28
  start-page: 2656
  year: 2017
  ident: b0145
  publication-title: Bioconjug Chem
– volume: 117
  start-page: 11269
  year: 2017
  ident: b0010
  publication-title: Chem Rev
– volume: 62
  start-page: 1701
  year: 2019
  ident: b0190
  publication-title: J Med Chem
– volume: 138
  start-page: 1430
  year: 2016
  ident: b0180
  publication-title: J Am Chem Soc
– volume: 29
  start-page: 1555
  year: 2019
  ident: b0050
  publication-title: Bioorg Med Chem Lett
– volume: 8
  start-page: 3341
  year: 1998
  ident: b0120
  publication-title: Bioorg Med Chem Lett
– volume: 10
  start-page: 7063
  year: 2004
  ident: b0185
  publication-title: Clin Cancer Res
– volume: 25
  start-page: 67
  year: 2018
  ident: b0030
  article-title: Cell
  publication-title: Chem Biol
– volume: 29
  start-page: 473
  year: 2018
  ident: b0140
  publication-title: Bioconjug Chem
– volume: 8
  start-page: 366
  year: 2017
  ident: b0165
  publication-title: Chem Sci
– volume: 51
  start-page: 11463
  year: 2012
  ident: b0095
  publication-title: Angew Chem Int Ed
– reference: Campos SA, Harling JD, Miah AH, Smith IED. WO 2014/108452.
– volume: 29
  start-page: 2497
  year: 2018
  ident: b0125
  publication-title: Bioconjug Chem
– volume: 16
  start-page: 315
  year: 2017
  ident: b0055
  publication-title: Nat Rev Drug Discov
– reference: (a) For examples of antibody-degrader conjugates described in the patent literature, see: (a) Chuang S-H; Liao C-B; Sun W-T, .et al. WO 2019/140003; (b) Thompson, P. A; Edris, B.; Coburn, C. A.; Baum, P. R. WO 2018/227023; (c) Pillow T, Sadowsky J, Staben L, et al. WO 2017/201449.
– volume: 292
  start-page: 4556
  year: 2017
  ident: b0020
  publication-title: J Biol Chem
– volume: 61
  start-page: 462
  year: 2018
  ident: b0040
  publication-title: J Med Chem
– volume: 29
  start-page: 267
  year: 2018
  ident: b0150
  publication-title: Bioconjug Chem
– volume: 5
  year: 2016
  ident: b0110
  publication-title: eLife
– volume: 51
  start-page: 347
  year: 2016
  ident: b0005
  publication-title: Med Chem Rev
– year: 2020
  ident: b0060
  publication-title: ChemMedChem
– volume: 2015
  start-page: 12
  year: 1836
  ident: b0170
  publication-title: Mol Pharm
– volume: 22
  start-page: 1547
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0120
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2017.05.011
– year: 2020
  ident: 10.1016/j.bmcl.2019.126907_b0060
  publication-title: ChemMedChem
– volume: 292
  start-page: 4556
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0040
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.768853
– volume: 25
  start-page: 78
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0035
  article-title: Cell
  publication-title: Chem Biol
– volume: 61
  start-page: 543
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0045
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00168
– volume: 53
  start-page: 3796
  year: 2014
  ident: 10.1016/j.bmcl.2019.126907_h0125
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201307628
– volume: 85
  start-page: 151
  year: 2004
  ident: 10.1016/j.bmcl.2019.126907_h0160
  publication-title: Breast Cancer Res Treat
  doi: 10.1023/B:BREA.0000025406.31193.e8
– volume: 46
  start-page: 883
  year: 2003
  ident: 10.1016/j.bmcl.2019.126907_b0070
  publication-title: J Med Chem
  doi: 10.1021/jm020449y
– volume: 17
  start-page: 1752
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0290
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-18-0073
– ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.2
– volume: 31
  start-page: 69
  year: 2019
  ident: 10.1016/j.bmcl.2019.126907_h0110
  publication-title: Drug Discov Today Technol
  doi: 10.1016/j.ddtec.2019.02.005
– volume: 8
  start-page: 366
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0265
  publication-title: Chem Sci
  doi: 10.1039/C6SC01831A
– volume: 31
  start-page: 47
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0220
  publication-title: Prot Engin Des Sel
  doi: 10.1093/protein/gzx067
– volume: 28
  start-page: 2086
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_b0160
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.7b00258
– volume: 20
  start-page: 2665
  year: 2010
  ident: 10.1016/j.bmcl.2019.126907_h0165
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.02.024
– volume: 16
  start-page: 315
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0115
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.268
– volume: 56
  start-page: 5738
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0030
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201611281
– volume: 8
  start-page: 3341
  year: 1998
  ident: 10.1016/j.bmcl.2019.126907_h0205
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/S0960-894X(98)00609-X
– volume: 17
  start-page: 2633
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0285
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-18-0643
– volume: 138
  start-page: 1430
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_h0300
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b12547
– volume: 58
  start-page: 4883
  year: 2015
  ident: 10.1016/j.bmcl.2019.126907_h0145
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b00760
– volume: 29
  start-page: 2497
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_b0125
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.8b00252
– volume: 24
  start-page: 4830
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_b0105
  publication-title: Chem Eur J
  doi: 10.1002/chem.201800859
– volume: 348
  start-page: 1376
  year: 2015
  ident: 10.1016/j.bmcl.2019.126907_h0075
  publication-title: Science
  doi: 10.1126/science.aab1433
– volume: 51
  start-page: 151
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_h0150
  publication-title: Med Chem Rev
– volume: 57
  start-page: 8657
  year: 2014
  ident: 10.1016/j.bmcl.2019.126907_h0180
  publication-title: J Med Chem
  doi: 10.1021/jm5011258
– volume: 16
  start-page: 871
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0270
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-16-0641
– volume: 56
  start-page: 7788
  year: 2013
  ident: 10.1016/j.bmcl.2019.126907_b0090
  publication-title: J Med Chem
  doi: 10.1021/jm400732v
– ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.3
– volume: 61
  start-page: 6685
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0085
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00506
– ident: 10.1016/j.bmcl.2019.126907_b0135
  doi: 10.1073/pnas.63.1.78
– volume: 174
  start-page: 138
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0015
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2017.02.027
– volume: 5
  start-page: 10
  year: 2019
  ident: 10.1016/j.bmcl.2019.126907_h0090
  publication-title: Cell Discov
  doi: 10.1038/s41421-018-0079-1
– volume: 16
  start-page: 101
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0025
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.211
– volume: 30
  start-page: 184
  year: 2012
  ident: 10.1016/j.bmcl.2019.126907_h0230
  publication-title: Nat Biotech
  doi: 10.1038/nbt.2108
– volume: 51
  start-page: 347
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_b0005
  publication-title: Med Chem Rev
– ident: 10.1016/j.bmcl.2019.126907_h0100
– volume: 21
  start-page: 778
  year: 2003
  ident: 10.1016/j.bmcl.2019.126907_h0210
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt832
– volume: 29
  start-page: 473
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0240
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.7b00791
– volume: 12
  start-page: 2570
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_b0025
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.7b00485
– ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.4
– volume: 28
  start-page: 2538
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0245
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.7b00365
– volume: 51
  start-page: 11463
  year: 2012
  ident: 10.1016/j.bmcl.2019.126907_h0175
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201206231
– ident: 10.1016/j.bmcl.2019.126907_h0095
– volume: 28
  start-page: 2656
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_b0145
  publication-title: Bioconjug Chem
– ident: 10.1016/j.bmcl.2019.126907_b0100
– volume: 62
  start-page: 1701
  year: 2019
  ident: 10.1016/j.bmcl.2019.126907_b0190
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00686
– volume: 2015
  start-page: 12
  year: 1836
  ident: 10.1016/j.bmcl.2019.126907_h0275
  publication-title: Mol Pharm
– volume: 22
  start-page: 5097
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_h0295
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2822
– volume: 61
  start-page: 462
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0080
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01816
– volume: 5
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_b0110
  publication-title: eLife
  doi: 10.7554/eLife.15828
– volume: 26
  start-page: 925
  year: 2008
  ident: 10.1016/j.bmcl.2019.126907_h0225
  publication-title: Nat Biotech
  doi: 10.1038/nbt.1480
– volume: 10
  start-page: 7063
  year: 2004
  ident: 10.1016/j.bmcl.2019.126907_b0185
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0789
– volume: 29
  start-page: 267
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_b0150
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.7b00576
– volume: 11
  start-page: 611
  year: 2015
  ident: 10.1016/j.bmcl.2019.126907_h0060
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1858
– volume: 27
  start-page: 2081
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_h0280
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.6b00337
– volume: 113
  start-page: 7124
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_h0070
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1521738113
– ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.1
– volume: 27
  start-page: 1645
  year: 2016
  ident: 10.1016/j.bmcl.2019.126907_b0115
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.6b00192
– volume: 29
  start-page: 1555
  year: 2019
  ident: 10.1016/j.bmcl.2019.126907_h0105
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2019.04.030
– ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.5
– volume: 117
  start-page: 11269
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0010
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00077
– volume: 31
  start-page: 1951
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0065
  publication-title: Leukemia
  doi: 10.1038/leu.2016.393
– ident: 10.1016/j.bmcl.2019.126907_b0080
– volume: 12
  start-page: 892
  year: 2017
  ident: 10.1016/j.bmcl.2019.126907_h0020
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.6b01068
– volume: 25
  start-page: 67
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0055
  article-title: Cell
  publication-title: Chem Biol
– volume: 29
  start-page: 2357
  year: 2018
  ident: 10.1016/j.bmcl.2019.126907_h0305
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.8b00312
SSID ssj0014044
Score 2.5719163
Snippet [Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are...
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126907
SubjectTerms Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - immunology
Antibody-drug conjugates
Antineoplastic Agents - chemistry
Antineoplastic Agents - immunology
Antineoplastic Agents - pharmacology
Chimeric protein degraders
Drug Carriers - chemistry
Drug delivery
Drug Design
Estrogen receptor
Estrogen Receptor alpha - immunology
Estrogen Receptor alpha - metabolism
Humans
Immunoconjugates - chemistry
Immunoconjugates - immunology
Immunoconjugates - pharmacology
MCF-7 Cells
Proteolysis - drug effects
Receptor, ErbB-2 - metabolism
Title Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα)
URI https://dx.doi.org/10.1016/j.bmcl.2019.126907
https://www.ncbi.nlm.nih.gov/pubmed/31902710
https://www.proquest.com/docview/2333926679
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQIuCFIe4VEtEkIg5GbtXW-yxyhqFUDtAaiU22qfjVFrRyEVyoX_xB_hNzG7tiNxaA9c7bW82hnPfOP5ZgbgjWTcMq5ZlguvM15qlxl0I5nnRUB4JDxNUxROz8T8nH9alIs9mPW1MJFW2dn-1qYna91dGXWnOVpV1ehrBN8TyRcIQfBTKWPbbc7HUcuPfu1oHrF7TGohhYuzuLornGk5XubKxvRDLo_yIoaJNzmnm8BnckInD-FBhx7JtN3gI9jz9QAOpjVGzldb8pYkPmf6UT6Ae7N-ltsA7p52KfQDcNN6U5nGbbNUNIKAkzh_GdkZW9IEYpdVyuGQ1MChqvHmxTqxncnPZWWXpKWOE9zlukHlI3h6foWBO0lVu-Td8Zc_v98_hvOT42-zedaNWsgsK8Umc1Zamwcq0XsHEUyJwMsEaSSfaBqCLMbOUD1BrFF4W6BsnAxOu7GmNheRnPgE9uum9s-ACGl47AcZAqOcaaqpkBOdMyGlRtn7IeT9GSvb9SGP4zAuVU84-66iXFSUi2rlMoQPu2dWbReOW1eXvejUP7qk0E3c-tzrXs4K5RMzJ7r2zfUPVTCGOFKIsRzC01YBdvtAG4ahfU6f_-dbX8D9IsbwcchM-RL2N-tr_wqBzsYcJk0-hDvTj5_nZ38Bqjr8zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKpVeqnbpY_t0pbZqVYVNHMe7PvSwoqClsBxakPZmHMfupoJktQShvfQ_If4Hv4mxk6zUAxwqcc1z5G8y8zn-PAPwQcRMx0zFQcSNCliisiDFNBIYRi3SI25C30VhvM9Hh-zHJJmswGW7F8bJKpvYX8d0H62bI71mNHuzPO_9cuR7INgEKQh-KglvlJW7ZnGO87bTbzvfEeSPlG5vHWyOgqa1QKDjhFdBpoXWkQ0FZivLbZog0UitSAUbqNBaQftZGqoB5lZqNEVbMmEzlfVVqCPuxHj43Htwn2G4cG0TNv4udSWuXI2vWYXWBc68ZqdOLSpLT7Rb74jERkTdvPSmbHgT2_VZb_sxPGroKhnWI_IEVkzRgfVhgVP1kwX5RLyA1P-Z78DaZts8rgMPxs2a_Tpkw6LK0zJbBH6XCjJckpljJwdZkNISPc39ohHxFSPyAk_-nnt5NTmf5npKaq06QSvnJXo7QbjMrCrnxG8TJp-3fl5dfHkKh3cCwDNYLcrCvADCRcpcAUpr45DFKlQhFwMVxVwIhc5muhC1Yyx1U_jc9d84lq3C7Y90uEiHi6xx6cLX5T2zuuzHrVcnLXTyH-eVmJduve99i7NEfNxSjSpMeXYqaRwjceW8L7rwvHaApR0YNEOKxPDlf771HayNDsZ7cm9nf_cVPKTuB4LrcJO8htVqfmbeIMuq0rfeqwkc3fVndA1drjpF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody-mediated+delivery+of+chimeric+protein+degraders+which+target+estrogen+receptor+alpha+%28ER%CE%B1%29&rft.jtitle=Bioorganic+%26+medicinal+chemistry+letters&rft.au=Dragovich%2C+Peter+S&rft.au=Adhikari%2C+Pragya&rft.au=Blake%2C+Robert+A&rft.au=Blaquiere%2C+Nicole&rft.date=2020-02-15&rft.issn=1464-3405&rft.eissn=1464-3405&rft.volume=30&rft.issue=4&rft.spage=126907&rft_id=info:doi/10.1016%2Fj.bmcl.2019.126907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-894X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-894X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-894X&client=summon