Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα)
[Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characterist...
Saved in:
Published in | Bioorganic & medicinal chemistry letters Vol. 30; no. 4; p. 126907 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates. |
---|---|
AbstractList | Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates. Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates. [Display omitted] Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates. |
ArticleNumber | 126907 |
Author | Hartman, Steven J. Wan, Kunpeng Chen, Jinhua He, Mingtao Staben, Steven T. Dragovich, Peter S. Rei Ingalla, Ellen Blaquiere, Nicole Lewis Phillips, Gail Zhao, Yongxin Han, Jinping Peng, Kaishan Zang, Richard Sadowsky, Jack D. Xu, Keyang Wertz, Ingrid E. Lu, Ying Meng, Fanwei Staben, Leanna He, Jintang Wei, BinQing Xin, Jianfeng den Besten, Willem Lu, Jiawei Kamath, Amrita V. Rowntree, Rebecca K. Sampath, Deepak Adhikari, Pragya Wai, John Zhang, Donglu Wang, Xinxin Cheng, Yun-Xing Yao, Hui Lai, Tommy Liu, Qi Ng, Carl Zhou, Hao Meng, Lingyao Blake, Robert A. Leipold, Douglas D. Kleinheinz, Tracy Pillow, Thomas H. Li, Chun Sing |
Author_xml | – sequence: 1 givenname: Peter S. surname: Dragovich fullname: Dragovich, Peter S. email: dragovich.peter@gene.com organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 2 givenname: Pragya surname: Adhikari fullname: Adhikari, Pragya organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 3 givenname: Robert A. surname: Blake fullname: Blake, Robert A. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 4 givenname: Nicole surname: Blaquiere fullname: Blaquiere, Nicole organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 5 givenname: Jinhua surname: Chen fullname: Chen, Jinhua organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 6 givenname: Yun-Xing surname: Cheng fullname: Cheng, Yun-Xing organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 7 givenname: Willem surname: den Besten fullname: den Besten, Willem organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 8 givenname: Jinping surname: Han fullname: Han, Jinping organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 9 givenname: Steven J. surname: Hartman fullname: Hartman, Steven J. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 10 givenname: Jintang surname: He fullname: He, Jintang organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 11 givenname: Mingtao surname: He fullname: He, Mingtao organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 12 givenname: Ellen surname: Rei Ingalla fullname: Rei Ingalla, Ellen organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 13 givenname: Amrita V. surname: Kamath fullname: Kamath, Amrita V. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 14 givenname: Tracy surname: Kleinheinz fullname: Kleinheinz, Tracy organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 15 givenname: Tommy surname: Lai fullname: Lai, Tommy organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 16 givenname: Douglas D. surname: Leipold fullname: Leipold, Douglas D. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 17 givenname: Chun Sing surname: Li fullname: Li, Chun Sing organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 18 givenname: Qi surname: Liu fullname: Liu, Qi organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 19 givenname: Jiawei surname: Lu fullname: Lu, Jiawei organization: WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 20 givenname: Ying surname: Lu fullname: Lu, Ying organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 21 givenname: Fanwei surname: Meng fullname: Meng, Fanwei organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 22 givenname: Lingyao surname: Meng fullname: Meng, Lingyao organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 23 givenname: Carl surname: Ng fullname: Ng, Carl organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 24 givenname: Kaishan surname: Peng fullname: Peng, Kaishan organization: WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 25 givenname: Gail surname: Lewis Phillips fullname: Lewis Phillips, Gail organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 26 givenname: Thomas H. surname: Pillow fullname: Pillow, Thomas H. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 27 givenname: Rebecca K. surname: Rowntree fullname: Rowntree, Rebecca K. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 28 givenname: Jack D. surname: Sadowsky fullname: Sadowsky, Jack D. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 29 givenname: Deepak surname: Sampath fullname: Sampath, Deepak organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 30 givenname: Leanna surname: Staben fullname: Staben, Leanna organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 31 givenname: Steven T. surname: Staben fullname: Staben, Steven T. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 32 givenname: John surname: Wai fullname: Wai, John organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 33 givenname: Kunpeng surname: Wan fullname: Wan, Kunpeng organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 34 givenname: Xinxin surname: Wang fullname: Wang, Xinxin organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 35 givenname: BinQing surname: Wei fullname: Wei, BinQing organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 36 givenname: Ingrid E. surname: Wertz fullname: Wertz, Ingrid E. organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 37 givenname: Jianfeng surname: Xin fullname: Xin, Jianfeng organization: Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China – sequence: 38 givenname: Keyang surname: Xu fullname: Xu, Keyang organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 39 givenname: Hui surname: Yao fullname: Yao, Hui organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 40 givenname: Richard surname: Zang fullname: Zang, Richard organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 41 givenname: Donglu surname: Zhang fullname: Zhang, Donglu organization: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA – sequence: 42 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China – sequence: 43 givenname: Yongxin surname: Zhao fullname: Zhao, Yongxin organization: WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31902710$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtqGzEUQEVJaJy0P9BF0TJdjHOl0TwE3YSQPiAQCC10JzTSlS0zM3IlOcGf1R_pN1XGaRddZKWFzrnce87JyRxmJOQdgyUD1l5tlsNkxiUHJpeMtxK6V2TBRCuqWkBzQhYgW6h6KX6ckfOUNgBMgBCvyVnNJPCOwYLY6zn7Idh9NaH1OqOlFkf_iHFPg6Nm7SeM3tBtDBn9XD5XUVuMiT6tvVnTrOMKM8WUY1jhTCMa3OYQqR63a00vbx9-__rwhpw6PSZ8-_xekO-fbr_dfKnu7j9_vbm-q0zdtLmyRhrDHMi-qV3rhkY2bHBykKLX4JzknR1A96xrOBpu0FrprLadBsNakKK-IJfHuWXbn7uyk5p8MjiOesawS4rXdS1523ayoO-f0d1QLlfb6Ccd9-pvmQLwI2BiSCmi-4cwUIf8aqMO-dUhvzrmL1L_n2R81tmHOUftx5fVj0cVS6BHj1El43EuV_rSNCsb_Ev6H1o7og4 |
CitedBy_id | crossref_primary_10_1002_cmdc_202400326 crossref_primary_10_1002_med_21877 crossref_primary_10_1016_j_ejmech_2024_116709 crossref_primary_10_1016_j_pharmthera_2023_108371 crossref_primary_10_1021_acschembio_0c00285 crossref_primary_10_1021_acs_jmedchem_2c02032 crossref_primary_10_1021_acs_jmedchem_0c01845 crossref_primary_10_1186_s13045_020_00924_z crossref_primary_10_1002_cbic_202100270 crossref_primary_10_1016_j_bioorg_2023_106590 crossref_primary_10_1021_acs_jmedchem_0c01846 crossref_primary_10_1093_abbs_gmaa053 crossref_primary_10_1186_s40824_023_00385_8 crossref_primary_10_1016_j_scib_2024_03_056 crossref_primary_10_1039_D1CS00762A crossref_primary_10_1016_j_ejmech_2023_115384 crossref_primary_10_1021_acs_jmedchem_4c01521 crossref_primary_10_1093_abt_tbac024 crossref_primary_10_3390_antib12030043 crossref_primary_10_1021_jacs_2c12809 crossref_primary_10_1021_acs_molpharmaceut_1c00018 crossref_primary_10_1016_j_apsb_2024_01_010 crossref_primary_10_1124_pharmrev_121_000499 crossref_primary_10_1021_acs_bioconjchem_3c00366 crossref_primary_10_1021_acs_jmedchem_3c00302 crossref_primary_10_1021_acs_jmedchem_2c00302 crossref_primary_10_3390_biom13081164 crossref_primary_10_3390_pharmaceutics14112523 crossref_primary_10_1002_mco2_290 crossref_primary_10_1016_j_ejmech_2022_114770 crossref_primary_10_1021_acs_bioconjchem_2c00226 crossref_primary_10_1021_acs_jmedchem_2c01791 crossref_primary_10_1039_D2CS00141A crossref_primary_10_3390_ijms232415582 crossref_primary_10_1002_adhm_202400109 crossref_primary_10_1039_D2CS00387B crossref_primary_10_1021_acs_bioconjchem_4c00124 crossref_primary_10_1016_j_ejmech_2023_116041 crossref_primary_10_1021_jacs_1c00451 crossref_primary_10_3390_ijms232315440 crossref_primary_10_1016_j_drudis_2022_103387 crossref_primary_10_1021_acs_bioconjchem_3c00535 crossref_primary_10_1021_jacs_3c05159 crossref_primary_10_1038_s41573_023_00652_2 crossref_primary_10_3389_fchem_2021_707317 crossref_primary_10_1007_s40291_022_00586_2 crossref_primary_10_1021_acs_jmedchem_0c01542 crossref_primary_10_3390_ph18030297 crossref_primary_10_1186_s40164_022_00363_1 crossref_primary_10_1007_s13346_024_01754_z crossref_primary_10_1039_D2CS00148A crossref_primary_10_3390_molecules28030917 crossref_primary_10_1021_acs_jmedchem_1c00901 crossref_primary_10_1016_j_chembiol_2023_06_020 crossref_primary_10_1016_j_ijbiomac_2024_129864 crossref_primary_10_1016_j_chembiol_2021_04_011 crossref_primary_10_1016_j_ejmech_2023_115447 crossref_primary_10_1016_j_ejmech_2024_116216 crossref_primary_10_1038_s41392_022_00999_9 crossref_primary_10_1080_17460441_2023_2187777 crossref_primary_10_37349_etat_2021_00060 crossref_primary_10_1016_j_copbio_2022_102807 crossref_primary_10_4236_jbm_2023_117002 crossref_primary_10_1007_s12274_024_6974_x crossref_primary_10_3390_molecules25245956 crossref_primary_10_1080_15476286_2022_2027150 crossref_primary_10_1016_j_ejmech_2022_115082 crossref_primary_10_1039_D4MD00961D crossref_primary_10_1016_j_heliyon_2022_e09577 crossref_primary_10_1038_s41571_023_00850_2 crossref_primary_10_3389_fcell_2021_678077 crossref_primary_10_1186_s13045_022_01397_y crossref_primary_10_1186_s12943_024_02024_9 crossref_primary_10_1002_cmdc_202000683 crossref_primary_10_1016_j_apsb_2022_02_022 crossref_primary_10_1021_acsnano_3c03166 crossref_primary_10_1021_acs_chemrev_2c00915 crossref_primary_10_3390_bioengineering10121368 crossref_primary_10_1021_acs_jmedchem_2c00728 crossref_primary_10_1021_acs_jmedchem_3c00079 crossref_primary_10_1038_s42003_024_06238_x crossref_primary_10_1080_03602532_2023_2262161 crossref_primary_10_3390_pharmaceutics15020411 crossref_primary_10_1016_j_ejmech_2020_112689 |
Cites_doi | 10.1016/j.drudis.2017.05.011 10.1074/jbc.M116.768853 10.1021/acs.jmedchem.7b00168 10.1002/anie.201307628 10.1023/B:BREA.0000025406.31193.e8 10.1021/jm020449y 10.1158/1535-7163.MCT-18-0073 10.1016/j.ddtec.2019.02.005 10.1039/C6SC01831A 10.1093/protein/gzx067 10.1021/acs.bioconjchem.7b00258 10.1016/j.bmcl.2010.02.024 10.1038/nrd.2016.268 10.1002/anie.201611281 10.1016/S0960-894X(98)00609-X 10.1158/1535-7163.MCT-18-0643 10.1021/jacs.5b12547 10.1021/acs.jmedchem.5b00760 10.1021/acs.bioconjchem.8b00252 10.1002/chem.201800859 10.1126/science.aab1433 10.1021/jm5011258 10.1158/1535-7163.MCT-16-0641 10.1021/jm400732v 10.1021/acs.jmedchem.8b00506 10.1073/pnas.63.1.78 10.1016/j.pharmthera.2017.02.027 10.1038/s41421-018-0079-1 10.1038/nrd.2016.211 10.1038/nbt.2108 10.1038/nbt832 10.1021/acs.bioconjchem.7b00791 10.1021/acschembio.7b00485 10.1021/acs.bioconjchem.7b00365 10.1002/anie.201206231 10.1021/acs.jmedchem.8b00686 10.1158/1078-0432.CCR-15-2822 10.1021/acs.jmedchem.6b01816 10.7554/eLife.15828 10.1038/nbt.1480 10.1158/1078-0432.CCR-04-0789 10.1021/acs.bioconjchem.7b00576 10.1038/nchembio.1858 10.1021/acs.bioconjchem.6b00337 10.1073/pnas.1521738113 10.1021/acs.bioconjchem.6b00192 10.1016/j.bmcl.2019.04.030 10.1021/acs.chemrev.7b00077 10.1038/leu.2016.393 10.1021/acschembio.6b01068 10.1021/acs.bioconjchem.8b00312 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bmcl.2019.126907 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Chemistry |
EISSN | 1464-3405 |
ExternalDocumentID | 31902710 10_1016_j_bmcl_2019_126907 S0960894X19308856 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATCM AAXUO ABBQC ABFNM ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 D0L DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LZ2 M29 M2Z M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSH SSK SSP SSU SSZ T5K YK3 ZMT ~02 ~G- .HR 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEA HMK HMO HMS HMT HVGLF HZ~ R2- RIG SAE SCB SEW SOC SPT WUQ XPP Y6R ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c356t-dc9cc1f09853f6fb5951bf9b948a0ff927db0a81752ec2cedd9fdad7a0c160943 |
IEDL.DBID | .~1 |
ISSN | 0960-894X 1464-3405 |
IngestDate | Thu Jul 10 19:33:38 EDT 2025 Mon Jul 21 05:40:21 EDT 2025 Tue Jul 01 03:35:52 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 23 02:48:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Estrogen receptor Drug delivery Chimeric protein degraders Antibody-drug conjugates |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-dc9cc1f09853f6fb5951bf9b948a0ff927db0a81752ec2cedd9fdad7a0c160943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31902710 |
PQID | 2333926679 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2333926679 pubmed_primary_31902710 crossref_primary_10_1016_j_bmcl_2019_126907 crossref_citationtrail_10_1016_j_bmcl_2019_126907 elsevier_sciencedirect_doi_10_1016_j_bmcl_2019_126907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioorganic & medicinal chemistry letters |
PublicationTitleAlternate | Bioorg Med Chem Lett |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Flanagan JJ, Qian Y, Gough SM, et al. San Antonio Breast Cancer Symposium, 2017, P4-04-04. b0195 Beck, Goetsch, Dumontet, Corvaïa, Sau, Alsaab, Kashaw, Tatiparti, Iyer, Chari, Miller, Widdison (b0055) 2017; 16 Remillard, Buckley, Paulk, Bondeson, Smith, Burslem (b0015) 2017; 56 Campos SA, Harling JD, Miah AH, Smith IED. WO 2014/108452. Sussman, Westendorf, Meyer, Junutula, Raab, Clark, Shen, Xu, Liu (b0130) 2017; 31 Buckley, Gustafson, Van Molle, Galdeano, Gadd, Soares (b0095) 2012; 51 Ohri, Bhakta, O’Donohue, Vollmar, Wei, Ohri (b0140) 2018; 29 (a) For examples of antibody-degrader conjugates described in the patent literature, see: (a) Chuang S-H; Liao C-B; Sun W-T, .et al. WO 2019/140003; (b) Thompson, P. A; Edris, B.; Coburn, C. A.; Baum, P. R. WO 2018/227023; (c) Pillow T, Sadowsky J, Staben L, et al. WO 2017/201449. Dubowchik, Firestone, Doronina, Toki, Torgov (b0120) 1998; 8 Govindan, Cardillo, Rossi, Kern, Dooney, Zhang (b0170) 1836; 2015 Renault, Fredy, Renard, Sabot (b0125) 2018; 29 Saenz, Fiskus, Qian, Raina, Lu, Qian, Winter, Buckley, Paulk (b0035) 2017; 31 Sadowsky, Pillow, Chen (b0160) 2017; 28 Shultz (b0190) 2019; 62 Johnson, Zuo, Lee, Ali, Ahmad, Shahabuddin, Ahmad, Sheikh, Ahmad (b0085) 2004; 85 Buecheler, Winzer, Tonillo, Weber, Gieseler (b0145) 2017; 28 Dragovich, Blake, Chen (b0105) 2018; 24 Gilbert, Noe (b0005) 2016; 51 Pillow, Adhikari, Blake (b0060) 2020 Zhou, Hu, Xu, Qin, Hu, Zhou (b0040) 2018; 61 Joseph, Darimont, Zhou (b0110) 2016; 5 Burslem, Crews, Neklesa, Winkler, Crews, Ottis, Crews, Lai, Crews (b0010) 2017; 117 Ottis, Toure, Cromm, Ko, Gustafson, Crews (b0025) 2017; 12 The mAb nomenclature follows the EU convention described in: Edelman GM, Cunningham BA, Gall WE, Gotlieb PD, Rutishauser U, Waxdal MJ. Proc Natl Acad USA. 1969;63:78. For a comparison of the EU and the alternate Kabat mAb nomenclature systems, see in Ref. 28a. Kern, Cancilla, Dooney, Brandish, Palmieri, Antonenko (b0180) 2016; 138 Bessire, Ballard, Charati (b0115) 2016; 27 Jordan (b0070) 2003; 46 For related examples, see: Fan J, Liu K. WO 2018/013559. Ohoka, Okuhira, Ito, Shibata, Nagai, Morita (b0020) 2017; 292 Burslem, Smith, Lai, Bondeson, Mares, Smith (b0030) 2018; 25 McDonnell, Wardell, Norris, Wang, Liang (b0075) 2015; 58 Pillow, Sadowsky, Zhang, Pillow, Schutten, Yu (b0165) 2017; 8 Zhang, Le, dela Cruz-Chuh (b0150) 2018; 29 b0155 Neumann, Olivas, Anderson, Burke, Hamilton, Pires, Ogitani, Aida, Hagihara (b0175) 2018; 17 Edmondson, Yang, Fallan, Watt, Scott-Stevens, Gaohua (b0050) 2019; 29 Neklesa TK, Snyder LB, Altieri M. et al. 2017, ASCO Genitourinary Cancers Symposium, Abstract #273. Kester, Donnell, Lou (b0090) 2013; 56 Hamblett, Senter, Chace (b0185) 2004; 10 Shibata (10.1016/j.bmcl.2019.126907_h0045) 2018; 61 Edmondson (10.1016/j.bmcl.2019.126907_h0105) 2019; 29 cr-split#-10.1016/j.bmcl.2019.126907_b0065.1 cr-split#-10.1016/j.bmcl.2019.126907_b0065.2 cr-split#-10.1016/j.bmcl.2019.126907_b0065.3 Beck (10.1016/j.bmcl.2019.126907_h0115) 2017; 16 cr-split#-10.1016/j.bmcl.2019.126907_b0065.4 Burke (10.1016/j.bmcl.2019.126907_h0290) 2018; 17 Sadowsky (10.1016/j.bmcl.2019.126907_b0160) 2017; 28 Lai (10.1016/j.bmcl.2019.126907_h0025) 2017; 16 Brandish (10.1016/j.bmcl.2019.126907_h0305) 2018; 29 cr-split#-10.1016/j.bmcl.2019.126907_b0065.5 Chari (10.1016/j.bmcl.2019.126907_h0125) 2014; 53 Johnson (10.1016/j.bmcl.2019.126907_h0160) 2004; 85 Shultz (10.1016/j.bmcl.2019.126907_b0190) 2019; 62 Qin (10.1016/j.bmcl.2019.126907_h0085) 2018; 61 Kester (10.1016/j.bmcl.2019.126907_b0090) 2013; 56 Winter (10.1016/j.bmcl.2019.126907_h0075) 2015; 348 Pillow (10.1016/j.bmcl.2019.126907_h0265) 2017; 8 Remillard (10.1016/j.bmcl.2019.126907_h0030) 2017; 56 Renault (10.1016/j.bmcl.2019.126907_b0125) 2018; 29 McDonnell (10.1016/j.bmcl.2019.126907_h0145) 2015; 58 Pillow (10.1016/j.bmcl.2019.126907_b0060) 2020 Burslem (10.1016/j.bmcl.2019.126907_h0055) 2018; 25 Ohoka (10.1016/j.bmcl.2019.126907_h0040) 2017; 292 Joseph (10.1016/j.bmcl.2019.126907_b0110) 2016; 5 Saenz (10.1016/j.bmcl.2019.126907_h0065) 2017; 31 Zhang (10.1016/j.bmcl.2019.126907_b0150) 2018; 29 Burslem (10.1016/j.bmcl.2019.126907_h0010) 2017; 117 10.1016/j.bmcl.2019.126907_b0080 10.1016/j.bmcl.2019.126907_h0095 Bondeson (10.1016/j.bmcl.2019.126907_h0060) 2015; 11 Ohri (10.1016/j.bmcl.2019.126907_h0240) 2018; 29 Buckley (10.1016/j.bmcl.2019.126907_h0175) 2012; 51 Ali (10.1016/j.bmcl.2019.126907_h0165) 2010; 20 Kern (10.1016/j.bmcl.2019.126907_h0280) 2016; 27 Sau (10.1016/j.bmcl.2019.126907_h0120) 2017; 22 Govindan (10.1016/j.bmcl.2019.126907_h0275) 1836; 2015 Ogitani (10.1016/j.bmcl.2019.126907_h0295) 2016; 22 Ottis (10.1016/j.bmcl.2019.126907_b0025) 2017; 12 Dubowchik (10.1016/j.bmcl.2019.126907_h0205) 1998; 8 Wang (10.1016/j.bmcl.2019.126907_h0150) 2016; 51 Galdeano (10.1016/j.bmcl.2019.126907_h0180) 2014; 57 Bessire (10.1016/j.bmcl.2019.126907_b0115) 2016; 27 10.1016/j.bmcl.2019.126907_b0135 Bondeson (10.1016/j.bmcl.2019.126907_h0035) 2018; 25 Junutula (10.1016/j.bmcl.2019.126907_h0225) 2008; 26 Raina (10.1016/j.bmcl.2019.126907_h0070) 2016; 113 10.1016/j.bmcl.2019.126907_h0100 Jordan (10.1016/j.bmcl.2019.126907_b0070) 2003; 46 Shen (10.1016/j.bmcl.2019.126907_h0230) 2012; 30 Buecheler (10.1016/j.bmcl.2019.126907_b0145) 2017; 28 Neumann (10.1016/j.bmcl.2019.126907_h0285) 2018; 17 Zhou (10.1016/j.bmcl.2019.126907_h0080) 2018; 61 Vollmar (10.1016/j.bmcl.2019.126907_h0245) 2017; 28 Neklesa (10.1016/j.bmcl.2019.126907_h0015) 2017; 174 10.1016/j.bmcl.2019.126907_b0100 Dragovich (10.1016/j.bmcl.2019.126907_b0105) 2018; 24 Kern (10.1016/j.bmcl.2019.126907_h0300) 2016; 138 Hamblett (10.1016/j.bmcl.2019.126907_b0185) 2004; 10 Sun (10.1016/j.bmcl.2019.126907_h0090) 2019; 5 Pillow (10.1016/j.bmcl.2019.126907_h0270) 2017; 16 Gilbert (10.1016/j.bmcl.2019.126907_b0005) 2016; 51 Sussman (10.1016/j.bmcl.2019.126907_h0220) 2017; 31 Ottis (10.1016/j.bmcl.2019.126907_h0020) 2017; 12 Watt (10.1016/j.bmcl.2019.126907_h0110) 2019; 31 Doronina (10.1016/j.bmcl.2019.126907_h0210) 2003; 21 |
References_xml | – reference: Neklesa TK, Snyder LB, Altieri M. et al. 2017, ASCO Genitourinary Cancers Symposium, Abstract #273. – volume: 24 start-page: 4830 year: 2018 ident: b0105 publication-title: Chem Eur J – volume: 28 start-page: 2086 year: 2017 ident: b0160 publication-title: Bioconjug Chem – volume: 31 start-page: 1951 year: 2017 ident: b0035 publication-title: Leukemia – volume: 58 start-page: 4883 year: 2015 ident: b0075 publication-title: J Med Chem – reference: For related examples, see: Fan J, Liu K. WO 2018/013559. – volume: 85 start-page: 151 year: 2004 ident: b0085 publication-title: Breast Cancer Res Treat – volume: 27 start-page: 1645 year: 2016 ident: b0115 publication-title: Bioconjug Chem – volume: 56 start-page: 5738 year: 2017 ident: b0015 article-title: Cell publication-title: Angew Chem Int Ed – volume: 31 start-page: 47 year: 2017 ident: b0130 publication-title: Prot Engin Des Sel – reference: The mAb nomenclature follows the EU convention described in: Edelman GM, Cunningham BA, Gall WE, Gotlieb PD, Rutishauser U, Waxdal MJ. Proc Natl Acad USA. 1969;63:78. For a comparison of the EU and the alternate Kabat mAb nomenclature systems, see in Ref. 28a. – reference: Flanagan JJ, Qian Y, Gough SM, et al. San Antonio Breast Cancer Symposium, 2017, P4-04-04. – volume: 56 start-page: 7788 year: 2013 ident: b0090 publication-title: J Med Chem – volume: 12 start-page: 2570 year: 2017 ident: b0025 publication-title: ACS Chem Biol – ident: b0195 – volume: 17 start-page: 2633 year: 2018 ident: b0175 publication-title: Mol Cancer Ther – ident: b0155 – volume: 46 start-page: 883 year: 2003 ident: b0070 publication-title: J Med Chem – volume: 28 start-page: 2656 year: 2017 ident: b0145 publication-title: Bioconjug Chem – volume: 117 start-page: 11269 year: 2017 ident: b0010 publication-title: Chem Rev – volume: 62 start-page: 1701 year: 2019 ident: b0190 publication-title: J Med Chem – volume: 138 start-page: 1430 year: 2016 ident: b0180 publication-title: J Am Chem Soc – volume: 29 start-page: 1555 year: 2019 ident: b0050 publication-title: Bioorg Med Chem Lett – volume: 8 start-page: 3341 year: 1998 ident: b0120 publication-title: Bioorg Med Chem Lett – volume: 10 start-page: 7063 year: 2004 ident: b0185 publication-title: Clin Cancer Res – volume: 25 start-page: 67 year: 2018 ident: b0030 article-title: Cell publication-title: Chem Biol – volume: 29 start-page: 473 year: 2018 ident: b0140 publication-title: Bioconjug Chem – volume: 8 start-page: 366 year: 2017 ident: b0165 publication-title: Chem Sci – volume: 51 start-page: 11463 year: 2012 ident: b0095 publication-title: Angew Chem Int Ed – reference: Campos SA, Harling JD, Miah AH, Smith IED. WO 2014/108452. – volume: 29 start-page: 2497 year: 2018 ident: b0125 publication-title: Bioconjug Chem – volume: 16 start-page: 315 year: 2017 ident: b0055 publication-title: Nat Rev Drug Discov – reference: (a) For examples of antibody-degrader conjugates described in the patent literature, see: (a) Chuang S-H; Liao C-B; Sun W-T, .et al. WO 2019/140003; (b) Thompson, P. A; Edris, B.; Coburn, C. A.; Baum, P. R. WO 2018/227023; (c) Pillow T, Sadowsky J, Staben L, et al. WO 2017/201449. – volume: 292 start-page: 4556 year: 2017 ident: b0020 publication-title: J Biol Chem – volume: 61 start-page: 462 year: 2018 ident: b0040 publication-title: J Med Chem – volume: 29 start-page: 267 year: 2018 ident: b0150 publication-title: Bioconjug Chem – volume: 5 year: 2016 ident: b0110 publication-title: eLife – volume: 51 start-page: 347 year: 2016 ident: b0005 publication-title: Med Chem Rev – year: 2020 ident: b0060 publication-title: ChemMedChem – volume: 2015 start-page: 12 year: 1836 ident: b0170 publication-title: Mol Pharm – volume: 22 start-page: 1547 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0120 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2017.05.011 – year: 2020 ident: 10.1016/j.bmcl.2019.126907_b0060 publication-title: ChemMedChem – volume: 292 start-page: 4556 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0040 publication-title: J Biol Chem doi: 10.1074/jbc.M116.768853 – volume: 25 start-page: 78 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0035 article-title: Cell publication-title: Chem Biol – volume: 61 start-page: 543 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0045 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b00168 – volume: 53 start-page: 3796 year: 2014 ident: 10.1016/j.bmcl.2019.126907_h0125 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201307628 – volume: 85 start-page: 151 year: 2004 ident: 10.1016/j.bmcl.2019.126907_h0160 publication-title: Breast Cancer Res Treat doi: 10.1023/B:BREA.0000025406.31193.e8 – volume: 46 start-page: 883 year: 2003 ident: 10.1016/j.bmcl.2019.126907_b0070 publication-title: J Med Chem doi: 10.1021/jm020449y – volume: 17 start-page: 1752 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0290 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-18-0073 – ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.2 – volume: 31 start-page: 69 year: 2019 ident: 10.1016/j.bmcl.2019.126907_h0110 publication-title: Drug Discov Today Technol doi: 10.1016/j.ddtec.2019.02.005 – volume: 8 start-page: 366 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0265 publication-title: Chem Sci doi: 10.1039/C6SC01831A – volume: 31 start-page: 47 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0220 publication-title: Prot Engin Des Sel doi: 10.1093/protein/gzx067 – volume: 28 start-page: 2086 year: 2017 ident: 10.1016/j.bmcl.2019.126907_b0160 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00258 – volume: 20 start-page: 2665 year: 2010 ident: 10.1016/j.bmcl.2019.126907_h0165 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.02.024 – volume: 16 start-page: 315 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0115 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.268 – volume: 56 start-page: 5738 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0030 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201611281 – volume: 8 start-page: 3341 year: 1998 ident: 10.1016/j.bmcl.2019.126907_h0205 publication-title: Bioorg Med Chem Lett doi: 10.1016/S0960-894X(98)00609-X – volume: 17 start-page: 2633 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0285 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-18-0643 – volume: 138 start-page: 1430 year: 2016 ident: 10.1016/j.bmcl.2019.126907_h0300 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b12547 – volume: 58 start-page: 4883 year: 2015 ident: 10.1016/j.bmcl.2019.126907_h0145 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.5b00760 – volume: 29 start-page: 2497 year: 2018 ident: 10.1016/j.bmcl.2019.126907_b0125 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.8b00252 – volume: 24 start-page: 4830 year: 2018 ident: 10.1016/j.bmcl.2019.126907_b0105 publication-title: Chem Eur J doi: 10.1002/chem.201800859 – volume: 348 start-page: 1376 year: 2015 ident: 10.1016/j.bmcl.2019.126907_h0075 publication-title: Science doi: 10.1126/science.aab1433 – volume: 51 start-page: 151 year: 2016 ident: 10.1016/j.bmcl.2019.126907_h0150 publication-title: Med Chem Rev – volume: 57 start-page: 8657 year: 2014 ident: 10.1016/j.bmcl.2019.126907_h0180 publication-title: J Med Chem doi: 10.1021/jm5011258 – volume: 16 start-page: 871 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0270 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0641 – volume: 56 start-page: 7788 year: 2013 ident: 10.1016/j.bmcl.2019.126907_b0090 publication-title: J Med Chem doi: 10.1021/jm400732v – ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.3 – volume: 61 start-page: 6685 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0085 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b00506 – ident: 10.1016/j.bmcl.2019.126907_b0135 doi: 10.1073/pnas.63.1.78 – volume: 174 start-page: 138 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0015 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2017.02.027 – volume: 5 start-page: 10 year: 2019 ident: 10.1016/j.bmcl.2019.126907_h0090 publication-title: Cell Discov doi: 10.1038/s41421-018-0079-1 – volume: 16 start-page: 101 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0025 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.211 – volume: 30 start-page: 184 year: 2012 ident: 10.1016/j.bmcl.2019.126907_h0230 publication-title: Nat Biotech doi: 10.1038/nbt.2108 – volume: 51 start-page: 347 year: 2016 ident: 10.1016/j.bmcl.2019.126907_b0005 publication-title: Med Chem Rev – ident: 10.1016/j.bmcl.2019.126907_h0100 – volume: 21 start-page: 778 year: 2003 ident: 10.1016/j.bmcl.2019.126907_h0210 publication-title: Nat Biotechnol doi: 10.1038/nbt832 – volume: 29 start-page: 473 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0240 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00791 – volume: 12 start-page: 2570 year: 2017 ident: 10.1016/j.bmcl.2019.126907_b0025 publication-title: ACS Chem Biol doi: 10.1021/acschembio.7b00485 – ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.4 – volume: 28 start-page: 2538 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0245 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00365 – volume: 51 start-page: 11463 year: 2012 ident: 10.1016/j.bmcl.2019.126907_h0175 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201206231 – ident: 10.1016/j.bmcl.2019.126907_h0095 – volume: 28 start-page: 2656 year: 2017 ident: 10.1016/j.bmcl.2019.126907_b0145 publication-title: Bioconjug Chem – ident: 10.1016/j.bmcl.2019.126907_b0100 – volume: 62 start-page: 1701 year: 2019 ident: 10.1016/j.bmcl.2019.126907_b0190 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b00686 – volume: 2015 start-page: 12 year: 1836 ident: 10.1016/j.bmcl.2019.126907_h0275 publication-title: Mol Pharm – volume: 22 start-page: 5097 year: 2016 ident: 10.1016/j.bmcl.2019.126907_h0295 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-2822 – volume: 61 start-page: 462 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0080 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01816 – volume: 5 year: 2016 ident: 10.1016/j.bmcl.2019.126907_b0110 publication-title: eLife doi: 10.7554/eLife.15828 – volume: 26 start-page: 925 year: 2008 ident: 10.1016/j.bmcl.2019.126907_h0225 publication-title: Nat Biotech doi: 10.1038/nbt.1480 – volume: 10 start-page: 7063 year: 2004 ident: 10.1016/j.bmcl.2019.126907_b0185 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0789 – volume: 29 start-page: 267 year: 2018 ident: 10.1016/j.bmcl.2019.126907_b0150 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00576 – volume: 11 start-page: 611 year: 2015 ident: 10.1016/j.bmcl.2019.126907_h0060 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1858 – volume: 27 start-page: 2081 year: 2016 ident: 10.1016/j.bmcl.2019.126907_h0280 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.6b00337 – volume: 113 start-page: 7124 year: 2016 ident: 10.1016/j.bmcl.2019.126907_h0070 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1521738113 – ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.1 – volume: 27 start-page: 1645 year: 2016 ident: 10.1016/j.bmcl.2019.126907_b0115 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.6b00192 – volume: 29 start-page: 1555 year: 2019 ident: 10.1016/j.bmcl.2019.126907_h0105 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2019.04.030 – ident: #cr-split#-10.1016/j.bmcl.2019.126907_b0065.5 – volume: 117 start-page: 11269 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0010 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00077 – volume: 31 start-page: 1951 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0065 publication-title: Leukemia doi: 10.1038/leu.2016.393 – ident: 10.1016/j.bmcl.2019.126907_b0080 – volume: 12 start-page: 892 year: 2017 ident: 10.1016/j.bmcl.2019.126907_h0020 publication-title: ACS Chem Biol doi: 10.1021/acschembio.6b01068 – volume: 25 start-page: 67 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0055 article-title: Cell publication-title: Chem Biol – volume: 29 start-page: 2357 year: 2018 ident: 10.1016/j.bmcl.2019.126907_h0305 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.8b00312 |
SSID | ssj0014044 |
Score | 2.5719163 |
Snippet | [Display omitted]
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are... Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126907 |
SubjectTerms | Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - immunology Antibody-drug conjugates Antineoplastic Agents - chemistry Antineoplastic Agents - immunology Antineoplastic Agents - pharmacology Chimeric protein degraders Drug Carriers - chemistry Drug delivery Drug Design Estrogen receptor Estrogen Receptor alpha - immunology Estrogen Receptor alpha - metabolism Humans Immunoconjugates - chemistry Immunoconjugates - immunology Immunoconjugates - pharmacology MCF-7 Cells Proteolysis - drug effects Receptor, ErbB-2 - metabolism |
Title | Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα) |
URI | https://dx.doi.org/10.1016/j.bmcl.2019.126907 https://www.ncbi.nlm.nih.gov/pubmed/31902710 https://www.proquest.com/docview/2333926679 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQIuCFIe4VEtEkIg5GbtXW-yxyhqFUDtAaiU22qfjVFrRyEVyoX_xB_hNzG7tiNxaA9c7bW82hnPfOP5ZgbgjWTcMq5ZlguvM15qlxl0I5nnRUB4JDxNUxROz8T8nH9alIs9mPW1MJFW2dn-1qYna91dGXWnOVpV1ehrBN8TyRcIQfBTKWPbbc7HUcuPfu1oHrF7TGohhYuzuLornGk5XubKxvRDLo_yIoaJNzmnm8BnckInD-FBhx7JtN3gI9jz9QAOpjVGzldb8pYkPmf6UT6Ae7N-ltsA7p52KfQDcNN6U5nGbbNUNIKAkzh_GdkZW9IEYpdVyuGQ1MChqvHmxTqxncnPZWWXpKWOE9zlukHlI3h6foWBO0lVu-Td8Zc_v98_hvOT42-zedaNWsgsK8Umc1Zamwcq0XsHEUyJwMsEaSSfaBqCLMbOUD1BrFF4W6BsnAxOu7GmNheRnPgE9uum9s-ACGl47AcZAqOcaaqpkBOdMyGlRtn7IeT9GSvb9SGP4zAuVU84-66iXFSUi2rlMoQPu2dWbReOW1eXvejUP7qk0E3c-tzrXs4K5RMzJ7r2zfUPVTCGOFKIsRzC01YBdvtAG4ahfU6f_-dbX8D9IsbwcchM-RL2N-tr_wqBzsYcJk0-hDvTj5_nZ38Bqjr8zg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKpVeqnbpY_t0pbZqVYVNHMe7PvSwoqClsBxakPZmHMfupoJktQShvfQ_If4Hv4mxk6zUAxwqcc1z5G8y8zn-PAPwQcRMx0zFQcSNCliisiDFNBIYRi3SI25C30VhvM9Hh-zHJJmswGW7F8bJKpvYX8d0H62bI71mNHuzPO_9cuR7INgEKQh-KglvlJW7ZnGO87bTbzvfEeSPlG5vHWyOgqa1QKDjhFdBpoXWkQ0FZivLbZog0UitSAUbqNBaQftZGqoB5lZqNEVbMmEzlfVVqCPuxHj43Htwn2G4cG0TNv4udSWuXI2vWYXWBc68ZqdOLSpLT7Rb74jERkTdvPSmbHgT2_VZb_sxPGroKhnWI_IEVkzRgfVhgVP1kwX5RLyA1P-Z78DaZts8rgMPxs2a_Tpkw6LK0zJbBH6XCjJckpljJwdZkNISPc39ohHxFSPyAk_-nnt5NTmf5npKaq06QSvnJXo7QbjMrCrnxG8TJp-3fl5dfHkKh3cCwDNYLcrCvADCRcpcAUpr45DFKlQhFwMVxVwIhc5muhC1Yyx1U_jc9d84lq3C7Y90uEiHi6xx6cLX5T2zuuzHrVcnLXTyH-eVmJduve99i7NEfNxSjSpMeXYqaRwjceW8L7rwvHaApR0YNEOKxPDlf771HayNDsZ7cm9nf_cVPKTuB4LrcJO8htVqfmbeIMuq0rfeqwkc3fVndA1drjpF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody-mediated+delivery+of+chimeric+protein+degraders+which+target+estrogen+receptor+alpha+%28ER%CE%B1%29&rft.jtitle=Bioorganic+%26+medicinal+chemistry+letters&rft.au=Dragovich%2C+Peter+S&rft.au=Adhikari%2C+Pragya&rft.au=Blake%2C+Robert+A&rft.au=Blaquiere%2C+Nicole&rft.date=2020-02-15&rft.issn=1464-3405&rft.eissn=1464-3405&rft.volume=30&rft.issue=4&rft.spage=126907&rft_id=info:doi/10.1016%2Fj.bmcl.2019.126907&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-894X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-894X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-894X&client=summon |