Sub-Visible Particle Classification and Label Consistency Analysis for Flow-Imaging Microscopy Via Machine Learning Methods

Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learnin...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical sciences Vol. 113; no. 4; pp. 880 - 890
Main Authors Lopez-del Rio, Angela, Pacios-Michelena, Anabel, Picart-Armada, Sergio, Garidel, Patrick, Nikels, Felix, Kube, Sebastian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0022-3549
1520-6017
1520-6017
DOI10.1016/j.xphs.2023.10.041

Cover

Loading…
Abstract Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.
AbstractList Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.
Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.
Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles, liquid samples may be passed through a flow-imaging microscopy instrument that also generates images of each detected particle. Machine learning techniques have increasingly been applied to this kind of data to detect changes in experimental conditions or classify specific types of particles, primarily focusing on silicone oil. That technique generally requires manual labeling of particle images by subject matter experts, a time-consuming and complex task. In this study, we created artificial datasets of silicone oil, protein particles, and glass particles that mimicked complex datasets of particles found in biopharmaceutical products. We used unsupervised learning techniques to effectively describe particle composition by sample. We then trained independent one-class classifiers to detect specific particle populations: silicone oil and glass particles. We also studied the consistency of the particle labels used to evaluate these models. Our results show that one-class classifiers are a reasonable choice for handling heterogeneous flow-imaging microscopy data and that unsupervised learning can aid in the labeling process. However, we found agreement among experts to be rather low, especially for smaller particles (< 8 µm for our Micro-Flow Imaging data). Given the fact that particle label confidence is not usually reported in the literature, we recommend more careful assessment of this topic in the future.
Author Kube, Sebastian
Garidel, Patrick
Nikels, Felix
Lopez-del Rio, Angela
Picart-Armada, Sergio
Pacios-Michelena, Anabel
Author_xml – sequence: 1
  givenname: Angela
  surname: Lopez-del Rio
  fullname: Lopez-del Rio, Angela
  email: angela.lopez_del_rio@boehringer-ingelheim.com
  organization: Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
– sequence: 2
  givenname: Anabel
  surname: Pacios-Michelena
  fullname: Pacios-Michelena, Anabel
  organization: Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
– sequence: 3
  givenname: Sergio
  surname: Picart-Armada
  fullname: Picart-Armada, Sergio
  organization: Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
– sequence: 4
  givenname: Patrick
  surname: Garidel
  fullname: Garidel, Patrick
  organization: Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
– sequence: 5
  givenname: Felix
  surname: Nikels
  fullname: Nikels, Felix
  organization: Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
– sequence: 6
  givenname: Sebastian
  surname: Kube
  fullname: Kube, Sebastian
  email: sebastian.kube@boehringer-ingelheim.com
  organization: Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Federal Republic of Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37924976$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVBbaP9BD5WMv2TqO4yRSL2gFFGlRkdpytRx7ws7Ka29tb8uKP0_CwqUHTh7PvG-kee-UHPnggZBPJZuXrJRf1_OH7SrNOePV2JgzUb4js7LmrJCsbI7IjDHOi6oW3Qk5TWnNGJOsrt-Tk6rpuOgaOSOPP3d9cYcJewf0VseMZiwWTqeEAxqdMXiqvaVL3YOji-ATpgze7Om5124__ugQIr104V9xvdH36O_pDZoYkgnbPb1DTW-0WaEHugQd_fMc8irY9IEcD9ol-PjynpHflxe_Ft-L5Y-r68X5sjBVLXNhO8NFX1pmq7rrayu5FEOljeE1H6wBDUzIVvBBdJXuZdP2Td1YxktgnbW9rs7Il8PebQx_dpCy2mAy4Jz2EHZJ8baVFe9E047Szy_SXb8Bq7YRNzru1atho6A9CKYLU4RBGczPLuWo0amSqSkbtVZTNmrKZuqN2Ywo_w993f4m9O0AwWjQX4SoksHRfrAYwWRlA76FPwFhK6m_
CitedBy_id crossref_primary_10_1016_j_xphs_2024_11_023
crossref_primary_10_1016_j_xphs_2024_08_003
crossref_primary_10_1016_j_xphs_2024_07_015
Cites_doi 10.1117/12.2654420
10.1016/j.xphs.2022.07.006
10.1016/0377-0427(87)90125-7
10.1208/s12248-019-0384-0
10.1016/j.xphs.2022.08.006
10.1201/9780429201400
10.1016/j.xphs.2020.10.044
10.2134/agronj1935.00021962002700010011x
10.1515/cdbme-2022-1051
10.1016/j.xphs.2021.02.029
10.1016/j.ejpb.2023.01.017
10.5731/pdajpst.2016.007377
10.1016/j.ijpharm.2021.120248
10.1016/j.xphs.2017.01.030
10.1016/j.xphs.2019.10.066
10.1208/s12248-010-9205-1
10.1002/jps.23479
10.1016/j.xphs.2020.07.008
10.1007/s11095-018-2421-6
10.1177/001316446002000104
10.1007/s11095-016-2079-x
10.1111/j.2517-6161.1995.tb02031.x
10.3390/app12125843
10.1002/jps.24387
10.1016/j.xphs.2022.09.015
10.1016/j.ejpb.2021.09.010
10.1016/j.ejpb.2021.07.004
10.1002/bit.27501
10.1007/BF00994018
10.1162/089976601750264965
10.1002/jps.23871
10.1016/j.xphs.2017.12.008
10.1016/j.xphs.2019.10.034
10.1016/j.xphs.2019.05.018
10.1016/j.knosys.2020.105754
10.1016/j.drudis.2015.10.020
10.4172/2329-6887.1000e128
10.1214/aoms/1177730491
ContentType Journal Article
Copyright 2023 American Pharmacists Association
Copyright © 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 American Pharmacists Association
– notice: Copyright © 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.xphs.2023.10.041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-6017
EndPage 890
ExternalDocumentID 37924976
10_1016_j_xphs_2023_10_041
S0022354923004719
Genre Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OC
1ZS
31~
33P
36B
3O-
3WU
4.4
457
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAEVG
AAHHS
AAIAV
AAKUH
AALRI
AAOIN
AAONW
AAXUO
AAYOK
AAZKR
ABCQN
ABEML
ABFRF
ABIJN
ABJNI
ABMAC
ABMYL
ABOCM
ABPVW
ABWRO
ACBWZ
ACCFJ
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACXME
ACXQS
ADBBV
ADIZJ
AEEZP
AEFWE
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFRAH
AFTJW
AFZJQ
AGHFR
AI.
AITUG
AIWBW
AJAOE
AJBDE
AKRWK
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMRAJ
ATUGU
AZBYB
BAFTC
BDRZF
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F00
F01
F04
F5P
FDB
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HOLLA
HVGLF
HX~
HZ~
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LP6
LP7
LSO
LW6
M41
M6Q
MK0
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SSZ
SUPJJ
SV3
UB1
UKR
UNMZH
V2E
V8K
VH1
W8V
W99
WBFHL
WH7
WIB
WJL
WQJ
WRC
WUP
WWP
WYUIH
XG1
XPP
XV2
Y6R
YCJ
ZE2
ZGI
ZXP
~IA
~WT
AANHP
AAYWO
AAYXX
ACRPL
ACVFH
ACYXJ
ADCNI
ADNMO
ADVLN
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
OIG
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c356t-d9c24b1d0d359b5d6264f3acc252fdceae046842f493ab678b757d021e09ddba3
ISSN 0022-3549
1520-6017
IngestDate Fri Jul 11 07:49:02 EDT 2025
Mon Jul 21 05:58:34 EDT 2025
Tue Jul 01 02:09:41 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Sat Mar 23 16:40:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Image analysis
Therapeutic solutions
Flow imaging microscopy
Machine learning
Particle characterization
Language English
License Copyright © 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-d9c24b1d0d359b5d6264f3acc252fdceae046842f493ab678b757d021e09ddba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37924976
PQID 2886329478
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2886329478
pubmed_primary_37924976
crossref_citationtrail_10_1016_j_xphs_2023_10_041
crossref_primary_10_1016_j_xphs_2023_10_041
elsevier_sciencedirect_doi_10_1016_j_xphs_2023_10_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-Apr
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of pharmaceutical sciences
PublicationTitleAlternate J Pharm Sci
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References FDA. Questions and answers on current good manufacturing practice requirements | control of components and drug product containers and closures. Published November 16, 2022. Accessed January 3, 2023.
Saggu, Patel, Koulis (bib0035) 2017; 34
Probst (bib0057) 2020; 109
(bib0001) 2022
Ratnaswamy, Hair, Li (bib0008) 2014; 103
Maddux, Daniels, Randolph (bib0015) 2017; 106
Mann, Whitney (bib0053) 1947; 18
Wang, Liaw, Chen, Su, Skomski (bib0022) 2022
Ditter, Mahler, Gohlke (bib0006) 2018; 35
Khanal, Hasan, Khanal, Linte (bib0028) 2023; 12464
Calderon CP, Daniels AL, Randolph TW. Using deep convolutional neural networks to circumvent morphological feature specification when classifying subvisible protein aggregates from micro-flow images. 2017;arXiv:1709.00152v1. arXiv preprint.
Mathaes, Narhi, Hawe (bib0040) 2019; 22
Cortes, Vapnik (bib0046) 1995; 20
Salami, Wang, Skomski (bib0034) 2022
Fawaz, Schaz, Boehrer, Garidel, Blech (bib0014) 2023; 185
Daniels, Calderon, Randolph (bib0020) 2020; 117
Shibata, Terabe, Shibano (bib0025) 2022; 111
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. 2012;arXiv:1201.0490v4. arXiv preprint.
Grabarek, Jiskoot, Hawe, Pike-Overzet, Menzen (bib0055) 2021; 167
Sharma, King, Oma, Merchant (bib0039) 2010; 12
Gambe-Gilbuena, Shibano, Krayukhina, Torisu, Uchiyama (bib0019) 2020; 109
.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014;arXiv:1409.1556v6. arXiv preprint.
Gerhardt, Nguyen, Lewus, Carpenter, Randolph (bib0036) 2015; 104
(bib0013) 2013
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0047) 2001; 13
Chollet F., others. Keras.
Probst, Zayats, Venkatachalam, Davidson (bib0056) 2020; 109
Rousseeuw (bib0043) 1987; 20
Song, Hu, Hamzaoui (bib0037) 2022; 111
Nishiumi, Deiringer, Krause (bib0024) 2022; 111
Cohen (bib0049) 1960; 20
Schaut, Weeks (bib0004) 2017; 71
Witeof, Daniels, Rea (bib0016) 2021; 110
Natarajan, Dhillon, Ravikumar, Tewari (bib0029) 2013; 26
Benjamini, Hochberg (bib0045) 1995; 57
Swift R., Schaut R., Flynn C.R., Asselta R. Glass containers for parenteral products. In: Nema S., Ludwig J.D., eds. Parenteral Medications. 4th ed. CRC Press.
Calderon, Daniels, Randolph (bib0018) 2018; 107
(bib0003) 2021
Jiao, Barnett, Christian (bib0038) 2020; 109
Alam, Sonbhadra, Agarwal, Nagabhushan (bib0048) 2020; 196
Grabarek, Senel, Menzen (bib0021) 2020
Schilling, Ahuja, Rettenberger, Scherr, Reischl (bib0027) 2022; 8
FAIR principles - GO FAIR. Accessed June 28, 2023.
Chen, Graužinytė, der, Boll (bib0023) 2021; 110
Wei J, Zhu Z, Cheng H, Liu T, Niu G, Liu Y. Learning with noisy labels revisited: a study using real-world human annotations. 2021;arXiv:2110.12088v2. arXiv preprint.
FDA. Summary of recent findings related to glass delamination. Published October 24, 2022. Accessed January 2, 2023.
Fisher (bib0044) 1935; 27
Umar, Krause, Hawe, Simmel, Menzen (bib0032) 2021; 169
Deng, Dong, Socher, Li, Li (bib0042) 2009
Tawde (bib0009) 2015; 03
Patrini, Rozza, Menon, Nock, Qu (bib0031) 2017
Long, Ma, Sheng (bib0033) 2022; 12
Song H, Kim M, Park D, Shin Y, Lee JG. Learning from noisy labels with deep neural networks: a survey. 2020;arXiv:2007.08199v7. arXiv preprint.
Ebbers, de, Hoefnagel, Nibbeling, Mantel-Teeuwisse (bib0010) 2016; 21
Ma, Ashraf, Srinivasan (bib0007) 2021; 596
Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016;arXiv:1603.04467v2. arXiv preprint
(bib0002) 2021
Zölls, Gregoritza, Tantipolphan (bib0054) 2013; 102
Natarajan (10.1016/j.xphs.2023.10.041_bib0029) 2013; 26
Ma (10.1016/j.xphs.2023.10.041_bib0007) 2021; 596
10.1016/j.xphs.2023.10.041_bib0041
Rousseeuw (10.1016/j.xphs.2023.10.041_bib0043) 1987; 20
Khanal (10.1016/j.xphs.2023.10.041_bib0028) 2023; 12464
Tawde (10.1016/j.xphs.2023.10.041_bib0009) 2015; 03
Schilling (10.1016/j.xphs.2023.10.041_bib0027) 2022; 8
Daniels (10.1016/j.xphs.2023.10.041_bib0020) 2020; 117
Cohen (10.1016/j.xphs.2023.10.041_bib0049) 1960; 20
Mann (10.1016/j.xphs.2023.10.041_bib0053) 1947; 18
Patrini (10.1016/j.xphs.2023.10.041_bib0031) 2017
Ebbers (10.1016/j.xphs.2023.10.041_bib0010) 2016; 21
(10.1016/j.xphs.2023.10.041_bib0002) 2021
Deng (10.1016/j.xphs.2023.10.041_bib0042) 2009
Calderon (10.1016/j.xphs.2023.10.041_bib0018) 2018; 107
10.1016/j.xphs.2023.10.041_bib0050
Ratnaswamy (10.1016/j.xphs.2023.10.041_bib0008) 2014; 103
10.1016/j.xphs.2023.10.041_bib0052
Nishiumi (10.1016/j.xphs.2023.10.041_bib0024) 2022; 111
10.1016/j.xphs.2023.10.041_bib0051
10.1016/j.xphs.2023.10.041_bib0012
10.1016/j.xphs.2023.10.041_bib0011
Shibata (10.1016/j.xphs.2023.10.041_bib0025) 2022; 111
Maddux (10.1016/j.xphs.2023.10.041_bib0015) 2017; 106
Probst (10.1016/j.xphs.2023.10.041_bib0056) 2020; 109
Fawaz (10.1016/j.xphs.2023.10.041_bib0014) 2023; 185
Gambe-Gilbuena (10.1016/j.xphs.2023.10.041_bib0019) 2020; 109
Long (10.1016/j.xphs.2023.10.041_bib0033) 2022; 12
Alam (10.1016/j.xphs.2023.10.041_bib0048) 2020; 196
Saggu (10.1016/j.xphs.2023.10.041_bib0035) 2017; 34
Jiao (10.1016/j.xphs.2023.10.041_bib0038) 2020; 109
(10.1016/j.xphs.2023.10.041_bib0003) 2021
Sharma (10.1016/j.xphs.2023.10.041_bib0039) 2010; 12
10.1016/j.xphs.2023.10.041_bib0005
Probst (10.1016/j.xphs.2023.10.041_bib0057) 2020; 109
(10.1016/j.xphs.2023.10.041_bib0001) 2022
Umar (10.1016/j.xphs.2023.10.041_bib0032) 2021; 169
Mathaes (10.1016/j.xphs.2023.10.041_bib0040) 2019; 22
Schaut (10.1016/j.xphs.2023.10.041_bib0004) 2017; 71
(10.1016/j.xphs.2023.10.041_bib0013) 2013
Witeof (10.1016/j.xphs.2023.10.041_bib0016) 2021; 110
10.1016/j.xphs.2023.10.041_bib0058
Grabarek (10.1016/j.xphs.2023.10.041_bib0021) 2020
Gerhardt (10.1016/j.xphs.2023.10.041_bib0036) 2015; 104
10.1016/j.xphs.2023.10.041_bib0017
Cortes (10.1016/j.xphs.2023.10.041_bib0046) 1995; 20
10.1016/j.xphs.2023.10.041_bib0030
Song (10.1016/j.xphs.2023.10.041_bib0037) 2022; 111
Schölkopf (10.1016/j.xphs.2023.10.041_bib0047) 2001; 13
Benjamini (10.1016/j.xphs.2023.10.041_bib0045) 1995; 57
Fisher (10.1016/j.xphs.2023.10.041_bib0044) 1935; 27
Ditter (10.1016/j.xphs.2023.10.041_bib0006) 2018; 35
Grabarek (10.1016/j.xphs.2023.10.041_bib0055) 2021; 167
Salami (10.1016/j.xphs.2023.10.041_bib0034) 2022
10.1016/j.xphs.2023.10.041_bib0026
Zölls (10.1016/j.xphs.2023.10.041_bib0054) 2013; 102
Wang (10.1016/j.xphs.2023.10.041_bib0022) 2022
Chen (10.1016/j.xphs.2023.10.041_bib0023) 2021; 110
References_xml – volume: 111
  start-page: 3191
  year: 2022
  end-page: 3194
  ident: bib0037
  article-title: The impact of syringe age prior to filling on migration of subvisible silicone-oil particles into drug product
  publication-title: J Pharm Sci
– volume: 35
  start-page: 146
  year: 2018
  ident: bib0006
  article-title: Impact of vial washing and depyrogenation on surface properties and delamination risk of glass vials
  publication-title: Pharmaceut Res
– volume: 109
  start-page: 364
  year: 2020
  end-page: 374
  ident: bib0057
  article-title: Characterization of protein aggregates, silicone oil droplets, and protein-silicone interactions using imaging flow cytometry
  publication-title: J Pharm Sci
– volume: 109
  start-page: 2996
  year: 2020
  end-page: 3005
  ident: bib0056
  article-title: Advanced characterization of silicone oil droplets in protein therapeutics using artificial intelligence analysis of imaging flow cytometry data
  publication-title: J Pharm Sci
– reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014;arXiv:1409.1556v6. arXiv preprint.
– year: 2013
  ident: bib0013
  article-title: United States pharmacopoeia. USP-NF 2021 issue 1
– volume: 110
  start-page: 2743
  year: 2021
  end-page: 2752
  ident: bib0016
  article-title: Machine learning and accelerated stress approaches to differentiate potential causes of aggregation in polyclonal antibody formulations during shipping
  publication-title: J Pharm Sci
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: bib0047
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0043
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
– volume: 103
  start-page: 1104
  year: 2014
  end-page: 1114
  ident: bib0008
  article-title: A case study of nondelamination glass dissolution resulting in visible particles: implications for neutral pH formulations
  publication-title: J Pharm Sci
– volume: 102
  start-page: 1434
  year: 2013
  end-page: 1446
  ident: bib0054
  article-title: How subvisible particles become invisible—relevance of the refractive index for protein particle analysis
  publication-title: J Pharm Sci
– volume: 34
  start-page: 479
  year: 2017
  end-page: 491
  ident: bib0035
  article-title: A random forest approach for counting silicone oil droplets and protein particles in antibody formulations using flow microscopy
  publication-title: Pharmaceut Res
– volume: 104
  start-page: 1601
  year: 2015
  end-page: 1609
  ident: bib0036
  article-title: Effect of the siliconization method on particle generation in a monoclonal antibody formulation in pre-filled syringes
  publication-title: J Pharm Sci
– start-page: 2233
  year: 2017
  end-page: 2241
  ident: bib0031
  article-title: Making deep neural networks robust to label noise: a loss correction approach
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016;arXiv:1603.04467v2. arXiv preprint
– volume: 71
  start-page: 279
  year: 2017
  end-page: 296
  ident: bib0004
  article-title: Historical review of glasses used for parenteral packaging
  publication-title: PDA J Pharm Sci Technol
– volume: 22
  start-page: 1
  year: 2019
  ident: bib0040
  article-title: Phase-appropriate application of analytical methods to monitor subvisible particles across the biotherapeutic drug product life cycle
  publication-title: AAPS J
– volume: 8
  start-page: 197
  year: 2022
  end-page: 200
  ident: bib0027
  article-title: Impact of annotation noise on histopathology nucleus segmentation
  publication-title: Curr Dir Biomed Eng
– volume: 196
  year: 2020
  ident: bib0048
  article-title: One-class support vector classifiers: a survey
  publication-title: Knowl-based Syst
– volume: 18
  start-page: 50
  year: 1947
  end-page: 60
  ident: bib0053
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
– volume: 111
  start-page: 2745
  year: 2022
  end-page: 2757
  ident: bib0025
  article-title: A collaborative study on the classification of silicone oil droplets and protein particles using flow imaging method
  publication-title: J Pharm Sci
– reference: Chollet F., others. Keras.
– reference: FDA. Questions and answers on current good manufacturing practice requirements | control of components and drug product containers and closures. Published November 16, 2022. Accessed January 3, 2023.
– reference: Song H, Kim M, Park D, Shin Y, Lee JG. Learning from noisy labels with deep neural networks: a survey. 2020;arXiv:2007.08199v7. arXiv preprint.
– volume: 110
  start-page: 1643
  year: 2021
  end-page: 1651
  ident: bib0023
  article-title: Applying pattern recognition as a robust approach for silicone oil droplet identification in flow-microscopy images of protein formulations
  publication-title: J Pharm Sci
– volume: 185
  start-page: 55
  year: 2023
  end-page: 70
  ident: bib0014
  article-title: Micro-flow imaging multi-instrument evaluation for sub-visible particle detection
  publication-title: Eur J Pharm Biopharm
– year: 2021
  ident: bib0002
  article-title: United States pharmacopoeia. USP-NF 2021 Issue 1
– volume: 596
  year: 2021
  ident: bib0007
  article-title: Microscopic evaluation of pharmaceutical glass container-formulation interactions under stressed conditions
  publication-title: Int J Pharmaceut
– year: 2021
  ident: bib0003
  article-title: United States pharmacopoeia. USP-NF 2021 issue 1
– reference: Wei J, Zhu Z, Cheng H, Liu T, Niu G, Liu Y. Learning with noisy labels revisited: a study using real-world human annotations. 2021;arXiv:2110.12088v2. arXiv preprint.
– volume: 107
  start-page: 999
  year: 2018
  end-page: 1008
  ident: bib0018
  article-title: Deep convolutional neural network analysis of flow imaging microscopy data to classify subvisible particles in protein formulations
  publication-title: J Pharm Sci
– year: 2022
  ident: bib0034
  article-title: Evaluation of a self-supervised machine learning method for screening of particulate samples: a case study in liquid formulations
  publication-title: J Pharm Sci
– volume: 109
  start-page: 614
  year: 2020
  end-page: 623
  ident: bib0019
  article-title: Automatic identification of the stress sources of protein aggregates using flow imaging microscopy images
  publication-title: J Pharm Sci
– year: 2020
  ident: bib0021
  article-title: Particulate impurities in cell-based medicinal products traced by flow imaging microscopy combined with deep learning for image analysis
  publication-title: Cytotherapy
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0046
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 109
  start-page: 640
  year: 2020
  end-page: 645
  ident: bib0038
  article-title: Characterization of subvisible particles in biotherapeutic prefilled syringes: the role of polysorbate and protein on the formation of silicone oil and protein subvisible particles after drop shock
  publication-title: J Pharm Sci
– volume: 12
  start-page: 5843
  year: 2022
  ident: bib0033
  article-title: Transfer learning analysis for subvisible particle flow imaging of pharmaceutical formulations
  publication-title: Appl Sci
– reference: FAIR principles - GO FAIR. Accessed June 28, 2023.
– volume: 106
  start-page: 1239
  year: 2017
  end-page: 1248
  ident: bib0015
  article-title: Microflow imaging analyses reflect mechanisms of aggregate formation: comparing protein particle data sets using the Kullback–Leibler divergence
  publication-title: J Pharm Sci
– volume: 169
  start-page: 97
  year: 2021
  end-page: 102
  ident: bib0032
  article-title: Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks
  publication-title: Eur J Pharm Biopharm
– volume: 21
  start-page: 536
  year: 2016
  end-page: 539
  ident: bib0010
  article-title: Characteristics of product recalls of biopharmaceuticals and small-molecule drugs in the USA
  publication-title: Drug Discov Today
– volume: 27
  start-page: 76
  year: 1935
  ident: bib0044
  article-title: Statistical methods for research workers
  publication-title: Agron J
– year: 2022
  ident: bib0001
  article-title: European pharmacopoeia
– volume: 03
  year: 2015
  ident: bib0009
  article-title: Particulate matter in injectables: main cause for recalls
  publication-title: J Pharmacovigil
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib0045
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B Methodol
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: bib0049
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ Psychol Meas
– volume: 111
  start-page: 3017
  year: 2022
  end-page: 3028
  ident: bib0024
  article-title: Utility of three flow imaging microscopy instruments for image analysis in evaluating four types of subvisible particle in biopharmaceuticals
  publication-title: J Pharm Sci
– volume: 26
  year: 2013
  ident: bib0029
  article-title: Learning with noisy labels
  publication-title: Proceedings of the Advances in Neural Information Processing System
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0042
  article-title: ImageNet FFL: a large-scale hierarchical image database
  publication-title: Proceedings of the 2009 IEEE Conference on Computer Vision Pattern Recognition
– reference: .
– reference: Swift R., Schaut R., Flynn C.R., Asselta R. Glass containers for parenteral products. In: Nema S., Ludwig J.D., eds. Parenteral Medications. 4th ed. CRC Press.
– reference: FDA. Summary of recent findings related to glass delamination. Published October 24, 2022. Accessed January 2, 2023.
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib0022
  article-title: Convolutional neural networks enable highly accurate and automated subvisible particulate classification of biopharmaceuticals
  publication-title: Pharmaceut Res
– reference: Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. 2012;arXiv:1201.0490v4. arXiv preprint.
– reference: Calderon CP, Daniels AL, Randolph TW. Using deep convolutional neural networks to circumvent morphological feature specification when classifying subvisible protein aggregates from micro-flow images. 2017;arXiv:1709.00152v1. arXiv preprint.
– volume: 12
  start-page: 455
  year: 2010
  end-page: 464
  ident: bib0039
  article-title: Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations
  publication-title: AAPS J
– volume: 117
  start-page: 3322
  year: 2020
  end-page: 3335
  ident: bib0020
  article-title: Machine learning and statistical analyses for extracting and characterizing “fingerprints” of antibody aggregation at container interfaces from flow microscopy images
  publication-title: Biotechnol Bioeng
– volume: 12464
  year: 2023
  ident: bib0028
  article-title: Investigating the impact of class-dependent label noise in medical image classification
  publication-title: Méd Imaging Image Process
– volume: 167
  start-page: 38
  year: 2021
  end-page: 47
  ident: bib0055
  article-title: Forced degradation of cell-based medicinal products guided by flow imaging microscopy: Explorative studies with Jurkat cells
  publication-title: Eur J Pharm Biopharm
– ident: 10.1016/j.xphs.2023.10.041_bib0017
– volume: 12464
  year: 2023
  ident: 10.1016/j.xphs.2023.10.041_bib0028
  article-title: Investigating the impact of class-dependent label noise in medical image classification
  publication-title: Méd Imaging Image Process
  doi: 10.1117/12.2654420
– volume: 111
  start-page: 2745
  issue: 10
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0025
  article-title: A collaborative study on the classification of silicone oil droplets and protein particles using flow imaging method
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2022.07.006
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.xphs.2023.10.041_bib0043
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 22
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.xphs.2023.10.041_bib0040
  article-title: Phase-appropriate application of analytical methods to monitor subvisible particles across the biotherapeutic drug product life cycle
  publication-title: AAPS J
  doi: 10.1208/s12248-019-0384-0
– volume: 26
  year: 2013
  ident: 10.1016/j.xphs.2023.10.041_bib0029
  article-title: Learning with noisy labels
– volume: 111
  start-page: 3017
  issue: 11
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0024
  article-title: Utility of three flow imaging microscopy instruments for image analysis in evaluating four types of subvisible particle in biopharmaceuticals
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2022.08.006
– ident: 10.1016/j.xphs.2023.10.041_bib0051
– ident: 10.1016/j.xphs.2023.10.041_bib0005
  doi: 10.1201/9780429201400
– volume: 110
  start-page: 1643
  issue: 4
  year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0023
  article-title: Applying pattern recognition as a robust approach for silicone oil droplet identification in flow-microscopy images of protein formulations
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2020.10.044
– start-page: 248
  year: 2009
  ident: 10.1016/j.xphs.2023.10.041_bib0042
  article-title: ImageNet FFL: a large-scale hierarchical image database
– volume: 27
  start-page: 76
  issue: 1
  year: 1935
  ident: 10.1016/j.xphs.2023.10.041_bib0044
  article-title: Statistical methods for research workers
  publication-title: Agron J
  doi: 10.2134/agronj1935.00021962002700010011x
– volume: 8
  start-page: 197
  issue: 2
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0027
  article-title: Impact of annotation noise on histopathology nucleus segmentation
  publication-title: Curr Dir Biomed Eng
  doi: 10.1515/cdbme-2022-1051
– ident: 10.1016/j.xphs.2023.10.041_bib0041
– volume: 110
  start-page: 2743
  issue: 7
  year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0016
  article-title: Machine learning and accelerated stress approaches to differentiate potential causes of aggregation in polyclonal antibody formulations during shipping
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2021.02.029
– volume: 185
  start-page: 55
  year: 2023
  ident: 10.1016/j.xphs.2023.10.041_bib0014
  article-title: Micro-flow imaging multi-instrument evaluation for sub-visible particle detection
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2023.01.017
– year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0034
  article-title: Evaluation of a self-supervised machine learning method for screening of particulate samples: a case study in liquid formulations
  publication-title: J Pharm Sci
– volume: 71
  start-page: 279
  issue: 4
  year: 2017
  ident: 10.1016/j.xphs.2023.10.041_bib0004
  article-title: Historical review of glasses used for parenteral packaging
  publication-title: PDA J Pharm Sci Technol
  doi: 10.5731/pdajpst.2016.007377
– volume: 596
  year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0007
  article-title: Microscopic evaluation of pharmaceutical glass container-formulation interactions under stressed conditions
  publication-title: Int J Pharmaceut
  doi: 10.1016/j.ijpharm.2021.120248
– volume: 106
  start-page: 1239
  issue: 5
  year: 2017
  ident: 10.1016/j.xphs.2023.10.041_bib0015
  article-title: Microflow imaging analyses reflect mechanisms of aggregate formation: comparing protein particle data sets using the Kullback–Leibler divergence
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2017.01.030
– volume: 109
  start-page: 640
  issue: 1
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0038
  article-title: Characterization of subvisible particles in biotherapeutic prefilled syringes: the role of polysorbate and protein on the formation of silicone oil and protein subvisible particles after drop shock
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.10.066
– start-page: 1
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0022
  article-title: Convolutional neural networks enable highly accurate and automated subvisible particulate classification of biopharmaceuticals
  publication-title: Pharmaceut Res
– volume: 12
  start-page: 455
  issue: 3
  year: 2010
  ident: 10.1016/j.xphs.2023.10.041_bib0039
  article-title: Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations
  publication-title: AAPS J
  doi: 10.1208/s12248-010-9205-1
– ident: 10.1016/j.xphs.2023.10.041_bib0052
– volume: 102
  start-page: 1434
  issue: 5
  year: 2013
  ident: 10.1016/j.xphs.2023.10.041_bib0054
  article-title: How subvisible particles become invisible—relevance of the refractive index for protein particle analysis
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23479
– volume: 109
  start-page: 2996
  issue: 10
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0056
  article-title: Advanced characterization of silicone oil droplets in protein therapeutics using artificial intelligence analysis of imaging flow cytometry data
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2020.07.008
– volume: 35
  start-page: 146
  issue: 7
  year: 2018
  ident: 10.1016/j.xphs.2023.10.041_bib0006
  article-title: Impact of vial washing and depyrogenation on surface properties and delamination risk of glass vials
  publication-title: Pharmaceut Res
  doi: 10.1007/s11095-018-2421-6
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 10.1016/j.xphs.2023.10.041_bib0049
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ Psychol Meas
  doi: 10.1177/001316446002000104
– volume: 34
  start-page: 479
  issue: 2
  year: 2017
  ident: 10.1016/j.xphs.2023.10.041_bib0035
  article-title: A random forest approach for counting silicone oil droplets and protein particles in antibody formulations using flow microscopy
  publication-title: Pharmaceut Res
  doi: 10.1007/s11095-016-2079-x
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.xphs.2023.10.041_bib0045
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 10.1016/j.xphs.2023.10.041_bib0011
– volume: 12
  start-page: 5843
  issue: 12
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0033
  article-title: Transfer learning analysis for subvisible particle flow imaging of pharmaceutical formulations
  publication-title: Appl Sci
  doi: 10.3390/app12125843
– volume: 104
  start-page: 1601
  issue: 5
  year: 2015
  ident: 10.1016/j.xphs.2023.10.041_bib0036
  article-title: Effect of the siliconization method on particle generation in a monoclonal antibody formulation in pre-filled syringes
  publication-title: J Pharm Sci
  doi: 10.1002/jps.24387
– volume: 111
  start-page: 3191
  issue: 12
  year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0037
  article-title: The impact of syringe age prior to filling on migration of subvisible silicone-oil particles into drug product
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2022.09.015
– year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0021
  article-title: Particulate impurities in cell-based medicinal products traced by flow imaging microscopy combined with deep learning for image analysis
  publication-title: Cytotherapy
– volume: 169
  start-page: 97
  year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0032
  article-title: Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2021.09.010
– volume: 167
  start-page: 38
  year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0055
  article-title: Forced degradation of cell-based medicinal products guided by flow imaging microscopy: Explorative studies with Jurkat cells
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2021.07.004
– volume: 117
  start-page: 3322
  issue: 11
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0020
  article-title: Machine learning and statistical analyses for extracting and characterizing “fingerprints” of antibody aggregation at container interfaces from flow microscopy images
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27501
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.xphs.2023.10.041_bib0046
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.xphs.2023.10.041_bib0047
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput
  doi: 10.1162/089976601750264965
– year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0002
– volume: 103
  start-page: 1104
  issue: 4
  year: 2014
  ident: 10.1016/j.xphs.2023.10.041_bib0008
  article-title: A case study of nondelamination glass dissolution resulting in visible particles: implications for neutral pH formulations
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23871
– ident: 10.1016/j.xphs.2023.10.041_bib0030
– volume: 107
  start-page: 999
  issue: 4
  year: 2018
  ident: 10.1016/j.xphs.2023.10.041_bib0018
  article-title: Deep convolutional neural network analysis of flow imaging microscopy data to classify subvisible particles in protein formulations
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2017.12.008
– year: 2013
  ident: 10.1016/j.xphs.2023.10.041_bib0013
– year: 2022
  ident: 10.1016/j.xphs.2023.10.041_bib0001
– ident: 10.1016/j.xphs.2023.10.041_bib0012
– volume: 109
  start-page: 614
  issue: 1
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0019
  article-title: Automatic identification of the stress sources of protein aggregates using flow imaging microscopy images
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.10.034
– start-page: 2233
  year: 2017
  ident: 10.1016/j.xphs.2023.10.041_bib0031
  article-title: Making deep neural networks robust to label noise: a loss correction approach
– ident: 10.1016/j.xphs.2023.10.041_bib0058
– volume: 109
  start-page: 364
  issue: 1
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0057
  article-title: Characterization of protein aggregates, silicone oil droplets, and protein-silicone interactions using imaging flow cytometry
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.05.018
– volume: 196
  year: 2020
  ident: 10.1016/j.xphs.2023.10.041_bib0048
  article-title: One-class support vector classifiers: a survey
  publication-title: Knowl-based Syst
  doi: 10.1016/j.knosys.2020.105754
– volume: 21
  start-page: 536
  issue: 4
  year: 2016
  ident: 10.1016/j.xphs.2023.10.041_bib0010
  article-title: Characteristics of product recalls of biopharmaceuticals and small-molecule drugs in the USA
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2015.10.020
– ident: 10.1016/j.xphs.2023.10.041_bib0026
– ident: 10.1016/j.xphs.2023.10.041_bib0050
– year: 2021
  ident: 10.1016/j.xphs.2023.10.041_bib0003
– volume: 03
  issue: 01
  year: 2015
  ident: 10.1016/j.xphs.2023.10.041_bib0009
  article-title: Particulate matter in injectables: main cause for recalls
  publication-title: J Pharmacovigil
  doi: 10.4172/2329-6887.1000e128
– volume: 18
  start-page: 50
  issue: 1
  year: 1947
  ident: 10.1016/j.xphs.2023.10.041_bib0053
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177730491
SSID ssj0006055
Score 2.4484556
Snippet Sub-visible particles can be a quality concern in pharmaceutical products, especially parenteral preparations. To quantify and characterize these particles,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 880
SubjectTerms Flow imaging microscopy
Image analysis
Machine learning
Particle characterization
Therapeutic solutions
Title Sub-Visible Particle Classification and Label Consistency Analysis for Flow-Imaging Microscopy Via Machine Learning Methods
URI https://dx.doi.org/10.1016/j.xphs.2023.10.041
https://www.ncbi.nlm.nih.gov/pubmed/37924976
https://www.proquest.com/docview/2886329478
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNBeEHfKABkJ7WVzlSXO7RExpoE6VE3dtLcojp2to2urNdXo-EX8S87JcS4bdAJeoirOxer32T7H-c45jL2PnCwPtJOB5RbkQuaOESryjJCu46U6LGtso9ria7B_JL-c-Cedzs-WamlRqF52_ce4kv9BFc4Brhgl-w_I1g-FE_Ab8IUjIAzHv8IYRr04HgGpxwZMQWqnMpcoACJocWO8nyozptqc86KMtaxzkaDKcG88vRKfL6he0QEq9DBWZbl1PEqxMNEZGqL9agvloCw5PV9h1M7ObmyR2_W1ttv705m5FrvQmcMRxdegprZeGVAhOJ0LkqcailaDnipTy0AG8NjLQgA9U102w1x3SlKyUkUEnr8m3QHVHvjW3tVw22IYY2di9GsdCuysp2qKW7WclK2JN6J6UL8tCLQ3cd77PiuTs7teD7V8lGurxZDZRUkRL0R3NLyVm5tWe9t0j913wSPBYhm7h02mMvAKfRuTRfLB2y9cZw-qR6wygVa5OKWpM3zEHlo4-Qci1GPWMZMnbHNA0C63-bCJ2Ztv800-aNKfL5-yHy1W8oqV_CYrObCSl6zkLVbyipUcWMnbrOQNKzmwkltW8oqV3LLyGTva-zT8uC9siQ-ReX5QCB1nrlQ72tGeHytfg3stcy_NMtd3c52Z1DgSvxTnMvZSBYaVCv1Qg11qnFhrlXrP2dpkOjEvGVe-ysEMC7WRSkoTprk0QWTCwGS5CXTQZTvVv55kNv89lmEZJ5XQ8TxB0BIEDc8BaF22Vd8zo-wvd17tV2AmdnyRXZoAG--8712FfAKTO36xSydmuoCLoijw3FiGUZe9IErU_ajY9GplywZbb4bWa7ZWXC7MGzChC_W2JO8vFPPMcA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-Visible+Particle+Classification+and+Label+Consistency+Analysis+for+Flow-Imaging+Microscopy+Via+Machine+Learning+Methods&rft.jtitle=Journal+of+pharmaceutical+sciences&rft.au=Lopez-Del+Rio%2C+Angela&rft.au=Pacios-Michelena%2C+Anabel&rft.au=Picart-Armada%2C+Sergio&rft.au=Garidel%2C+Patrick&rft.date=2024-04-01&rft.eissn=1520-6017&rft.volume=113&rft.issue=4&rft.spage=880&rft_id=info:doi/10.1016%2Fj.xphs.2023.10.041&rft_id=info%3Apmid%2F37924976&rft.externalDocID=37924976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3549&client=summon